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Abstract: Extracting the residential areas from digital raster maps is beneficial for research on land use
change analysis and land quality assessment. In traditional methods for extracting residential areas in
raster maps, parameters must be set manually; these methods also suffer from low extraction accuracy
and inefficiency. Therefore, we have proposed an automatic method for extracting the hatched
residential areas from raster maps based on a multi-scale U-Net and fully connected conditional
random fields. The experimental results showed that the model that was based on a multi-scale
U-Net with fully connected conditional random fields achieved scores of 97.05% in Dice, 94.26% in
Intersection over Union, 94.92% in recall, 93.52% in precision and 99.52% in accuracy. Compared to
the FCN-8s, the five metrics increased by 1.47%, 2.72%, 1.07%, 4.56% and 0.26%, respectively and
compared to the U-Net, they increased by 0.84%, 1.56%, 3.00%, 0.65% and 0.13%, respectively. Our
method also outperformed the Gabor filter-based algorithm in the number of identified objects and
the accuracy of object contour locations. Furthermore, we were able to extract all of the hatched
residential areas from a sheet of raster map. These results demonstrate that our method has high
accuracy in object recognition and contour position, thereby providing a new method with strong
potential for the extraction of hatched residential areas.

Keywords: residential area extraction; historical raster map; deep learning; geographical information;
image segmentation

1. Introduction

Many geographic information mapping departments store their maps in the form
of a digital raster graphic (DRG). These historical raster maps contain rich and valuable
historical geographic information, such as the locations of residential areas, topography,
vegetation, roads and toponyms. This information can be used in many applications and
research fields in order to express the spatial structure of a range of geographic information
and its interconnections. Because historical raster maps can also show changes over
time, which is a mobile history, they play a key role in urban construction, transportation
planning, scientific research, resource exploration, national defense and military command.
Residential areas are of significance to national economic construction, culture and science
and national defense and military and, furthermore, they are one of the most important
elements in maps. The shape of the external boundary and the internal structure of the
residential areas together form the representation of the residential areas in the map. The
method of representation of residential areas varies with the map scale. Usually, the
interior of a residential area is represented by filled diagonal hatched lines in topographic
maps at 1:50,000 map scale and other map scales. As shown in Figure 1, the hatched
lines are oriented at a certain angle with the horizontal direction of the image and the
internal hatched lines of the residential area show a periodic texture structure [1]. This
paper primarily focuses on the method of extracting residential areas with hatched lines in
historical raster maps.
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Figure 1. Residential areas with hatched lines (element 1 is a regular quadrilateral residential area
and element 2 is an irregular polygonal residential area).

Since the 1990s, there have been many studies on the automatic vectorization of
raster map elements. Hu S. et al. [2] proposed a method for applying frequency domain
matching in order to identify residential areas by using the characteristics of clump structure
and fixed filling patterns; they implemented a system for identifying residential areas in
maps accordingly. Liu X. et al. [3] proposed an integrated method for the segmentation
and recognition of house targets, which used the directionality of the hatched lines and
the fixity of hatched lines’ spacing. The prerequisite for this method is being able to
correctly detect each hatched line, but the accurate detection of each hatched line in a
more complex topographic map remains a challenge. In addition, the assumption that the
contours of neighborhood-type residential areas cannot be disconnected is not realizable
in the actual topographic map. Fu Z. et al. [4] proposed a method for extracting the
target contours of houses by using manual determination of the starting points inside the
residential areas. Zheng H. [5] proposed a neighborhood-based residential area recognition
algorithm. It extracted the hatched lines according to the mathematical morphological
decomposition method and node features, then performed the transformation of specific
directions. Although this method reduced the rate of misidentification cases, it only
considered the case where one end of the hatched line was disconnected by other map
symbols and did not study the recognition of polygons with incomplete hatched lines. As
a result, its application in practical engineering is limited.

