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Abstract: Linear approximate segmentation and data compression of moving target spatio-temporal
trajectory can reduce data storage pressure and improve the efficiency of target motion pattern
mining. High quality segmentation and compression need to accurately select and store as few
points as possible that can reflect the characteristics of the original trajectory, while the existing
methods still have room for improvement in segmentation accuracy, reduction of compression rate
and simplification of algorithm parameter setting. A trajectory segmentation and compression
algorithm based on particle swarm optimization is proposed. First, the trajectory segmentation
problem is transformed into a global intelligent optimization problem of segmented feature points,
which makes the selection of segmented points more accurate; then, a particle update strategy
combining neighborhood adjustment and random jump is established to improve the efficiency of
segmentation and compression. Through experiments on a real data set and a maneuvering target
simulation trajectory set, the results show that compared with the existing typical methods, this
method has advantages in segmentation accuracy and compression rate.

Keywords: trajectory segmentation; trajectory compression; particle swarm optimization; feature
point selection; update strategy

1. Introduction

With the continuous development of global positioning technology, wireless commu-
nication technology and the wide application of mobile terminals, enormous volumes of
mobile target trajectory data have appeared. Trajectory data contains rich information of
target space-time characteristics. Through data mining and depth analysis, we can find
high-value information, such as target activity law, behavior characteristics, interest habits,
abnormal changes [1–6], etc. However, the rapid growth of trajectory data also brings
many challenges to the data service based on the target space-time location, including the
increase in data transmission load, the pressure of data storage, the reduction of data query
efficiency and the decline of data analysis performance [7]. Trajectory data compression is
an effective way of solving the above problems, and the main way to achieve compression is
to segment the trajectory, i.e., to obtain trajectory segments with uniform and homogeneous
internal motion behavior or semantic characteristics based on certain partition criteria. The
compressed trajectory only stores feature points and segment feature information, which
can not only meet the user’s requirements of similarity with the original trajectory, but also
reduce the amount of data storage.

The existing methods of trajectory data compression can be divided into three cate-
gories [8–11]. The first is a trajectory data compression based on line segment simplifica-
tion [12–17]; the trajectory in free space is segmented linearly by constraints, and only two
end points of each approximate segment are stored to achieve compression. The second
is a trajectory data compression based on road network structure [18–22]; the trajectory
points are mapped onto the road network, and the original trajectory is represented by a
grid structure to reduce the amount of data. However, this kind of method is not suitable
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in a scenario where there is a lack of road network information, such as at sea and in
the air, and it is also difficult to apply to the ground target with high degree of motion
freedom. The last method is a trajectory data compression based on semantic informa-
tion [23–32]. Semantic features are extracted from the trajectory data, and the trajectory
is transformed into a semantic sequence. However, this kind of method often ignores the
movement characteristics of the target, and it is difficult to obtain the semantic features of
the trajectory.

In our application, the main reason for trajectory data compression is that the long-
term accumulated target-historical trajectories occupy a lot of storage resources, and
the unsimplified data set is very difficult to use in the deep mining of target motion
features. Because a large number of different types of sensors have been deployed for
target reconnaissance, the data sampling rates of these sensors are generally different, and
some may be very frequent, such as radar gaze tracking of targets. Therefore, the same
target may get multiple trajectories, and the data of one trajectory may be very dense, so
there is a lot of information redundancy in the whole database. At the same time, most
of the targets we focus on are free moving targets on land, sea and air. Their activities
often do not follow the road network, and it is difficult for us to know the intention of the
activities, i.e., the trajectory semantic information is unknown. Therefore, among the three
methods above, the trajectory data compression based on line segment simplification is the
most suitable in our application, and it is also the most popular one, because it has a clear
technical route, simple method, easy implementation and wide application. Therefore, the
method proposed in this paper belongs to the line segment simplification type, and the
following analysis is mainly focused on the research of this kind of method.

