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Abstract: Resource Description Framework (RDF), as a standard metadata description framework
proposed by the World Wide Web Consortium (W3C), is suitable for modeling and querying Web
data. With the growing importance of RDF data in Web data management, there is an increasing need
for modeling and querying RDF data. Previous approaches mainly focus on querying RDF. However,
a large amount of RDF data have spatial and temporal features. Therefore, it is important to study
spatiotemporal RDF data query approaches. In this paper, firstly, we formally define spatiotemporal
RDF data, and construct a spatiotemporal RDF model st-RDF that is used to represent and manipulate
spatiotemporal RDF data. Secondly, we present a spatiotemporal RDF query algorithm stQuery based
on subgraph matching. This algorithm can quickly determine whether the query result is empty for
queries whose temporal or spatial range exceeds a specific range by adopting a preliminary query
filtering mechanism in the query process. Thirdly, we propose a sorting strategy that calculates the
matching order of query nodes to speed up the subgraph matching. Finally, we conduct experiments
in terms of effect and query efficiency. The experimental results show the performance advantages of
our approach.

Keywords: subgraph matching; RDF; spatiotemporal data; query

1. Introduction

Resource Description Framework (RDF), as a standard metadata description frame-
work proposed by the World Wide Web Consortium (W3C) [1], can be used in various
fields such as intelligent software agents, privacy preferences, and privacy policies. Based
on the advantages of RDF in data and knowledge representation, many researchers have
proposed to use RDF in the management of temporal data in recent years. In the represen-
tation of temporal data, some researchers have tried to introduce the time dimension into
standard RDF or add time stamp information after the predicate or the entire triplet [2], to
achieve RDF-based temporal data modeling. Gutierrez et al. [3,4] propose a framework
that incorporates temporal reasoning into RDF to generate temporal RDF graphs, and
at the same time provides a semantic for these graphs, including a grammar that uses
RDF vocabulary and time labels to integrate the grammatical framework into standard
RDF graphs. Since then, in response to the query requirements of temporal RDF data,
Pugliese et al. [5] propose the tGRIN index structure, which establishes a special index for
the temporal RDF physically stored in the RDBMS. Motik [6] raises a logic-based method
to represent the effective time in RDF and OWL and devises a query evaluation algorithm.
Recently, Zhang et al. [7] put forward a new RDF-based temporal data representation
model, RDFt, and its query method. This model is suitable for querying temporal data in
practical applications.

There are information and datasets in the real world having spatial attributes such
as geographic location [8]. Kolas et al. [9] come up with ontology types that can support
geographic spatial semantics systems in order to realize the analysis and query operations
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of spatial data and expound the motivation of each ontology type and the potential areas
of geospatial community standardization. Smart et al. [10] use qualitative spatial reasoning
to support geographic ontology management system development tools, and introduce
the realization of the spatial reasoning engine, where the Web ontology language (OWL)
and its associated reasoning tools are applied, and the space rules engine extension of the
OWL associated reasoning tool is used to represent spatial reasoning and integrity rules.
Subsequently, Batsakis and Petrakis [11,12] propose SOWL, demonstrating how spatial and
spatiotemporal information and spatiotemporal evolution can be effectively represented
in OWL. Recently, Ademaj et al. [13] introduce a novel spatial consistency model that
applies to all geometrically based popular stochastic channel models. Cui et al. [14] focus
on modeling the spatial point process of random vehicle positions in large and small cities,
and experimentally verify the real location data of moving taxi tracks recorded by the
global positioning system (GPS), thus forming a spatial RDF model.

With the development of temporal data models and spatial data models, some re-
searchers have begun to consider integrating temporal attributes and spatial attributes,
and are committed to constructing spatiotemporal RDF data models that can simultane-
ously represent temporal and spatial information. Some relevant departments provide
real RDF data sets integrating time information and spatial information. These data sets
include YAGO2, OpenStreetMap, and GovTrack, where YAGO2 is an RDF dataset based
on Wikipedia and WordNet (Semantic Web) [15,16]. At the same time, Koubarakis and
Kyzirakos [17] developed a constrained data model stRDF, which has the ability to repre-
sent spatial and temporal data. Wang et al. [18,19] designed a spatiotemporal data model
of spatiotemporal RDF quintuples, and spatiotemporal RDF data can be organized in the
form of graphs containing spatiotemporal features based on the model. Lu et al. [20] take
the fuzziness of the data into account and conceived a novel fuzzy spatiotemporal data
model DPS. Xu et al. [21] constituted a Bayesian spatiotemporal stochastic model to fully
explain the spatiotemporal correlation in RSI. Sun et al. [22] proposed a framework for uni-
fying geospatial data, which can effectively organize geospatial data. Kyzirakos et al. [23]
proposed a new RDF store that supports the state of the art semantic geospatial query
languages stSPARQL and GeoSPARQL.

The work of querying spatiotemporal RDF data has also received widespread atten-
tion, apart from constructing a spatiotemporal RDF data model to realize the representation
function of spatiotemporal data. Vlachou et al. [24] compressed the spatiotemporal infor-
mation of each RDF entity into a unique integer value and use this code in the filtering
and optimization framework to effectively query spatiotemporal RDF data. Wu et al. [25]
proposed a keyword-based spatiotemporal RDF data query method kSPT, which does
not rely on the use of a structured query language. Eom et al. [26] used the method of
constructing an index to query the spatiotemporal data. However, since the spatiotemporal
RDF data model is modeled based on the RDF data model, it can also be represented and
stored in the form of graphs. With the rapid development of graph query algorithms based
on subgraph matching, it is necessary to clarify the concepts of RDF graph mapping, RDF
graph equivalence, and graph isomorphism [8]. The representative subgraph matching
algorithms include VF2 [27], Quicks I [28], GraphQL [29], GADDI [30], SPATH [31], and
TurbOiso [32]. In order to improve query performance, Lee et al. [33] constructed a general
framework of a subgraph matching algorithm.

Although current efforts have advantages of querying RDF data, they mainly focus
on temporal RDF or spatial RDF. In order to model and query spatiotemporal RDF data,
not only do their respective temporal and spatial features need to be considered, but
the overall spatiotemporal features over time also need to be considered, which is not
a straightforward task. Consequently, a range of research for spatiotemporal RDF data
management is investigated. However, they mainly focus on spatiotemporal RDF data
representations formally, or they are not well compatible with efficient querying. The
existing spatiotemporal models or standard vocabularies dedicated to spatiotemporal
data will generate redundant information when querying spatiotemporal RDF data based
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on subgraph matching. In this paper, we propose st-RDF model firstly. We introduce
a temporal component to RDF datasets, and after a spatial component to RDF datasets,
which are finally mixed in a spatiotemporal component. An illustrative example is shown
after the corresponding definitions and figures. The temporal component is defined as an
interval and the spatial component is defined as a pair of coordinates (rectangles). After, a
spatiotemporal query graph is defined and illustrated with an example. Two operations are
defined for intervals and coordinates: intersection and merging. Intersection for intervals
is defined as usual, and merging of intervals is defined as the smallest interval contains
the merged internals. The same can be said for coordinates. The intersection of rectangles
and the smallest rectangle containing the merged rectangles. On the basis of the proposed
model, we propose a subgraph matching approach for querying spatiotemporal RDF data.
Experimental results verify that our approach has performance advantages, and application
discussions give general steps on how to use our approach in spatiotemporal applications.
The main contributions of this paper are described as follows:

• We construct a spatiotemporal RDF model st-RDF. On the basis of the data model, it
can represent and operate data with temporal and spatial attributes.

• We propose a preliminary query filtering mechanism. For queries whose spatiotem-
poral range exceeds the data graph, this mechanism can quickly determine that the
query result is empty and we feed it back to the user.