Yang Y. et al. [6] used vector data compression and the total least squares method in
order to fit block boundaries so as to obtain the final vector data of the residential areas.
However, this method cannot automatically handle the problems of sticking, deinking
and intersection with other elements in some residential blocks and it requires manual
data acquisition and processing. Wu J. et al. [7] proposed a Gabor filter-based algorithm of
residential areas using the characteristics of hatched lines, which automatically extracted
residential areas with hatched lines by Gaussian smoothing, binarization, erosion, image
logic operations and tracking the boundary pixel based on the pixel-value relationship of
the neighbor pixels. However, this method still required the manual setting of parameters
such as the maximum width of feature adhesion, length of bar detector and filling area
according to the resolution of raster map; in addition to this, the straightening effect of the
extracted residential contour lines needed to be improved.

Much of the research on the automatic identification of residential area elements in
raster topographic maps still has the following problems:

• Lack of adaptability: It is difficult to apply the identification method to cases with
low image resolution, blurred hatched lines after magnification or irregular structure
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of the hatched lines in residential areas (e.g., unequal spacing of the hatched lines or
broken hatched lines);

• Poor identification ability: The shapes of the identified residential areas are not ideal,
the accuracy of the location of the residential areas contour is not high and it is easy
to incorrectly identify map elements that are similar in structure to polygons with
hatched lines;

• Impracticality: It is difficult for the parameter-dependent method to perfectly grasp the
threshold value and it is also difficult to obtain good results in the segmentation task
of complex and large images. Moreover, because most of the literature has involved
carrying out experiments on partial regions of the entire map image, it was difficult to
process map sheet-level raster images and the performance of the algorithms was also
less than ideal, which led to the reduced applicability of the algorithms.

Due to their special structure of local weight sharing and good fault tolerance,
parallel processing capability and self-learning ability, convolutional neural networks
(CNNs) [8–10] are now widely used in image classification [11,12], image detection [13]
and image semantic segmentation [14–16]. For urban remote sensing research, fully convo-
lutional networks (FCNs) can directly classify each pixel and greatly improve the efficiency
and accuracy of building extraction [17]. Some studies have adapted deep learning ar-
chitectures in order to enhance their abilities to solve the discontinuity issue of road
extraction [18]. The rapid evolution of deep learning has opened up new possibilities for
the efficient identification and extraction of residential areas with hatched lines in raster
maps. The classical U-Net is widely used in image segmentation because it can achieve
high segmentation accuracy with a small number of samples. Although the classical U-Net
network uses skip connections to fuse feature information from the encoding layers and de-
coding layers, the up-sampling of a single chain cannot fully convey the scale information
and make good use of the feature information at other scales of the CNN [19].

Therefore, we investigated an improved semantic segmentation model for U-Net
networks—multi-scale U-Net with fully connected conditional random fields (MSU-Net-
CRFs)—and proposed a method for the automatic extraction of hatched residential areas
(AEHRA) in raster maps. The AEHRA method makes full use of the multi-scale information
of the image and the neighborhood information of the pixels in order to improve the
accuracy of its residential area segmentation. It extracts the hatched residential areas from
a sheet of raster maps by leveraging the chunking and merging strategies. This enhances
the practicality of the method.

2. Methods
2.1. The AEHRA Approach

The AEHRA workflow, as shown in Figure 2, was divided into three stages: data input
and processing, MSU-Net-CRFs model building of hatched residential area segmentation
and result output and processing.

In the first stage, there were two types of data that were input: the sample that was
input for model training and the input of the tile image set from a sheet of raster maps that
was used when the model was applied. The method that was utilized for the sample data
set production will be described in Section 2.2.

In the second stage, the AEHRA trained the MSU-Net network model. The training
set was put into the network model and the model then predicted the input raster images
and compared the predicted values with the true values, calculated the loss values and
updated the weights of the network through the optimizer. When all of the training
samples had been used for model training, one iteration was considered to have been
completed. By analyzing the results of the evaluation metric that was output by the
validation set, a determination was made as to whether the model itself would be output.
If the evaluation metrics met the requirements, then the model was output; if they did not
meet the requirements, then the iterative training process was continued.
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Figure 2. Workflow of AEHRA.