Trajectory data compression based on line segment simplification can be subdivided
into two types: global-oriented method and local forward method. The representative
global-oriented method is the Douglas–Peucker (DP) algorithm [12] and its related improve-
ments [13–16]. The DP algorithm uses the perpendicular Euclidean distance to measure the
error. First, the straight line formed by the start and end points of the trajectory is regarded
as the approximate trajectory, and the perpendicular Euclidean distance from the point to
the line is calculated for all the points in the middle; the point with the largest distance
is selected. If the maximum distance exceeds the preset distance threshold, the point is
regarded as the segment feature point, and then the original trajectory is divided into two
segments. The above steps are to be repeated for the two segments, respectively, until the
maximum perpendicular Euclidean distance calculated by all sub trajectories is less than
the distance threshold, or until there are only the start and end points in the trajectories.
The DP algorithm is simple and practical. When the distance threshold is set well, it can
meet the user’s requirements for the similarity between the compressed trajectory and the
original trajectory. At the same time, it can achieve high data compression rate. However,
the distance threshold is often difficult to set and needs to be adjusted and tried repeatedly.

Based on the DP algorithm, Hershberger [33] established the trajectory point batch
processing mode, which reduced the time complexity from O(N2) to O(N × log N), but it
is difficult to realize the batch processing mode in many real trajectory data compression
processing instances. Top-Down Time-Ratio (TD-TR) algorithm [34,35] is an improvement
on the basis of the DP algorithm. The main difference is that it uses the spatial distance of
time scale as the distance function, finds the position corresponding to the original trajectory
point on the approximate line segment according to the time scale and then calculates the
Euclidean distance between the approximate point and the original trajectory point, so as
to obtain a more accurate approximate trajectory. Muckell [36] compared the performance
of the DP algorithm with TD-TR, Bellman [37], STTrace [38] and other algorithms. Finally,
the DP algorithm has better performance in time efficiency, compression ratio and accuracy
on multiple data sets. Liu [39] used convex hull to optimize the time complexity of the DP
algorithm for segmentation of online trajectory data stream.

The local forward methods start from the initial point of the trajectory, and the trajec-
tory points that meet the constraints can be classified as a local approximate line segment.
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On the contrary, the trajectory points that do not meet the conditions can continue to
search forward as the initial point of the new segment [40]. The constraint condition can
be defined as the distance function between the trajectory point and the approximate line
segment, or the direction change function between the segments. A typical algorithm
whose constraint condition is the distance function is the segment simplification part of the
trajectory clustering (TRACLUS) algorithm proposed by Lee [41]. The algorithm defines
three indexes: perpendicular distance, parallel distance and angle distance, and the trajec-
tory segmentation solution is approximately solved based on the principle of minimum
description length (MDL). The segmentation method has been applied in [42–44]. Yuan [45]
divides the trajectory into a set of stationary sub-trajectory (SST) based on the detection
and evaluation of trajectory position disturbance. The HTRACLUS_DL algorithm pro-
posed by Liu [46] improved the accuracy of TRACLUS algorithm, in which a sub-trajectory
parallel boundary method is constructed. Zhang [47] is also based on the MDL principle,
which transforms the trajectory segmentation problem into the shortest path problem of
undirected graph and then uses Dijkstra algorithm to get the best segmentation, which has
higher complexity.

The distance index is used to measure the difference between the trajectory segments
in the above methods, and Yuan [48,49] defines the corner index to measure the angle
difference between the trajectory segments, which represents the movement trend of the
trajectory, and realizes the local forward segmentation and compression based on direc-
tion change. In view of the shortcomings of position-preserving trajectory segmentation
algorithm in some scenarios, Cheng [50] proposed a direction-preserving trajectory seg-
mentation simplification algorithm, which uses the maximum angle difference instead
of the average angle difference to better maintain the trajectory shape to obtain a better
segmentation solution.

The prominent advantage of the local forward methods is that it has less computation,
but the existing problems are mainly reflected in two aspects. The first is searching from
the first point, which can only obtain local optimal segmentation, and the resulting lack
of the overall consideration of the segmentation problem. The selection of feature points
is difficult to ensure global optimization, which affects the accuracy of segmentation
and reduces the similarity between the compressed trajectory and the original trajectory.
The second is that there are dimensions in the distance and direction to measure the
homogeneity and difference between the trajectories, which are very sensitive to the setting
of threshold parameters.