• We propose a spatiotemporal RDF query algorithm stQuery based on subgraph
matching. At the same time, we sort nodes according to the degree of association
between query nodes and candidate nodes.

• We use the control variable method to compare stQuery with the other three query
algorithms to test the query efficiency.

The rest of this paper is organized as follows. We propose definitions and concepts
about the spatiotemporal RDF model st-RDF in Section 2. In Section 3, a spatiotemporal
RDF query algorithm stQuery based on subgraph matching is proposed. We show the
performance of our algorithm through experimental design and result analysis in Section 4.
Section 5 gives application discussions and Section 6 draws conclusions and explains future
research work.

2. Spatiotemporal Data Model Based on RDF

This section introduces the temporal and spatial features of spatiotemporal data and
proposes a spatiotemporal RDF data model. The representative features of spatiotemporal
data are spatial feature and temporal feature, and the most representative feature of spatial
feature is coordinate feature. For simplicity, we only consider latitude and longitude as
spatial features. Of course, there are several other spatial features such as area and other
geometries, but such features can be easily extended by our representation. On the other
hand, our subgraph matching on spatiotemporal RDF data mainly relates to locations. As
a result, in this paper, we mainly consider latitude and longitude to space.

2.1. The Temporal Feature of Spatiotemporal Data

Time is closely related to our lives, and there are a lot of instances with temporal
features around us at the same time. Instances with temporal attributes include temporal
entities and temporal facts. We focus on the following four types of temporal entities:
person, groups, artifact, and events.

(i) Person: uses the temporal predicates “wasBornOnDate” and “diedOnDate” to identify
the temporal attributes.

(ii) Groups: (bands, football clubs, companies, etc.). Use the temporal predicates “wasCre-
atedOnDate” and “wasDestroyedOnDate” to identify the temporal attributes.

(iii) Artifact: (buildings, songs, cities, etc.). Use the temporal predicates “wasCreatedOn-
Date” and “wasDestroyedOnDate” to identify the temporal attributes.



ISPRS Int. J. Geo-Inf. 2021, 10, 832 4 of 23

(iv) Events: (sports events, wars, etc.). Use the temporal predicates “startedOnDate” and
“endedOnDate” to identify the temporal attribute.

We combine the temporal predicates “wasBornOnDate”, “wasCreateOnDate” and
“startedOnDate” into the temporal predicate “startsExistingOnDate”. The temporal pred-
icates “DiedOnDate”, “WasdestroyOnDate” and “EndEndOnDate” are united into the
temporal predicate “EndSExistingOnDate”. Furthermore, the temporal predicate “begin-
ning existence” and the temporal predicate “ending existence” can be merged to obtain the
valid existence temporal predicate “hasExistingTemporal “ of the temporal entity, and the
corresponding object is usually a valid temporal period. The above process is described in
detail in Figure 1.
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Figure 1. Representation model of temporal entities.

Temporal entities can be represented by a special RDF triplet et-RDF. Definition 1
introduces the temporal entity model et-RDF.

Definition 1 (et-RDF). The et-RDF triple is denoted as (s, pT, oT)∈ (E ∪ B) × U × (T ∪ B), where:

• s stands for subject, pT stands for temporal predicate, and oT stands for temporal object;
• E is the entity set and E ⊂ U, B stands for the blank node set, and T stands for the

temporal label set.

In Definition 1, T can be further expressed as temporal interval [TS, TE], where TS
represents the starting existence time, TE represents the ending existence time, and TS ≤ TE,
T ⊂ L. The et-RDF triple can be represented as a directed graph with two nodes and
an edge. An et-RDF triple instance is represented in the purple elliptical dashed line
as shown in Figure 2. The yellow node ([1936-05-17,2013-02-02]) represents the tempo-
ral entity, and the information inside the node stands for the entity information. The
blue node (Juan_B_Tudela) stands for the temporal object, the information inside the
node stands for the temporal label, and the temporal predicate is represented by a di-
rected arc from the temporal entity to the temporal object, including the temporal at-
tribute marked on the directed arc. For example, the location information of Saipan is
15.21233 longitude and 145.7545 latitude; Juan_B._Tudela’s lifetime is from 1936-05-17 to
2013-02-02; Juan_B._Tudela has a name from 1936-05-17 to 2013-02-02.
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A fact can be represented in the form of an RDF triple. Similarly, the temporal fact can
be represented in the form of the corresponding RDF triple with temporal information. We
define the concept of temporal fact model ft-RDF.

Definition 2 (ft-RDF). The ft-RDF triplet with a temporal label is denoted as (s, p, o) [T], where:

• s stands for subject, p stands for predicate, o stands for object, and (s, p, o) ∈ (U ∪ B) ×
U × (U ∪ B ∪ L) stands for a fact;

• T represents the temporal label.

According to Definition 2, T is represented by the temporal interval [TS, TE], where
TS represents the starting time, TE represents the ending time, and TS ≤ TE. In particular,
[TS, TE] represents a moment when TS = TE. The ft-RDF triples can be converted into
graphs. As shown in Figure 2, there is an instance of a ft-RDF triple in the green elliptical
dotted line. The yellow node (male) represents the subject of the statement, and the
information within the node is the label of the subject. The blue node (Bernard_Gavrin)
represents the object of the statement, and the information within the node is the label of
the object. The predicate in this statement is represented by a directed arc from the subject
to the object, and the predicate label is marked on the directed arc. The temporal attribute
is the attribute of the whole statement. In the ft-RDF graph, the corresponding temporal
label is marked on the directed arc together with the predicate label.

2.2. Spatial Features of Spatiotemporal Data

Each physical object has a position on the earth, and we represent their spatial at-
tributes with the position information. The same as temporal attributes, instances with
spatial attributes also include spatial entities and spatial facts. The latitude and longitude
coordinates of the physical objects on the earth are used to identify the spatial features.

In terms of spatial entities, spatial predicates “hasLatitude” (to identify the latitude
coordinates) and “hasLongitude” (to identify the longitude coordinates) are used to identify
the spatial attributes. The spatial predicates “hasLatitude” and “hasLongitude” are merged
to obtain the geographic spatial predicate “hasPosition” of the spatial entity in order to
represent the spatial information of the spatial entity more effectively. The corresponding
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object is a geographic coordinate represented by longitude and latitude. This process is
described in detail in Figure 3. Definition 3 describes the spatial entity model es-RDF.
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Definition 3 (es-RDF). An es-RDF triplet is denoted as (s, pS, oS)∈ (E ∪ B)× U × (S ∪ B), where:

• s stands for subject, pS stands for spatial predicate, and oS stands for spatial object;
• E stands for the set of entities and E ⊂ U, B stands for the set of blank nodes, S stands

for the set of spatial labels.

As for Definition 3, an es-RDF triple can be represented as a directed graph with two
nodes and one edge, as shown in Figure 2. An instance of an es-RDF triple is shown in
the red elliptical double-dotted line. The yellow node ([15.21233,145.7545]) represents the
spatial entity, and the information inside the node is the entity information. The blue node
(Saipan) represents the spatial object, and the information inside the node is the spatial
label. The spatial predicate is represented by a directed arc from the spatial entity to the
spatial object, and the spatial attribute is marked on the directed arc.

Spatial facts can be represented as a statement with spatial attributes. Similarly, a
spatial fact can be represented by an RDF triple with spatial attributes to represent the
geo-location information.

Definition 4 (fs-RDF). A fs-RDF triple with a spatial label is denoted as (s, p, o) [S], where:

• s stands for subject, p stands for predicate, and o stands for object, where (s, p, o) ∈
(U ∪ B) × U × (U ∪ B ∪ L);

• S represents the spatial label.