In the testing of the AEHRA model, the test set was input to the constructed MSU-Net
network in order to obtain the preliminary prediction image and the preliminary prediction
image was then used as the input of the unary potential in the fully connected CRFs.
The position and color information in the binary potential energy were provided by the
original image and the final segmentation results were output after the output of the fully
connected CRFs.

In the third stage, there were two types of exporting prediction result images: the
single raster image with a small size of 256 × 256 pixels, which the model directly output,
and the merged prediction result image of a sheet of map. Finally, the identified raster
residential areas were vectorized and simplified.

2.2. Sample Data Set Production Method

The sample data set needed to be created before the sample input. First, due to
computer memory limitations, it was necessary to slice the raster maps into residential area
sample images with a size of 256 × 256 pixels at different scales and to manually label each
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image after the slice by using the LabelMe tool. In CNNs, insufficient training data makes
the network difficult to train and prone to overfitting, i.e., if the model over-fits the data of
the training set, it will decrease the accuracy of the prediction on the test set. Performing
random data enhancement operations on both the original image and the corresponding
labeled image, including performing random rotation, mirroring and random zooming on
both the original images and the corresponding labeling images, reduced the sensitivity
of the training dataset. Figure 3a shows the unprocessed original image, Figure 3b shows
the image after vertical mirror flipping, Figure 3c,d show the images after rotation and
Figure 3e shows the image after random zooming.

Figure 3. Training data set. (a) Original image; (b) image after flipping vertically; (c) image after rotating 270◦; (d) image
after rotating 90◦; (e) image after random zooming.

2.3. Architecture of the MSU-Net

The classical U-Net network is a semantic segmentation network based on FCN [20]
with a U-shaped network structure, which was proposed by Ronneberger et al. [21] in
2015 and initially used in medical image segmentation due to its ability to attain high
segmentation accuracy with a small number of samples. The U-Net network structure that
was utilized in this study consisted of three parts: the encoder, decoder and skip connection.
A feature map represented the detection of a feature and the strength of a value in a feature
map represented a response to the strength of the current feature. In the encoding part, the
number of feature maps was doubled through a max pooling down-sampling operation
and, at the same time, the image size was compressed twice as much as it previously
was. Then, the feature extraction was performed. In the decoding process, the abstract
feature map in the down-sampling process was expanded twice by deconvolution and was
concatenated with the feature map of the equivalent stage in the encoder stage to achieve
feature fusion. In the final output layer, the low-resolution feature map was restored
to the input image resolution through multiple up-sampling operations and the feature
map was convolved by a 1 × 1 convolution kernel in order to generate the same number
of channels as the classification category. Because of the shallow localization and deep
segmentation, the feature FCN could ensure that the pixel position information was not
lost by the skipping connection and could use feature fusion to improve the segmentation
accuracy. However, the classical U-Net only classified the pixel semantics in the last output
layer. Although the U-Net used the skip connection to fuse the feature information of the
previous layers, the single-chain up-sampling could not fully transfer the scale information
and make good use of the feature information at the other scales of the CNN.

Based on this, we designed an MSU-Net model that extracted, saved and combined
the final classification feature maps at each resolution scale. Through the superimposition
of the feature maps from the different scales, the final prediction image incorporated
information from multiple scales. Because the feature maps at each scale play an active role
in back propagation and network parameter updating, the MSU-Net network could extract
the residential areas more accurately. The MSU-Net model structure is shown in Figure 4.
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Figure 4. Structure of MSU-Net.