Considering that our application pursues high trajectory approximation accuracy
in order to improve the quality of subsequent trajectory data mining, rather than the
segmentation and compression speed, we prefer the global-oriented method. Therefore,
can segmentation accuracy be further improved without increasing the compression rate?
This problem can be solved by finding the trajectory segmentation feature points that
can better represent the original trajectory, and the swarm intelligence (SI) algorithm can
not only meet the need of global search, but also help to find the trajectory segmentation
optimization solution quickly and accurately.

Swarm intelligence, a major branch of artificial intelligence, was rendered to model
the collective behavior of social swarms in nature. SI methods [51–53] have been widely
used to solve global search problems, and particle swarm optimization (PSO) is the main
paradigm [54,55]. The original idea of the PSO came from Kennedy and Eberhart’s ob-
servation of birds looking for food by sharing knowledge. They then proposed applying
this evolutionary approach to the optimization of nonlinear problems [56,57]. Due to its
simplicity, PSO has been successfully utilized in many fields, such as computer vision [58],
path planning [59], signal processing [60] and other fields. The PSO variants mainly focus
on parameter optimization [61–64] and multi-objective search [65–67], which improve the
convergence speed, stability and applicability.

In summary, trajectory segmentation and compression mainly face the problem of
how to balance trajectory segmentation accuracy and trajectory data compression rate.
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Intuitively, to improve the accuracy of trajectory segmentation, one can set more segmen-
tation feature points, i.e., retain as many original trajectory points as possible; however,
this will have negative impact on the trajectory data compression rate. Similarly, the local
forward method can improve compression efficiency of trajectory segmentation, but it
would sacrifice the accuracy of trajectory segmentation to a certain extent. Therefore,
the basic consideration of this paper is to provide a better trajectory segmentation and
compression method, which can obtain lower trajectory compression rate under certain
trajectory approximation accuracy requirements. In other words, compared with the ex-
isting methods, this method can approximate the original trajectory with fewer trajectory
points but without losing the accuracy. It will bring another potential advantage, i.e., under
a certain trajectory compression rate level, the trajectory points retained by this method
can better reflect the characteristics of the original trajectory, and the compressed trajectory
is more similar to the original trajectory. In this way, the subsequent trajectory clustering
analysis and motion feature mining will attain better accuracy.

A moving target trajectory segmentation and compression algorithm based on particle
swarm optimization is proposed, which is named the PSOTSC algorithm. The general
idea of the algorithm is to transform the trajectory data processing problem into a global
optimization problem by using the swarm intelligence method. The prominent feature
of the algorithm is to establish a mapping relationship between particles and trajectories,
which gives full play to the advantages of the particle swarm optimization algorithm for
global search and makes it easy to obtain the optimal solution. On this basis, a new particle
update strategy for fast optimization of trajectory segmentation solution is designed and
named the neighborhood adjustment and random jump (NARJ). Based on this strategy,
high-quality particles can evolve into better particles faster, while low-quality particles
can change in time to try new segmentation possibilities, which can not only improve
the overall efficiency of the algorithm, but also prevent the algorithm from falling into
local search.

The basic steps of PSOTSC are as follows. First, a trajectory segmentation optimization
framework based on PSO is established. Second, the algorithm starts the search and
optimization of trajectory segmentation solution, which involves many key processes,
including initialization of particles, definition of particle fitness function based on fitting
degree of trajectory profile and updating based on NARJ. Finally, each trajectory in the
data set completes the optimal segmentation, which realizes the overall data compression.
Hurricane real trajectory data set, ungulate location real data set and maneuvering target
simulation trajectory data set [68] are used to verify the effectiveness of the algorithm.
The comparative experiments with DP, TRACLUS and TCSS algorithms can prove the
advantages of the PSOTSC algorithm.

In summary, the contributions of this paper are as follows:

1. We propose a technical route based on swarm intelligence to solve the problem of
trajectory segmentation and compression, and few similar studies are currently avail-
able. The heuristic search and optimization of the trajectory segmentation solution
based on population behavior can quickly and accurately find the global optimal
segmentation feature point set without user intervention, which lays the foundation
for the application of intelligent optimization algorithm in moving target trajectory
data processing.