According to Definition 4, S is represented by the longitude and latitude coordinates
[X, Y], where X represents the longitude value and Y represents the latitude value. The
fs-RDF triples can also be converted into graphs. An fs-RDF triple is represented by a
directed graph with two nodes, where spatial attributes are attached to a directed arc
between the two nodes. As shown in Figure 2, there is an instance of a fs-RDF triple
in the black elliptical solid line. The blue node (Garapan) represents the subject of the
statement, and the information within the node is the label of the subject. The yellow node
(Northern_Mariana_Islands) represents the object of the statement, and the information
within the node is the label of the object. The predicate in this statement is represented by a
directed arc from the subject to the object, and the predicate label is marked on the directed
arc. The spatial attribute is the attribute of the entire statement. In the fs-RDF graph, the
corresponding spatial label is labeled along with the predicate label on the directed arc.

2.3. The Spatiotemporal RDF Data Model

In this subsection, we merge et-RDF, ft-RDF, es-RDF, and fs-RDF models to form a
spatiotemporal RDF data model st-RDF, which can represent temporal and spatial attributes
simultaneously.



ISPRS Int. J. Geo-Inf. 2021, 10, 832 7 of 23

Definition 5 (st-RDF). A spatiotemporal RDF triple with a temporal label and a spatial label is
denoted as (s, p, o) [S] [T], where:

• s stands for subject, p stands for predicate, and o stands for object, where (s, p, o) ∈
(U ∪ B) × U × (U ∪ B ∪ L);

• S represents the spatial label;
• T represents the temporal label.

In Definition 5, p contains temporal predicates, spatial and ordinary predicates. o
contains temporal objects, spatial and ordinary objects. S is represented by the longitude
and latitude coordinates [X, Y], where X represents the longitude value and Y represents
the latitude value. T is represented by the temporal interval [TS, TE], where TS represents
the starting time, TE represents the ending time, and TS ≤ TE. Therefore, the spatiotemporal
RDF triplet can also be denoted as (s, p, o) [X, Y] [TS, TE]. In st-RDF, the information in “[“
and “]” can be omitted according to whether the triple (i.e., the corresponding statement)
has spatiotemporal attributes. If the triple does not have a temporal attribute, then [T] is
null. Similarly, if the triple does not have a spatial attribute, then we have [S] is null.

A spatiotemporal RDF graph is a directed graph composed of multiple spatiotemporal
RDF triples, in which the subject s and object o are presented in the form of nodes, and
the predicate p is represented as a directed arc that s points to o. When the triples have
spatiotemporal attributes, the spatiotemporal attributes of the triples are attached to the
directed arc. When the entity has a spatiotemporal attribute, it is represented by a new
triple, in which the subject is the entity, the predicate is the spatiotemporal predicate, and
the object is the spatiotemporal information. For the query of spatiotemporal RDF data,
we further divide the spatiotemporal RDF graph into a spatiotemporal RDF data graph
and spatiotemporal RDF query graph. Definition 6 and Definition 7 define the concepts of
spatiotemporal RDF data graph and spatiotemporal RDF query graph.

Definition 6 (spatiotemporal RDF data graph). An RDF data graph is denoted as stG = (V, E,
L, Fst), where:

• V = VL ∪ VE ∪ VC ∪ VB ∪ VS ∪ VT represents a set of vertices;
• E represents the set of edges between two nodes;
• L = LV ∪ LE is the label set of all vertices and edges;
• Fst: V ∪ E→ L is the mapping function from vertices and edges to the label set L.

In Definition 6, VL, VE, VC and VB represent text vertex, entity vertex, class vertex
and blank vertex, respectively. VS represents space node and VT represents temporal node.
LV = {URI} ∪ {Literal Value} ∪ LT ∪ LS is as the set of all vertex labels, and LE = LR ∪ LT
∪ LS is as the label set of all edge labels, where LR is as the label set of ordinary relational
predicate, LT is as the temporal label set, and LS is as the spatial label set. Fst(V): V→ LV
is the mapping function from vertices to vertex labels, and Fst(E): E→ LE is the mapping
function from edges to edge labels. For different types of vertices, the mapping relationship
is as follows:

(i) v ∈ VL ⇔ Fst(v) ∈ {Literal Value};
(ii) v ∈ VE ∪ VC ⇔ Fst(v) ∈ {URI};
(iii) v ∈ VB ⇔ Fst(v) = NULL;
(iv) v ∈ VS ⇔ Fst(v) ∈ {Spatial Label};
(v) v ∈ VT ⇔ Fst(v) ∈ {Temporal Label}.

Table 1 shows 12 spatiotemporal RDF triples, containing Id, subject, predicate, object,
position, and time. The corresponding spatiotemporal RDF data graph is shown in Figure 2.
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Table 1. Spatiotemporal RDF data.

Id Subject Predicate Object Position Time

1 Bernard_Gavrin hasExistingTime [1915-##-##,
1944-07-07]

2 Bernard_Gavrin hasGender male [1915-##-##,
1944-07-07]

3 Bernard_Gavrin diedIn Saipan [15.21233,
145.7545]

[1944-07-07,
1944-07-07]

4 Bernard_Gavrin isCitizenOf United_States
5 United_States type state

6 Saipan hasPosition [15.21233,
145.7545]

7 Saipan isCalled “Saipan”

8 Juan_B._Tudela hasExistingTime [1936-05-17,
2013-02-02]

9 Juan_B._Tudela wasBornIn Saipan [15.21233,
145.7545]

[1936-05-17,
1936-05-17]

10 Juan_B._Tudela hasName “Juan_B._Tudela” [1936-05-17,
2013-02-02]

11 Juan_B._Tudela livesIn Garapan [−6.04139,
106.67]

[1961-08-12,
2013-02-02]

12 Garapan isLocatedIn Northern_Mariana
_Islands

[−6.04139,
106.67]

Definition 7 (spatiotemporal RDF query graph). The spatiotemporal RDF query graph is
denoted by stQ = (Vq, Eq, Lq, Fst

q), where:

• Vq = VL ∪ VE ∪ VC ∪ VB ∪ VS ∪ VT ∪ VP represents a set of vertices;
• Eq represents the set of edges between two nodes;
• Lq = LV ∪ LE;
• Fst

q: Vq ∪ Eq → Lq is a mapping function from vertices and edges to a set of labels Lq.

According to Definition 7, the meanings of VL, VE, VC, VB, VS, VT and Lq are the
same as those in definition 6, and VP represents the parameter vertices in the RDF query
graph. Fst

q(Vq): Vq → LV is a mapping function from vertices to vertex labels, and Fst
q(Eq):

Eq → LE is the mapping function from edges to edge labels. For different types of vertices,
the mapping relationship is the same as the spatiotemporal RDF query graph, except
v ∈ VP ⇔ Fst

q(v) = NULL.
It is noted that the variable “V” can appear at any position in the query graph but

cannot appear in the relevant temporal period or coordinates.
Figure 4 shows an example of a spatiotemporal RDF query graph that contains a total

of seven vertices, three of which are parametric vertices. “?x” died in Saipan at a position of
15.21233 longitude and 145.7545 latitude; Saipan has a position “?z” and is called “Saipan”.
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3. Spatiotemporal RDF Data Query Based on Subgraph Matching

Based on the spatiotemporal RDF data model proposed in the previous section, this
section proposes a spatiotemporal RDF data query approach based on subgraph matching.

3.1. Preliminary Spatiotemporal Determination

The matching degree of related spatiotemporal intervals is determined firstly when
performing subgraph matching, i.e., the degree of spatiotemporal matching between the
query graph and the data graph is determined. The temporal interval matching and spatial
interval matching are introduced below.