The MSU-Net network used the same encoder-decoder paradigm as the classical
U-Net network. In the encoding part, the original VGG16 [22] network had five pooling
layers. The MSU-Net removed the last pooling layer of the VGG16 network as the encoding
layer of the network and the VGG16 network as the feature extractor of the encoding stage
was compared to the feature extraction part of the classical U-Net. The VGG network was
deeper and could extract high-dimensional feature information from the hatched residential
areas. This part consisted of four down-sampling layers and 13 convolutional layers. The
convolutional kernel size was set to 3× 3. The small sized convolutional kernel had a small
receptive field, which could better extract the boundary feature information. The use of the
rectified non-linear unit (ReLU) [23] function for nonlinear activation was able to prevent
gradient disappearance and gradient explosion by introducing a batch normalization (BN)
layer after each convolution operation. Then, after multiple down-sampling operations, as
the image size decreased, the receptive field increased and the MSU-Net network could
learn deeper and more abstract semantic information of the image. In the decoding process,
the image size could be restored to the original input image size by four up-sampling
operations and the feature maps of the decoding and coding layers at the same level were
fused by skip connection after each up-sampling operation. Two feature maps at this scale
were output after three convolution operations and a 1 × 1 convolution operation.

Because there were four up-sampling operations, we could obtain four groups of
two feature maps at different resolution scales. The four groups of feature maps were
restored to their original image size by a single or multiple up-sampling operation(s) and
these four groups of original-sized feature maps were summed up, forming eight feature
maps. The final prediction image was obtained by 1 × 1 convolution and the softmax
activation function. After this series of operations, the final prediction image aggregated
the information from each scale, which improved the accuracy of the image segmentation.

2.4. Fully Connected CRFs Post-Processing

The U-Net performed up-sampling on the feature map several times during the
decoding process, which restored the feature map to the input image size, but it made
the segmentation result too smooth and generated blurred object boundaries. In addition,
the convolution process could only provide the association information of the pixels in a
certain region because of the restricted size of the convolution kernel. Because the size of
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the convolution kernel was unchanged and the image size grew smaller with each pooling
operation, the convolution kernel receptive field became larger. Although the receptive
field increased with each pooling layer during the down-sampling, it was not possible to
associate a pixel with all pixels, even at the last convolution layer. Therefore, based on
the MSU-Net model, we introduced the fully connected CRFs [24–27] in order to improve
the accuracy of the image segmentation by calculating the distance similarity and color
similarity between two neighboring pixels in order to determine whether they belonged to
the same class. The unary potential energy of the fully connected CRFs was the preliminary
prediction map that was output by MSU-Net and the binary potential energy was sourced
from the original image. The energy function of the fully connected CRFs was:

E(x) =∑i∈V ψU(xi)∑i∈V,j∈Ni
ψp(xi, xj). (1)

V is the set of all of the pixels and Ni is the set of the pixels in the domain of pixel i in
Equation (1). The i and j variables represent two pixels. xi is the category label of pixel
i. The energy function was determined by the unary and binary potential energy. The
unary potential energy function ψU(xi) was used to measure the probability that a pixel
belonged to the category label xi when the color of pixel i was yi. The binary potential
energy function ψp(xi,xj) describes the relationship between two pixels. It was suggested
that similar pixels be assigned the same label while pixels with significant difference be
assigned to different labels. The calculation formula was:

ψp
(
xi, xj

)
=

U
(

xi, yj

)
∑M

m=1 ωmKm
G

K
(

fi, f j

) ( f i, f j). (2)

U in Equation (2) is the probability function that was calculating the probability that pixel i
and pixel j belonged to the same probability. If xi 6= yj, then U(xi,yj) = 1, otherwise 0. M
denotes the number of kernel functions. Km

G is the mth Gaussian kernel function and the

expression of Km
G ( f i, f j

)
is:

Km
G ( f i, f j) = exp

(
−1

2
( fi, f j)

TΛ(m)( fi − f j)

)
. (3)

The fi and fj in Equation (3) represent the feature vectors of pixel i and pixel j. Each
Gaussian kernel Km

G is characterized by a symmetric positive precision matrix Λ(m). For
the multiclassification problem of image segmentation, K(fi,fj) in Equation (2) is typically a
dual kernel potential. The formula is:

K( f i, f j ) = w1exp

−
∣∣∣pi−pj

∣∣∣2
2θ2

α

−
∣∣Ii−I j

∣∣2
2θ2

β

+w2exp

−
∣∣∣pi−pj

∣∣∣2
2θ2

γ

. (4)

Ii and Ij in Equation (4) represent the color vectors on pixels pi and pj, w1 and w2 are the
weights of the two kernel functions. k(fi,fj) was obtained by adding the appearance kernel
and the smoothing kernel. The appearance kernel assumed that neighboring pixels with
the same color belong to the same class and the smoothing kernel may have eliminated
some isolated small regions.