2. The proposed algorithm based on PSO has the advantage of global segmentation and
compression and does not need to adjust the threshold parameters repeatedly. Com-
pared with the local forward segmentation and compression methods, our algorithm
is more accurate on the feature points selection, and the compressed trajectory has
better similarity with the original trajectory.

3. We propose a new NARJ particle update strategy, which can not only make the
local optimal segmentation solution evolve into a better solution efficiently, but can
also make the bad solution update quickly to try new segmentation possibilities.
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Compared with the classical particle swarm optimization method, the generation
efficiency of the optimal solution is improved.

4. We define the trajectory profile fitting degree as the similarity evaluation index be-
tween the compressed trajectory and the original trajectory and apply it to segmenta-
tion solution optimization. This index has no dimension, which effectively solves the
difficulty in setting the parameters, such as distance threshold and direction change
threshold. Therefore, it improves the applicability of the algorithm.

The rest of the paper is organized as follows. Section 2 gives the related definitions
and establishes the evaluation index of trajectory profile fitting degree. Section 3 proposes
a trajectory segmentation and compression algorithm based on PSO. Section 4 presents the
results of experimental evaluation. Finally, Section 5 concludes the study.

2. Evaluation Index of Segmentation Accuracy
2.1. Related Definitions

First, the definitions of trajectory, trajectory segment, approximate compression of line
segments and trajectory compression ratio are given.

Definition 1. A trajectory is a set of ordered points in a multidimensional space, which can be
expressed as TR = {P1, P2, . . . , Plen}, 1 ≤ i ≤ len, where Pi is a multi-dimensional trajectory
point and len is the trajectory length. For different trajectories in a data set, the values of len may
be different. The points can be expressed as Pi = (xi, yi, ti), in which xi and yi are the coordinates
of the trajectory point and ti is the recording time.

Definition 2. A trajectory segment is a continuous subset of trajectory points, which can be
expressed as TRSub = (Pu, Pu+1, . . . , Pu+n), where Pu and Pu+n(1 ≤ u ≤ len− n) are the two
ends of the segment called segment feature points. The length of the trajectory segment is n + 1.

Definition 3. The approximate compression of line segments is that the segments are approximated
as straight-line segments connected by end points. Thus, the compressed trajectory only stores
the first and last two points of the original trajectory and segment feature points, represented as
TR′ =

{
P1, Pu1 , Pu2 , . . . , Puk , Plen

}
or
{

Pu0 , Pu1 , Pu2 , . . . , Puk , Puk+1

}
, where Pu1 , Pu2 , . . . , Puk are

segment feature points. The trajectory is divided into k + 1 segments, and the compression ratio of
trajectory data is δC = (k + 2)/len.

2.2. Profile Fitting Degree

The segmentation accuracy of the compressed trajectory is evaluated by the trajectory
profile fitting degree, and the definition is given as follows.

Definition 4. The profile fitting degree is the fitting degree between the compressed trajectory and
the original trajectory after the trajectory is linearly approximated to a set of straight lines, which
is recorded as OF. It is affected by the projection angle factor and the projection distance factor.
The projection angle factor is a function of the projection length of the original trajectory and the
length of the original trajectory. It describes the influence of the angle change of the approximate line
segment on the similarity, which is recorded as OFang. The projection distance factor is a function
of the projection length of the original trajectory and the distance from the original trajectory to
the approximate line segment, which describes the influence of the distance difference between
the approximate line segments on the similarity and is recorded as OFdis. Figure 1 shows an
example of the linear approximation of the original trajectory segment TRSub1 = {P1, P2, . . . , P8}
to TRSub′1 =

{
P′1, P′8

}
.
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Figure 1. Schematic diagram of contour fit calculation.