3.1.1. Temporal Interval Matching

In terms of temporal interval matching, τ is the temporal interval function, and τ(stG)
is the temporal span of stG in the spatiotemporal RDF graph. Accordingly, τ(e) is the
temporal span of the spatiotemporal RDF triples, where e ∈{e | e∈ E in stG}. Each e ∈ E has
τ(e) ⊂ τ(stG). For the temporal relationships between the spatiotemporal RDF data graph
and the spatiotemporal RDF query graph, the concepts of temporal intersection operation,
temporal merger operation, and temporal span are given.

Definition 8 (temporal intersection operation ∧t). Let ts = Max(ts1, ts2) and te = Min(te1,
te2) be temporal segments [ts1, te1] and [ts2, te2]. If and only if ts ≤ te, the intersecting operation of
the temporal segments is [ts1, te1] ∧t [ts2, te2] = [ ts, te]. Otherwise, the intersecting operation is
[ts1, te1] ∧t [ts2, te2] = ∅, when ts > te.

In Definition 8, if there is the following temporal segment T1 = [1961-02-05, 1982-06-10],
T2 = [1970-07-05, 1992-06-15], and T3 = [1989-10-03, 1992-06-15], then

(i) T1 ∧t T2 = [1961-02-05, 1982-06-10] ∧t [1970-07-05, 1992-06-15] = [1970-07-05, 1982-06-10];
(ii) T1 ∧t T3 = [1961-02-05, 1982-06-10] ∧t [1989-10-03, 1992-06-15] = Ø.

Definition 9 (temporal merger operation ∨t). Let ts = Min(ts1, ts2) and te = Max(te1, te2) be
temporal segments [ts1, te1] and [ts2, te2], then the intersecting operation of the temporal segments
is [ts1, te1]∨t [ts2, te2] = [ts, te], where ts≤ te.

According to Definition 9, for the temporal segments T1 = [1961-02-5, 1982-06-10]
and T2 = [1970-07-05, 1992-06-15], there is a union T1 ∨t T2 = [1961-02-05, 1982-06-10] ∨t
[1970-07-05, 1992-06-15] = [1961-02-05, 1992-06-15].
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Definition 10 (temporal span τ). There is a temporal span τ(stG) = { [tsi, tei] | 1 ≤ i ≤ |E|,
tsi ≤ tei } for the spatiotemporal RDF graph stG. Let ts = Min1 ≤ i≤ |E| (tsi) and te = Max1 ≤ i≤ |E|
(tei), then the temporal span of spatiotemporal RDF graph stG is [ts1, te1] ∨t [ts2, te2] ∨t . . . ∨t
[tsn, ten] = [ ts, te], where n = |E|, and ts ≤ te.

As for Definition 10, there is temporal span τ(stG) = [1944-07-07, 1944-07-07] ∨t [1936-
05-17, 1936-05-17] ∨t [1936-05-17, 2013-02-02] ∨t [1915-##-##, 1944-07-07] ∨t [1961-08-12,
2013-02-02] = [1915-##-##, 2013-02-02] for the spatiotemporal RDF data graph stG given in
Figure 2. For the spatiotemporal RDF query graph stQ given in Figure 4, if the temporal
attributes of all spatiotemporal RDF triples are empty, the temporal span τ(stQ) is an
infinite set T. The span indicates the merging operation and from the set of intervals and
rectangles of data or query graph.

For a spatiotemporal RDF data graph stG and a spatiotemporal RDF query graph
stQ, it is possible for the stQ to have a matching subgraph in stG when τ(stG) ∧t τ(stQ)
is not null. Otherwise, stQ must have no matching subgraph in stG. Considering the
spatiotemporal RDF data graph stG in Figure 2 and the spatiotemporal RDF query graph
stQ in Figure 4, there is τ(stG) ∧t τ(stQ) = [1915-##-##, 2013-02-02] ∧t T = [1915-##-##,
2013-02-02]. If the result is not empty, it is preliminarily determined that the spatiotemporal
RDF query graph stQ is likely to find a matching subgraph in the spatiotemporal RDF data
graph stG.

3.1.2. Spatial Interval Matching

For spatial interval matching, ρ is the spatial interval function, and ρ(stG) is the spatial
span of the spatiotemporal RDF data graph. Accordingly, ρ(e) represents the spatial span
of spatiotemporal RDF triples, where e ∈{e | e ∈ E in stG}, and each e ∈ E has ρ(e) ⊂ ρ(stG).
In terms of the spatial relationship between the spatiotemporal RDF data graph and the
spatiotemporal RDF query graph, the concepts of the spatial intersection operation, spatial
merger operation, and spatial span are defined.

As shown in Figure 5a, the spatial coordinates are denoted as A(PxA, PyA) and
B(PxB, PyB), where Px1 = Min(PxA, PxB), Px2 = Max(PxA, PxB), Py1 = Min(PyA, PyB), and
Py2 = Max(PyA, PyB). When latitude interval PxAB = [Px1, Px2] and longitude interval
PyAB = [Py1, Py2], the region consisting of points A and B is PAB (PxAB & PyAB). For
Figure 5b, the other spatial coordinates are denoted as C(PxC, PyC) and D(PxD, PyD), where
Px3 = Min(PxC, PxD), Px4 = Max(PxC, PxD), Py3= Min(PyC, PyD), and Py4 = Max(PyC, PyD). If
the longitude interval PxCD = [Px3, Px4] and latitude interval PyCD = [Py3, Py4], the region
composed of points C and D is PCD(PxCD & PyCD).
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Figure 5. Spatial region graph. (a) The spatial region consisting of points A and B; (b) the spatial region consisting of points
C and D.

Definition 11 (spatial intersection operation ∧s). Let Pxi = Max(Px1, Px3), Pxj = Min(Px2, Px4),
Pyi = Max(Py1, Py3), and Pyj = Min(Py2, Py4), then the intersecting operation of spatial regions
PAB and PCD is PAB∧s PCD = (PxAB & PyAB)∧s (PxCD & PyCD) = (Px & Py), where the longitude
interval Px = [Pxi, Pxj] and latitude interval Py = [Pyi, Pyj].
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The spatial intersection operation can be represented as shown in Figure 6.
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Figure 6. Spatial intersection operation.

Definition 12 (spatial merger operation ∨s). Let Pxi = Min(Px1, Px3), Pxj = Max(Px2, Px4),
Pyi = Min(Py1, Py3), and Pyj = Max(Py2, Py4), then the intersection of spatial regions PAB and
PCD is PAB ∨s PCD = (PxAB & PyAB) ∨s (PxCD & PyCD) = (Px & Py), where the longitude interval
Px = [Pxi, Pxj] and latitude interval Py = [Pyi, Pyj].

The spatial merger operation is shown in Figure 7.
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Figure 7. Spatial merger operation.

Definition 13 (spatial span ρ). The spatial span ρ(stG) = { [Pxi, Pxj] & [Pyi, Pyj]| 1 ≤ i, j≤
|E|, Pxi ≤ Pxj, Pyi ≤ Pyj } for the spatiotemporal RDF graph stG. Let Pxmin = Min1 ≤ i≤ |E| (Pxi),
Pxmax = Max1 ≤ i≤ |E| (Pxi), Pymin = Min1 ≤ i≤ |E| (Pyi), and Pymax = Max1 ≤ i≤ |E| (Pyi), then
the spatial span of the graph stG is (Px12 & Py12) ∨s (Px23 & Py23) ∨s . . . ∨s (Px(n-1)n & Py(n-1)n)
= ([Pxmin, Pxmax] & [Pymin, Pymax]), where n = |E|, and Pxmin ≤ Pxmax, Pymin ≤ Pymax.

As for Definition 13, there is a spatial span ρ(stG) = ([-6.04139, 15.21233] & [106.67, 145.7545])
and ρ(stQ) = ([15.21233, 15.21233] & [145.7545, 145.7545]) for the spatiotemporal RDF data
graph stG in Figure 2 and the spatiotemporal RDF query graph stQ in Figure 4, respectively.