The function of Equation (4) was to determine whether the pixels belong to the same
class by their color and distance similarity. If the energy function value was relatively
small, the pixels were thought to belong to the same class; if the energy function value was
relatively large, the pixels were thought not to belong to the same class. In this way, the
location and color information between each pixel in the image could be used in order to
refine the extraction results of the residential areas with hatched lines.
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2.5. Evaluation Metrics

The segmentation results were evaluated by five metrics: Dice similarity coefficient,
Intersection over Union (IoU), recall, precision and accuracy. The Dice similarity coefficient
is a function of the aggregation similarity measure, which was used to calculate the
similarity between the algorithm segmentation result and the manual labeling result. IoU
represents the degree of intersection or overlap between the algorithm results and the
manual labeling results, which is the ratio of the intersection to the union. The closer the
ratio is to 1, the higher the correlation. Recall refers to the ratio of the number of correctly
predicted positive samples to the total number of true positive samples. Precision refers
to the ratio of the number of correctly predicted positive samples to the total number of
samples that were predicted to be positive. Accuracy refers to the ratio of all correctly
predicted positive and negative samples to all samples. The calculation equations for these
scores are:

Dice =
2|X ∩ Y|
|X|+|Y| , (5)

IoU =
X ∩ Y
X ∪ Y

, (6)

Recall =
TP

TP + FN
, (7)

Precision =
TP

TP + FP
, (8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

In Equations (5) and (6), X indicates the total area of the residential areas that were
identified by the algorithm and Y indicates the total area of the residential areas that were
identified by the manual marking result. In Equations (7)–(9), TP indicates the number
of correctly extracted pixels that were sourced from residential areas, TN indicates the
number of pixels correctly identified as background, FP indicates the number of incorrectly
extracted pixels that were sourced from residential areas and FN indicates the missed pixels
from residential areas.

3. Experiments, Result Analysis and Applications

The hardware configuration of the computer for this experiment included an Intel
Core i7-9750H CPU, 16 GB RAM and an NVIDIA GeForce GTX 1660Ti graphics card. For
the software, Jupyter Notebook 6.3.0 was used for program development in Python 3.7.4,
Snipaste 2.2.4 was used for capturing the sample images. LabelMe 4.6.0 was used for
labeling the samples, Augmentor 0.2.9 was used for sample enhancement and Pillow 8.2.0
was used for the cutting and integration of the map sheet-level raster images. TensorFlow
2.3.0 was used for network building and Pydensecrf 1.0rc2, OpenCV4.5.1 and Matplotlib
3.2.2 were used for CRF building.

3.1. Experimental Data Description

The raster map data that were studied in this paper were obtained from the National
Museum of Scotland’s website (http://maps.nls.uk/geo, accessed on 25 September 2021).
The website integrates several types of map data, including Google Maps and raster maps,
and includes high-resolution real surface topography maps and their corresponding raster
maps. In this study, 32 sheets of historical raster maps from the period from 1894–1950 that
recorded five regions of England were selected: namely those from Anglesey, Bedfordshire,
Cambridgeshire, Cardiganshire, and London. One of these maps is shown in Figure 5.
Each had a resolution of approximately 9000 × 6800 pixels. These maps cover both
rural and urban areas with a large number of residential areas, woodlands, streets, rivers
and annotations.

http://maps.nls.uk/geo


ISPRS Int. J. Geo-Inf. 2021, 10, 831 9 of 19

Figure 5. Raster map of northeast London published from 1894 to 1896. The map sheet size is 31 × 46 cm
(ca. 12 × 18 inches).