For a spatiotemporal RDF data graph stG and a spatiotemporal RDF query graph stQ,
it is possible for stQ to have a matching subgraph in stG, if and only if ρ(stG) ∧s ρ(stQ) is
non-null. For the spatiotemporal RDF data graph stG in Figure 2 and the spatiotemporal
RDF query graph stQ in Figure 4, there is ρ(stG) ∧s ρ(stQ) = ([−6.04139, 15.21233] &
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[106.67, 145.7545]) ∧s ([15.21233, 15.21233] & [145.7545, 145.7545]) = ([15.21233, 15.21233]
& [145.7545, 145.7545]). When the result is non-null, it is preliminarily determined that
the spatiotemporal RDF query graph stQ is likely to find a matching subgraph in the
spatiotemporal RDF data graph stG.

3.2. Calculation of the Matching Order

The query process based on subgraph matching can be carried out if τ(stG) ∧t τ(stQ)
and ρ(stG) ∧s ρ(stQ) are non-null. Only considering the spatiotemporal RDF query graph,
the matching orders of query nodes are calculated in the process of subgraph matching. In
order to clarify the matching order of query nodes, the node query candidate regions are
given in the following.

For the matching order, D(u) is the query candidate region of node u in the spatiotem-
poral RDF data graph, where D(u) contains all data nodes that may match u. Node u and
any node v in D(u) should meet the following conditions:

(i) deg(u) ≤ deg(v);
(ii) deg-in(u) ≤ deg-in(v);
(iii) deg-out(u) ≤ deg-out(v).

The deg function deg(u) represents the degree of node u, where indegree function
deg-in(u) represents the indegree of node u, and outdegree function deg-out(u) represents
the outdegree of node u. Outdegree and indegree are numbers of outcoming and incoming
edges from a node. If deg-in(u) ≤ deg-in(v) and deg-out(u) ≤ deg-out(v) are satisfied for
nodes u and v, then deg(u) ≤ deg(v). In addition, if there is an edge connecting the query
nodes u1 and u2 in two spatiotemporal RDF query graphs, a node v1 in the query candidate
region D(u1) of u1 must be adjacent to a node v2 in the query candidate region D(u2) of
u2, i.e., there is an edge between v1 and v2. The rule is called as the principle of AC (Arc
Consistency). This means that if a node in the spatiotemporal RDF data graph exists in
the query candidate region of a node u in the spatiotemporal RDF query graph, but not
meeting the AC principle, then it should be removed from D(u).

The first query node should be determined to query spatiotemporal RDF data by a subgraph
matching algorithm and the first query node is selected according to the following rules:

(i) Select the node in the smallest query candidate region (i.e., the least number of nodes
in the query candidate region) as the first query node. When the query candidate
region with two or more nodes is the smallest, the approach in (ii) is adopted to select
these nodes.

(ii) Select the node with the largest degree as the first node. When there are two or more
query nodes with the same degree, the approach in (iii) is adopted to select these nodes.

(iii) Select the node with the maximum outdegree. When there are two or more nodes
with the same outdegree, any node is selected as the first query node.

It is assumed that there are n query nodes in the spatiotemporal RDF query graph, and
the order of the remaining n-1 query nodes is determined by the degree of association with
the nodes that have been sorted. The query node with the largest degree of association that
already exist in the partial matching order is ranked earlier. An approach similar to an RI
algorithm is adopted to sort subsequent query nodes [34]. ζi = { u1, u2, . . . , ui } represents
a partial query order consisting of i nodes, where i < n. ξI is the collection of nodes that do
not participate in sorting. Three sets about the candidate query node u are defined to select
the next node in the sort:

(i) Vu, vis: The set of adjacency nodes belonging to u in i query nodes of ζI;
(ii) Vu, neig: The set of query nodes in ζi that are adjacent to at least one node in ξi and

connected to u;
(iii) Vu, unv: The set of adjacent nodes of u that are not in ζi and are not adjacent to any

node in ζi.

Select the next node in the sort as follows:

(i) Firstly, choose the node whose value of Vu, vis | is the maximum;
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(ii) If the values of | Vu, vis | are the same, then choose the node whose value of | Vu, neig |
is the maximum;

(iii) If the values of | Vu, neig | are the same, then choose the node whose value of
| Vu, unv | is the maximum;

(iv) If the values of | Vu, unv | are the same, then select any of the nodes.

Taking Figure 8a as an example, if the first query node u1 has been selected, ζ1 = { u1 }
and ξ6 = { u2, u3, u4, u5, u6, u7 }. When selecting the next query node, consider that
Vu2, vis = { u1 }, Vu3, vis = { u1 }, and Vu7, vis = { u1 }. If Vu4, vis, Vu5, vis and Vu6, vis are all ∅, so
| Vu2, vis | = | Vu3, vis | = | Vu7, vis | > | Vu4, vis | > | Vu5, vis | > | Vu6, vis |, then the next
query node can be considered in u2, u3, and u7. Consider Vu2, neig = { u1 }, Vu3, neig = { u1 },
Vu7, neig = { u1 }, and | Vu2, neig | = | Vu2, neig | = | Vu7, neig | = 1, but the next query
node is still not determined. Then continue to determine | Vu,unv | value, including
Vu2, unv = { u4, u5, u6 }, Vu3, unv = { u6 }, and Vu7, unv = { u6 }. Because | Vu2, unv | = 3, and
| Vu3, unv | = | Vu7, unv | = 1, then | Vu2, unv | > | Vu3, unv | = | Vu7, unv |, which can
determine the next query node for u2. After updating the sets ζi and ξi, there is ζ2 = { u1, u2 }
and ξ5 = { u3, u4, u5, u6, u7 }, then the next query node can be selected, and the final query
sequence is ζ7 = { u1, u2, u3, u6, u7, u5, u4 }.
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Figure 8. Query node selection order.

Figure 8b–g shows the node state at each sorting step, where the blue node has
participated in sorting, and the remaining nodes have not participated in sorting. The
purple node is the adjacent node of the node that has participated in sorting. The specific
sorting process is explained as follows:

(i) When ζ1 = { u1 } and ξ6 = { u2, u3, u4, u5, u6, u7 }, the node status is shown in Figure 8b.
When Vu2, vis = { u1 }, Vu3, vis = { u1 }, Vu7, vis = { u1 }, and Vu4, vis, Vu5, vis, Vu6, vis = ∅,
the node is selected in u2, u3, and u7; When Vu2, neig = { u1 }, Vu3, neig = { u1 }, and
Vu7, neig = { u1 }, the node is selected in u2, u3, and u7; When Vu2, unv = { u4, u5, u6 },
Vu3, unv = { u6 }, and Vu7, unv = { u6 }, u2 is removed from the unordered set and added
to the partial query order set.
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(ii) When ζ2 = { u1, u2 } and ξ5 = { u3, u4, u5, u6, u7 }, the node state is shown in
Figure 8c. When Vu3, vis = { u1, u2 }, Vu4, vis = { u2 }, Vu5, vis = { u2 }, Vu6, vis = { u2 },
and Vu7, vis = { u1 }, u3 is removed from the unordered set and added to the partial
query order set.

(iii) When ζ3 = { u1, u2, u3 }and ξ4 = { u4, u5, u6, u7 }, the node status is shown in Figure 8d.
When Vu4, vis = { u2 }, Vu5, vis = { u2 }, Vu6, vis = { u2, u3 }, and Vu7, vis = { u1, u3 }, the
node is selected between u6 and u7; When Vu6, neig = { u1, u2, u3 } and Vu7, neig = { u1,
u2, u3 }, the node is selected between u6 and u7; When Vu6, unv = ∅ and Vu7, unv = ∅,
the node is selected between u6 and u7; One of the nodes u6 is selected and deleted
from the unsorted set, and it is added to the partial query order set.

(iv) When ζ4 = { u1, u2, u3, u6 } and ξ3 = { u4, u5, u7 }, the node state is shown in Figure 8e.
When Vu4, vis = { u2 }, Vu5, vis = { u2, u6 }and Vu7, vis = { u1, u3, u6 }, u7 is removed from
the unordered set and added to the partial query order set.

(v) When ζ5 = { u1, u2, u3, u6, u7 }and ξ2 = { u4, u5 }, the node status is shown in Figure 8f.
When Vu4, vis = { u2 } and Vu5, vis = { u2, u6 }, u5 is removed from the unsorted set and
added to the partial query order set.

(vi) ζ6 = { u1, u2, u3, u6, u7, u5 } and ξ1 = { u4 }. As shown in Figure 8b, only u4 is the node
that does not participate in sorting at this time, so the next selected query node is u4.
Thus, the final query sequence ζ7 = { u1, u2, u3, u6, u7, u5, u4 }. In this case, ξ set is
empty.

The node with the largest out-degree in the smallest query candidate domain is
selected as the first query vertex. The purpose is to find the most favorable result with
the greatest probability and reduce the useless traversal. After determining the first
query node, the order of the remaining n-1 query nodes are determined according to
the degree of association with the sorted node. The significance of this sorting is to
comprehensively consider the closeness of the relationship between the nodes, so as to
facilitate the generation of the best query results.

For example, considering the variable “?x” in the query in spatiotemporal RDF query
graph, we set u1 = ”Antonio”, u2 = ”Miguel”, u3 = ”Benito”, u4 = ”Mateo”, u5 = ”Federico”,
u6 = ”Luis”, and u7 = ”Lope”. The node u1 = ” Antonio” is selected as the first query node,
so there are ζ1 = { Antonio }and ξ6 = { Miguel, Benito, Mateo, Federico, Luis, Lope }. When
selecting the next query node, we consider Vu2, vis = { Antonio }, Vu3, vis = { Antonio }, and
Vu7, vis = { Antonio }. When Vu4, vis, Vu5, vis, Vu6, vis are all empty, there is | Vu2, vis | = | Vu3, vis
| = | Vu7, vis | > | Vu4, vis | > | Vu5, vis | > | Vu6, vis |. The next query node is generated
in ”Miguel”, ”Benito” and ”Lope”. Considering Vu2, neig = { Antonio }, Vu3, neig = { Antonio },
Vu7, neig = { Antonio }, and | Vu2, neig | = | Vu2, neig | = | Vu7, neig | = 1, we cannot sure the
next query node. We continue to judge the value of | Vu,unv |, where Vu2, unv = { Mateo,
Federico, Luis }, Vu3, unv = { Luis }, and Vu7, unv = { Luis }. Because of | Vu2, unv | = 3 and
| Vu3, unv | = | Vu7, unv | = 1, we have | Vu2, unv | > | Vu3, unv | = | Vu7, unv |. After
updating the collections ζi and ξi, we have ζ2 = { Antonio, Miguel } and ξ5 = { Benito, Mateo,
Federico, Luis, Lope }, and then we can continue to select the next query node. The final
query sequence is ζ7 = { Antonio, Miguel, Benito, Luis, Lope, Federico, Mateo }.

When querying vertices, we define the chain query pattern, star query pattern and
loop query pattern (Section 4.2). For example, Tom goes to school, then visits the library,
and finally goes home. The query is about where Tom goes from school. This kind of
query belongs to a chain query pattern. Tom’s hobbies are running, playing basketball, and
playing football. The query is about what Tom’s hobbies are. This kind of query belongs to
a star query pattern. Tom visits his teacher Traka while going to the library, and Traka goes
to the English corner. The English corner is in the library. The query is about inquiring
where Tom is. This kind of query belongs to a loop query pattern. Therefore, the proposed
approach is interesting and the three kinds of queries are of value for spatiotemporal real
applications.
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The whole process of selecting the query node matching order is given by Algorithm
1, in which the ChooseFirstVertex function is used to select the first query node. Details on
Algorithm 1 are described as follows:

Algorithm 1: Calculating the Matching Order Algorithm OrderMatchNodes.

Input: Spatiotemporal RDF query graph stQ
Output: matching order Ord
1: ChooseFirstVertex(stQ)
2: if num(VQ) > 1
3: if Max(degree(VQ)) > 1
4: Ord←Max(Outdegree(VQ))
5: end if
6: end if
7: ξ ← VQ
8: while |Ord| < |VQ| do
9: for each u in ξ

10: Vu,vis, Vu,neig, Vu,unv ← ∅
11: for each u′ in VQ
12: if u′ in Ord
13: if u′ in N(u)
14: Vu,vis = Vu,vis ∪ { u′ }
15: else if u′ in N(ξ ∩ N(u))
16: Vu,neig = Vu,neig ∪ { u′ }
17: else if u′ in N(u) && u′ not in N(Ord)
18: Vu,unv = Vu,unv ∪ { u′ }
19: end for
20: end for
21: Mvis = maxu∈Ord| Vu, vis |
22: Mneig = maxu∈Mvis| Vu, neig |
23: umax = random(maxu∈Mneig| Vu, unv |)
24: append(Ord, umax)
25: ξ = ξ \ { umax }
26:end while

3.3. Spatiotemporal RDF Subgraph Matching

The querying of spatiotemporal RDF data is the process of finding the isomorphic
subgraph to the spatiotemporal RDF query graph in the spatiotemporal RDF data graph.
The concept of spatiotemporal RDF subgraph isomorphism is defined as follows.

Definition 14 (spatiotemporal RDF subgraph isomorphism). The spatiotemporal RDF sub-
graph isomorphism means that there exists the injective function f: V→ Vq, which satisfies:

• For any vertex u ∈ Vq, there is Fst
q (u) ⊆ Fst(f (u));

• For any edge (u1, u2) ∈ Eq, there are (f (u1), f (u2)) ∈ E, and Fst
q(u1, u2) = Fst(f (u1), f (u2)).

In Definition 14, the injective function f : V→ Vq is used for the spatiotemporal RDF
data graph stG(V, E, L, Fst) and the spatiotemporal RDF query graph stQ(Vq, Eq, Lq, Fst

q).
In order to find the matching subgraphs (isomorphic subgraphs) corresponding to the
spatiotemporal RDF query graph stQ embedded in the spatiotemporal RDF data graph
stG and complete the query of spatiotemporal RDF data, a spatiotemporal RDF query
algorithm stQuery based on the general framework of subgraph matching algorithms is
proposed. Algorithm 2 outlines the overall process of spatiotemporal RDF data query
algorithm stQuery based on subgraph matching.
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Algorithm 2: Spatiotemporal RDF Query Algorithm stQuery

Input: Spatiotemporal RDF data graph stG, spatiotemporal RDF query graph stQ
Output: All subgraphs in stG that match stQ
1: M← ∅
2: STG = GetSTSpan(stG)
3: STQ = GetSTSpan(stQ)
4: if STG ∧ STQ is not null
5: u = ChooseFirstVertex(stQ)
6: D(u)← GetCanddidate(stG, u)
7: if D(u) is not null
8: Ord← OrderMatchNodes(stQ)
9: for each v ∈ D(u)
10: UpdateState(u, v, M)
11: SubgraphSearch(stG, stQ, Ord, u, v)
12: report M
13: RestoreState(u, v, M)
14: end for
15: end if
16: end if
17: OrderMatchNodes(stQ)
18: for each v ∈ stQ
19: if num(Max(| Vu, vis |)) > 1
20: for each v ∈Max(| Vu, neig |)
21: U← add(v)
22: end for
23: end if
24: end for
25: Ord← U

In the process of query, the set M of matched subgraphs is initially assigned to null
(line 1). Then, the spatiotemporal spans of stG and stQ are obtained by the GetSTSpan
function. If the spatiotemporal span intersection between stG and stQ is empty, it means
that there is no subgraph matching with stQ in stG. On the other hand, the next step of
the query process is continued (lines 2–4). Next, the first query node in stQ is selected by
the ChooseFirstVertex function, and the candidate regions of this node are obtained by the
GetCanddidate function (lines 5–6). If the candidate region is not empty, the nodes other than
the initial query node in stQ are sorted. Each node of the candidate region in turn performs
a SubgraphSearch algorithm (in Algorithm 3). When a query node u and a matching of the
data node v are found, (u, v) is added to M, ending up with an updated matching subgraph
set M (lines 9–13). Finally, M contains all the matched subgraphs of stQ in stG.