Initially, we manually produced 1000 residential area sample images with a size of
256 × 256 pixels at different scales from these 32 sheets of raster maps, this resulted in
4000 sample images being obtained after the sample enhancement process.

3.2. Model Training and Parameter Setting

In the model training process, 70% of the sample images were used as training samples
and 20% as validation samples. The training samples were used to train the MSU-Net
model and the validation samples were used to determine whether the trained model met
the requirements. The AEHRA put the assigned 2800 hatched residential area training
samples into the MSU-Net network for training and tested the image segmentation ability
of the model after each training round by using the assigned 800 hatched residential area
validation samples. From the accuracy change curve of the validation set in Figure 6a, it
can be seen that the model had been in an underfitting convergence state until the 11th
training round and that the accuracy of the model increased with each training round.
After the 15th round of training, the accuracy of the model vacillated with the continuation
of the rounds, which indicates that the model had been overfitted. From the loss value
change curve of the validation set that is shown in Figure 6b, we can see that the model
was also in a converged state before the 11th training round and that the loss value of the
model decreased with each training round. After the 15th training round, the loss value of
the model vacillated as the number of rounds increased, which indicates that the model
appeared to be overfitting. Because both accuracy and loss value appeared to be overfitting
after the 15th round, the number of iterations of the model was finally set to 20 in order to
have an iterative training buffer.

The initial learning rate of the model was set to 1× 10−4 in order to prevent the model
from falling into a local minimum during the gradient descent and failing to find the opti-
mal solution. At the same time, this reduced the fitting speed of the model so as to prevent
the model from overfitting prematurely. We chose the Adam algorithm as the optimization
algorithm and set the final experimental parameters, as shown in Table 1, which took into
consideration the model’s computational efficiency, result accuracy and hardware.

To fully understand the generalization capabilities of the models, the study used
K-fold cross-validation in order to validate the model. The value of K was set to 5 and
the 3600 samples were randomly divided (this pool included both training samples and
validation samples) into 5 groups. The groups were taken, one at a time, to be used as the
test data set and the remaining 4 groups were used as the training set. This process was
repeated 5 times and the mean of the 5 results was taken as the final error estimation result.
According to Table 2, it can be calculated that the mean value of Dice was 95.39%, IoU was
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92.21%, recall was 90.36%, precision was 93.67% and accuracy was 99.27%. These results
indicate that MSU-Net had a good generalization ability.

Figure 6. Indicator change line chart. (a) Line chart of accuracy value changes of 20 epochs. (b) line chart of loss value
changes of 20 epochs.

Table 1. Training parameters of model.

Parameter Value

Training samples 2800
Validation samples 800

Batch size 8
Weight decay 5 × 10−4

Learning rate 1 × 10−4

Optimizer Adam
Epoch 20

Table 2. 5-fold cross-validation of MSU-Net.

Indicator Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Dice% 97.47 94.46 96.09 94.72 96.92
IoU% 95.07 89.51 92.48 89.97 94.03

Recall% 95.08 84.06 89.99 88.70 93.97
Precision% 95.33 94.50 94.85 89.66 94.03
Accuracy% 99.34 98.93 99.19 99.49 99.41

3.3. Experimental Results and Comparative Analysis

Figure 7 shows the residential area extraction results of seven sample images in
the test set, based on the AEHRA. It can be seen that the AEHRA fully and accurately
extracted the hatched residential areas in the raster images and that, in addition to the
common rectangular residential area in Area 2 and Area 6, other more complex polygonal
residential areas (such as those in Area 1, Area 3, Area 4, Area 5, and Area 7) could also be
easily identified.