The core of the subgraph matching process of spatiotemporal RDF query is the recur-
sive process based on a backtracking strategy. Algorithm 3 gives the spatiotemporal RDF
subgraph matching algorithm SubgraphSearch.

When the number of matched nodes and edges is equal to the number of nodes and
edges in the query graph, a matching subgraph M (lines 1–2) that matches stQ in stG can be
returned. Otherwise, the next node is denoted as u′, and the candidate region of u′ is found.
If the node u is located before node u′ in the sorting ζ, then the candidate node set C(u′)
matching node u′ is obtained from Neighbor(f (u)) ∩ D(u′) (line 5). Next, the CheckFeasibility
function is needed to verify whether the query nodes and data nodes meet the feasibility
conditions. When all the query nodes are matched, a match for the query graph stQ is
found in the data graph stG and added to the set of matching results. Traceback means
deleting the last matching pair of query nodes and target nodes from M and deleting the
mappings between such nodes. This algorithm returns all the matches found.
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Algorithm 3: Subgraph Matching Algorithm SubgraphSearch

Input: Spatiotemporal RDF data graph stG, spatiotemporal RDF query graph stQ, matching order
set Ord, data node v, query node u
Output: The subgraph M matched with stQ in stG
1: if |V| = |VQ|&& |E| = |EQ|
2: return M
3: else
4: u′ ← NextQueryVertex( )
5: D(u′)← Neighbor(f (u)) ∩ Canddidate(stG, u′)
6: if D(u′) is not null
7: for each v′ ∈ D(u′)
8: if (u, u′) ∈ EQ && (v, v′) /∈ EG
9: D(u′)← D(u′) \ { v′}
10: for each v′ ∈ D(u′) such that v′ is not matched do
11: CheckFeasibility(u′, v′)
12: UpdateState(u′, v′, M)
13: SubgraphSearch(stG, stQ, u′, v′)
14: RestoreState(u′, v′, M)
15: end for
16: end if
17: end if

4. Experiments

In this section, we evaluate the spatiotemporal RDF data query approach. The experi-
ments are all carried out under the windows 10_64 bit operating system. The processor is
Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and RAM is 16.0 GB.

4.1. Experimental Dataset

The dataset in the experiment is extracted from yago (version 3.1), which is from
the real world, and its accuracy has been manually evaluated. Many facts and entities
are endowed with temporal and spatial attributes to form spatiotemporal data. In this
subsection, four sub-datasets are selected to extract spatiotemporal datasets, and they are
yagoFacts dataset, yagoMetaFacts dataset, yagoDateFacts dataset and yagoGeonamesOnly-
Data dataset, which are introduced as follows:

(i) yagoFacts dataset: The dataset is 972 MB in size, involving a total of 12,430,700 pieces of
data and including all the instance data in the yago dataset (no spatiotemporal information);

(ii) yagoMetaFacts dataset (395 MB): This dataset is 395 MB in size and contains 3,824,875 pieces
of data, including all the temporal and spatial metadata in the yago dataset;

(iii) yagoDateFacts dataset: The data set is 412 MB in size, involving a total of 4,190,241 pieces
of data and including data only with time attribute in the yago dataset, in which the
temporal information is presented in the form of date (year, month, day);

(iv) yagoGeonamesOnlyData dataset: The dataset is 4.11 GB in size, involving a total
of 61,605,695 pieces of data and including all the data with spatial attributes in the
yago dataset, as well as a large number of relevant information data, in which the
spatial information is presented in the form of geographic coordinates (longitude
and latitude).

Table 2 introduces the original datasets and indicates the specific information con-
tained in each dataset.
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Table 2. Statistics of the four real datasets.

Datasets Number of Data Temporal Information Spatial Information

yagoFacts 12,430,700 N N
yagoMetaFacts 3,824,875 Y Y
yagoDateFacts 4,190,241 Y N

yagoGeonamesOnlyData 61,605,695 N Y

After taking a series of extraction and integration operations, a synthetic dataset is
obtained. The subsequent experiments in this paper are conducted on this Dataset. The
Dataset is 481.65 MB in size and contains temporal data (involving only temporal infor-
mation), spatial data (involving only spatial information), spatiotemporal data (involving
both temporal and spatial information), and non-spatiotemporal data (involving neither
temporal nor spatial information). This dataset is described in Table 3.

Table 3. Statistics of the synthetic datasets.

Data Type Number

temporal data 417,963
spatial data 3,965,854

spatiotemporal data 7901
non-spatiotemporal data 442,607

4.2. The Experimental Setup

This subsection divides experiments into two parts and conducts the corresponding
experiments on the effect and efficiency of the query approach.

The first part is the experiment to test the effects of stQuery through the query about
different types of data. Four groups of queries with different types of data are set. Each
group of queries includes three similar samples (the same number of query vertices and sim-
ilar query contents) and twelve query samples to reduce the contingency of experimental
results. The specific contents of queries in these four groups are as follows:

(i) Temporal queries (test sample 1, test sample 2, test sample 3): Queries containing only
temporal data, involve temporal entities or facts;

(ii) Spatial queries (test sample 4, test sample 5, test sample 6): Queries containing only
spatial data, involve spatial entities and facts;

(iii) Spatiotemporal queries (test sample 7, test sample 8, test sample 9): Queries containing
temporal data and spatial data at the same time, include temporal data and spatial
information;

(iv) Non-spatiotemporal queries (test sample 10, test sample 11, test sample 12): Queries
involve neither temporal nor spatial information.

The second part is the experiment to test the query performance. Through the com-
parative experiments based on the control variable method, stQuery is compared with the
current more advanced query algorithms st-SDS [26], TurboHOM++ [35] and f-ASM [36].
The control variable method refers to the method of turning the problem of multiple factors
into a problem of multiple single factors, and changing only one of them so as to study
the influence of this factor during the experiments. A control variable is any factor that
is controlled or held constant during an experiment. The query efficiency is tested by
comparing the query response time for different query graph patterns. Three query graph
patterns are the chain query pattern, star query pattern, and loop query pattern. Figure 9
shows simple examples of these three query graph patterns. Figure 9a is a sample of chain
query pattern with a double-hop path. Figure 9b is a sample of star query pattern with six
nodes. Figure 9c is a sample of loop query pattern with four nodes. We divide this part of
the experiment into three groups. Each group contains three different sizes of test sample
queries, and each test sample use stQuery, st-SDS, TurboHOM++ and f-ASM to query.
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4.3. Experimental Results

This subsection presents the experimental results into two parts: the effect and perfor-
mance analysis of the algorithm.

4.3.1. The Effect of the Algorithms

Twelve test samples are of similar size in order to ensure the uniqueness of variables,
which contain seven query nodes. The experimental results are shown in Tables 4–6. Table 4
describes the experimental effects of temporal and spatial queries. Table 5 describes the
experimental effects of spatiotemporal and non-spatiotemporal queries. Taking the above
query results into comprehensive consideration, Table 6 describes the average experimental
effects about queries of each group.