To demonstrate the validity and capability of the AEHRA model qualitatively and
quantitatively, we compared the AEHRA with the FCN-8s and classical U-Net networks by
using the same training set, validation set and test set. The predictions were performed
on 400 samples in the test set and, to observe the comparison results, four typical areas
were selected for display, as shown in Figure 8. The comparison of the experimental results
showed that the FCN-8s suffered from blurred boundaries when recognizing the residential
areas with hatched lines and that some places had convexities and others had concavities
(Area 1). In the FCN-8s, the cavity phenomenon occurred during the identification of the
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inner regions of the residential areas (Area 2 and Area 4). The FCN-8s also identified the
region where some of the smaller black lines intersect with white areas as residential areas
with hatched lines, forming isolated regions (Area 2 and Area 3). However, the FCN-8s
could not fully extract the details of the residential areas because it had difficulty in using
the features of shallow network localization. The classical U-Net network was prone to
omission or breakage when extracting smaller and finer parts of the residential areas with
hatched lines (Area 1, Area 2, Area 4). In some smaller areas where the black lines intersect
with white areas, the misidentification phenomenon occurred (Area 3). The classical U-Net
network also showed the same classification blur at the residential area boundaries. The
MSU-Net used a feature map overlay in order to integrate the multiple scales of information
into the final prediction map. Compared with the first two networks, the segmentation
integrity and boundary extraction were significantly improved, but there were still a few
cavities (Area 2) and isolated islands (Area 4). The MSU-Net-CRFs in the AEHRA added
fully connected CRFs to MSU-Net, which resolved the phenomenon of cavities and isolated
islands existing in MSU-Net-based recognition and improve segmentation accuracy.

Figure 7. Cont.
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Figure 7. AEHRA-based extraction results of hatched residential areas.
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Figure 8. Segmentation results of hatched residential areas based on different algorithms.

The quantitative evaluation results are shown in Table 3. The AEHRA scored higher
than the other three algorithms in terms of Dice, IoU, recall, precision and accuracy. Com-
pared with the FCN-8s, these five metrics were improved by 1.47%, 2.72%, 1.07%, 4.56%
and 0.26%, respectively. Compared with the U-Net, the five metrics were improved by
0.84%, 1.56%, 3.00%, 0.65% and 0.13%, respectively. Compared with the MSU-Net, the five
metrics were improved by 0.03%, 0.03%, 0.02%, 0.07% and 0.02%, respectively.

Table 3. Comparison of segmentation algorithms.

Indicator FCN-8s U-Net MSU-Net AEHRA

Dice % 95.58 96.21 97.02 97.05
IoU % 91.54 92.70 94.23 94.26

Recall % 93.85 91.92 94.90 94.92
Precision % 88.96 92.87 93.45 93.52
Accuracy % 99.26 99.39 99.50 99.52

The AEHRA was also compared with the Gabor filter-based method [7]. As shown in
Figure 9b, the identification results of the Gabor filter-based algorithm missed many of the
hatched residential areas (circles 1–10). In contrast, as shown in Figure 9c, the identification
results of the AEHRA only missed one hatched residential area (circle 2) and a smaller
isolated island (circle 1) appeared at a similar hatch location in the figure.
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Figure 9. Segmentation results of the Gabor filter-based algorithm and the AEHRA-based method. (a) Original raster image;
(b) results of Gabor filter-based method; (c) results of AEHRA-based method.

3.4. Identifying Residential Areas from a Sheet of Raster Maps

Many historians understand the pattern of human economic activities through the
number and density of the residential areas that are shown on historical raster maps.
Insurance companies may need to know how the land has historically been used. In this
regard, it is particularly important to be able to extract the hatched residential areas from
the map sheet-level raster maps. To study the ability of the AEHRA method to identify
map sheet-level raster images, we selected the historical raster map of Northeast London
from 1894 to 1896 for the experiment. The longitude of the central point of the historical
map that was used is 0◦5′0′′ E and the latitude is 51◦32′15′′ N. Due to the limitations of the
computer’s performance, the raster map with a resolution of 8924 × 6521 pixels was cut
into 450 small raster images with a resolution of 356 × 362 pixels. The predicted results of
the AEHRA were re-stitched into the original resolution in the corresponding order and
overlaid with the original raster map image in order to obtain the image in Figure 10a. The
raster map contains a total of 1006 hatched residential areas and the AEHRA recognized
1012 elements, of which 14 non-hatched residential areas were incorrectly predicted as
hatched residential area elements and eight residential areas were missed. In general,
the AEHRA was highly accurate in identifying the hatched residential areas, but there
were several cases of incorrect identification. Figure 10b shows an enlarged view of the
corresponding Area 1 in Figure 10a, while Figure 10c shows one of the cut images with
a size of 356 × 362 pixels in the area of Figure 10b. Figure 10b shows that if the hatched
residential area is at the cut edge of the image and the part that was cut out is also the edge
part of the hatched residential area, then the phenomenon of incomplete object recognition
will occur.

The extraction accuracy for the hatched residential areas was inversely proportional
to the number of segmented tile images. As far as the experimental environment allowed,
the fewer the number of segmented tile images, the higher the extraction accuracy. The
experimental area in Figure 11a is Area 2 in Figures 10a and 11b is the extraction result
corresponding to the red-framed area in Figure 11a after dividing the experimental area
into 16 tiles. Figure 11c is the extraction result corresponding to the red-framed area in
Figure 11a after dividing the experimental area into 100 tiles. In Figure 11b, it can be seen
that there is only one incomplete object due to the identified object being at the tile image
edge, while in Figure 11c multiple incomplete objects are identified because there are more
tile images.
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Figure 10. Extraction results of hatched residential areas from a raster map. (a) 1894–1896 historical raster map of Northeast
London; (b) enlarged view of area 1; (c) small cut image with a size of 356 × 362 pixels.

3.5. Land Change Monitoring Application

Land change monitoring was applied in order to test the AEHRA. As shown in
Figure 12a, the 1898 raster map of the junction of London Road and Hilltop Road in
Grays, UK, was selected for the study. The longitude and latitude of the map’s center are
0◦16′57.31′′ E and 51◦28′31.34′′ N, respectively. The base map that is shown in Figure 12b
represents the satellite remote sensing image of the area in March 2021 from Google Maps.
The AEHRA method’s extraction of the hatched residential areas from the raster map is
shown in Figure 12a. The red polygons in Figure 12b are the result of vectorizing the raster
hatched residential areas and simplifying the vector data; that is, reducing the number
of polygon nodes. Interestingly, polygons 1–8 have not changed since 1898. The other
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extracted residential areas can no longer be found on the existing map and it can be seen
that most of the formerly vacant lands have now become residential areas.

Figure 11. Comparison of extraction results with different numbers of segmentation tiles. (a) Experimental area;
(b) identification result when the map image was cut into 16 tiles; (c) identification result when the map image was
cut into 100 tiles.
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Figure 12. Identified hatched residential areas used for land change monitoring. (a) Historic raster
map in 1898; (b) vector polygons of the extracted hatched residential areas overlap the satellite image
from Google Maps.
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4. Conclusions

The AEHRA method that has been proposed in this paper can be used to extract the
residential areas that are denoted by hatched lines in historical raster maps. The three main
contributions of this paper are as follows:

• We developed a novel deep learning model, called MSU-Net, which combines multi-
scale features, outputs a feature image at each scale and fuses the feature images. This
solved the problem that the up-sampling of a single chain of classical U-Net network
cannot fully transfer the scale information;

• We combined the post-processing method of fully connected CRFs, used the proba-
bility distribution map output by the MSU-Net model as a unary potential and used
the original map as a binary potential. The prediction results can be optimized by
a calculation of the similarity of two pixels nodes in color and position, which can
eliminate the isolated island and cavity phenomena;

• The research results of this paper can help historians to understand the relationship
between human activities and the physical geographical environment, support land
change monitoring and benefit the vectorization of raster maps. In short, it has
significant application value.

Admittedly, there are some shortcomings to the AEHRA. Due to the limitations of
the image semantic segmentation algorithm in deep learning, there are many nodes in
the extracted contour of the residential areas, there is no obvious straight edge of the
residential areas and the corners of the residential areas are curved rather than right angles.
In addition, some incomplete objects may be generated at the edge of the dividing image.
In the future, we will carry out optimization work for the extracted residential areas.
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