Table 4. stQuery implementation effect of temporal and spatial queries.

Temporal Query Response Time (s) Spatial Query Response Time (s)

test sample 1 105.0624387 test sample 4 108.7450422
test sample 2 100.1976586 test sample 5 108.8466299
test sample 3 102.9692515 test sample 6 109.6339075

Table 5. stQuery implementation effect of spatiotemporal and non-spatiotemporal queries.

Spatiotemporal Query Response Time (s) Non-Spatiotemporal
Query Response Time (s)

test sample 7 114.3038049 test sample 10 97.1463715
test sample 8 111.7024177 test sample 11 96.9176396
test sample 9 111.7339461 test sample 12 98.7803164

Table 6. Average response time.

Query Category Temporal
Query

Spatial
Query

Spatiotemporal
Query

Non-Spatiotemporal
Query

Response Time (s) 102.6697829 109.0751932 112.5800562 97.6147758

As shown in Table 4, the query response time of the temporal query test sample is
approximately between 100 s and 106 s, while that of the spatial query test sample is
approximately between 108 s and 110 s. It can be seen that the efficiency of spatial query
is slightly faster than that of temporal query. The main reason lies in the influence of
data sets. There are more spatial data than temporal data, so it takes more time to match
the corresponding spatial data in the spatiotemporal RDF data graph in the process of
spatial query.

For Table 5, the query response time of the spatiotemporal query test sample is approx-
imately between 111 s and 115 s, while that of the non-spatiotemporal query test sample is
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approximately between 96–99 s. Therefore, it can be known that the efficiency of the spa-
tiotemporal query is generally faster than that of the non-spatiotemporal query. It is mainly
caused by the complexity of spatiotemporal data. Compared with non-spatiotemporal data,
spatiotemporal data has more attribute information, which also requires more complex
matching in the process of query.

The average query response time is shown in Table 6. The average query time is
represented roughly: spatiotemporal query > spatial query > temporal query > non-
spatiotemporal query. This is mainly caused by the complexity of the query information
and the composition of the dataset. Therefore, the more complex the query information is,
the lower the query efficiency is. In the case of similar complexity of query information,
the more relevant the data, the lower the query efficiency.

In the experiment of spatiotemporal query, besides the above query tests, the query
whose spatiotemporal range exceeds the spatiotemporal RDF data graph is also tested
to verify the effectiveness of the “preliminary spatiotemporal determination” method.
Experiments show that for the general spatiotemporal RDF query graph, when the spa-
tiotemporal range exceeds the spatiotemporal RDF data graph, the feedback that the query
result is empty can always be obtained within 90 s, which avoids a large amount of time
consumption in the subgraph matching process.

4.3.2. The Performance Analysis of the Algorithms

In the performance analysis part, stQuery is compared with st-SDS, TurboHOM++ and
f-ASM in three aspects: chain query pattern, star query pattern and loop query pattern.

(a) chain query pattern

As shown in Figure 10, when the query graph is a chain query pattern, five groups of
experiments are carried out on the query graphs with nodes 3, 4, 5, 6, and 7. The turboHOM++
algorithm has the shortest query response time and the highest query efficiency when
the query node is 3. With the increase of query nodes, the query response time of this
algorithm grows faster, surpassing the other three algorithms. The query response time of
the stQuery algorithm almost does not change significantly in each group of experiments,
and the query efficiency is relatively high, which indicates that the algorithm has a good
performance to the query graph of chained query pattern.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 21 of 24 
 

4.3.2. The Performance Analysis of the Algorithms 

In the performance analysis part, stQuery is compared with st-SDS, TurboHOM++ and 

f-ASM in three aspects: chain query pattern, star query pattern and loop query pattern. 

(a) chain query pattern 

As shown in Figure 10, when the query graph is a chain query pattern, five groups 

of experiments are carried out on the query graphs with nodes 3, 4, 5, 6, and 7. The tur-

boHOM++ algorithm has the shortest query response time and the highest query efficiency 

when the query node is 3. With the increase of query nodes, the query response time of 

this algorithm grows faster, surpassing the other three algorithms. The query response 

time of the stQuery algorithm almost does not change significantly in each group of ex-

periments, and the query efficiency is relatively high, which indicates that the algorithm 

has a good performance to the query graph of chained query pattern. 

 

Figure 10. Experimental comparison of the chain query pattern. 

(b) star query pattern 

In Figure 11, when the query graph is a star query pattern, five groups of experiments 

are carried out for the query graphs with nodes of 4, 5, 6, 7, and 8. The experimental results 

show that the stQuery has a lower time cost than st-SDS and TurboHOM++, and has 

slightly better query efficiency than f-ASM. 

 

Figure 11. Experimental comparison of the star query pattern. 

0

20

40

60

80

100

120

140

160

180

3 4 5 6 7

T
im

e 
co

st
(s

)

Number of vertices in query graph

stQuery st-SDS TurboHOM++ f-ASM

0

20

40

60

80

100

120

140

160

180

200

4 5 6 7 8

T
im

e 
co

st
(s

)

Number of vertices in query graph

stQuery st-SDS TurboHOM++ f-ASM

Figure 10. Experimental comparison of the chain query pattern.

(b) star query pattern

In Figure 11, when the query graph is a star query pattern, five groups of experiments
are carried out for the query graphs with nodes of 4, 5, 6, 7, and 8. The experimental
results show that the stQuery has a lower time cost than st-SDS and TurboHOM++, and
has slightly better query efficiency than f-ASM.
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(c) loop query pattern

According to Figure 12, when the query graph is the loop query pattern, five groups of
experiments are carried out on the query graphs with nodes 3, 4, 5, 6, and 7. Experimental
results show that TurboHOM++ algorithm has the best query efficiency when the query node
is 3. When the query nodes are increased to 4, 5, and 6, stQuery has the greatest advantage
in query efficiency, which is generally better than TurboHOM++ and slightly better than
f-ASM. The overall query efficiency of stQuery is relatively stable. The query performance
of the stQuery algorithm has slight advantages over f-ASM in loop query patterns, but it is
generally better than st-SDS and TurboHOM++.
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5. Application Discussion

In order to better apply the technology of spatiotemporal RDF data query based on
subgraph matching, in this section, we give general steps on how to use our approach in
spatiotemporal applications.

Step 1: We can formally represent spatiotemporal data with temporal features accord-
ing to Definitions 1 and 2, represent spatiotemporal data with spatial features according to
Definitions 3 and 4, and represent spatiotemporal data with both temporal features and
spatial features according to Definition 5.

Step 2: According to Algorithm 1, we can calculate the matching order. In this process,
we can perform temporal interval matching according to Definitions 8–10, and perform
spatial interval matching according to Definitions 11–13.
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Step 3: On the basis of Steps 1 and 2, for a specific query in spatiotemporal applications,
we can obtain the desired query results according to Algorithms 2 and 3.

6. Conclusions

In this paper, a spatiotemporal RDF model st-RDF is proposed. Based on this data
model, spatiotemporal data with temporal and spatial attributes can be represented and
operated. This paper then proposes a spatiotemporal RDF query algorithm stQuery, and
mainly uses the sorting method of RI algorithm to sort the query node according to the
correlation degree between the query node and the candidate node, which promotes
the further improvement of the query efficiency. Experiments show that the proposed
spatiotemporal RDF model and the corresponding query approach have relatively good
performances. In future work, we plan to add a predicate index to investigate the query
scope of the spatiotemporal RDF query. On the other hand, spatiotemporal RDF graphs
are more likely to violate predefined spatial and temporal constraints due to the dynamic
changes of spatiotemporal data. As a result, based on our model, we can define some
constraint definitions, rules, and algorithms for checking and fixing inconsistencies, as well
as solve consistency problems due to updates.
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