The projection of the original trajectory sub segment P1P2 is P′1P′2, the projection of the
sub segment P2P3 is P′2P′3, etc., all together constitute the approximate trajectory segment
TRSub′1. For the original sub segment PiPi+1, the projection angle factor and the projection
distance factor are defined as

OFang(PiPi+1) = d(P′i P′i+1)/d(PiPi+1) (1)

OFdis(PiPi+1) =

{
1− e−d(P′i P′i+1)/dMin(Pi ,Pi+1), dMin(Pi, Pi+1) > 0
1, dMin(Pi, Pi+1) = 0

(2)

where d(PiPi+1) is the distance of the original trajectory segment PiPi+1, d(P′i P′i+1) is
the distance of the projection P′i P′i+1, and d(P′i P′i+1) ≤ d(PiPi+1). lenS is the length of
the original trajectory sub segment and 0 ≤ i ≤ lenS − 1. We define dMin(Pi, Pi+1) =
min[d(PiP′i ), d(Pi+1P′i+1)], and the solution of d(PiP′i ) is based on Helen formula, as shown
in Figure 1. The area of ∆P′1PiP′8 is

S∆ =
√

p(p− a)(p− b)(p− c) =
1
2
· h · c (3)

where p is the half perimeter, a, b, c is the side length d(P1Pi), d(P8Pi), d(P1P8), and h
is d(PiP′i ).

Obviously, OFang(PiPi+1) describes the influence of the angle θ(0 ≤ θ ≤ π/2) be-
tween PiPi+1 and P′i P′i+1 on the degree of trajectory approximation. The smaller the angle
is, the closer the distance of PiPi+1 and P′i P′i+1 is, and tends to 1, while the larger the an-
gle is, OFang(PiPi+1) tends to 0. In OFdis(PiPi+1) calculation, d(PiP′i ) and d(Pi+1P′i+1) are
the distance from the two endpoints of the original sub segment to the projection, and
dMin(Pi, Pi+1) takes the smaller value of both, because the difference between them reflects
the change of angle, which has been reflected in the calculation of OFang(PiPi+1). It can be
seen that OFdis(PiPi+1) describes the influence of distance on trajectory approximation. The
smaller the distance is, the closer PiPi+1 and P′i P′i+1 are, and OFdis(PiPi+1) tends to 1. The
larger the distance is, the farther away PiPi+1 and P′i P′i+1 are, and OFdis(PiPi+1) tends to 0.

The above calculation of OFang(PiPi+1) and OFdis(PiPi+1) is applicable to the case
where the original trajectory points are on the same side of the compressed trajectory. As
shown in Figure 2, the original trajectory points Pi, Pi+1 are on both sides of the compressed
trajectory. The calculation of OFang(PiPi+1) and OFdis(PiPi+1) are described as follows.
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The projection angle factor OFang(PiPi+1) is defined as the ratio of the projection
length d(P′i P′i+1) to the original sub segment length d(PiPi+1), and d(PiPi+1) = d(P′′i P′i+1),
therefore OFang(PiPi+1) = d(P′i P′i+1)/d(P′′i P′i+1) = d(P′i P′i+1)/d(PiPi+1) can reflect the
influence of θ on the trajectory approximation degree, and the calculation of OFang(PiPi+1)
is consistent with the situation of the same side of the trajectory point. However, the
original sub segment PiPi+1 and projection P′i P′i+1 intersect at point O, and the influence
of distance d(PiP′i ), d(Pi+1P′i+1) on the trajectory similarity has been considered in the
calculation of OFang(PiPi+1), therefore OFdis(PiPi+1) = 0.

The method of the vector cross product is used to judge whether the projection P′i P′i+1
intersects with the original sub segment PiPi+1. We define

c1 =
→

PiP′i ×
→

PiPi+1, c2 =
→

PiP′i+1 ×
→

PiPi+1

c3 =
→

P′i Pi ×
→

P′i P′i+1, c4 =
→

P′i Pi+1 ×
→

P′i P′i+1

(4)

when PiPi+1 intersects P′i P′i+1, c1 and c2 have different signs, and c3 and c4 are the same.
The projection angle factor and distance factor of the original trajectory segment

TRSub1 and the approximate trajectory segment TRSub′1 can be expressed by the aggrega-
tion of the calculation results of each sub segment:

OFang(TRSub1) =
lens1−1

∑
i=1

ωi ·OFang(PiPi+1) (5)

OFdis(TRSub1) =
lens1−1

∑
i=1

ωi ·OFdis(PiPi+1) (6)

where ωi is the occupancy of the original sub segment PiPi+1 in the trajectory segment,
which is expressed by its length proportion as

ωi = d(PiPi+1)

/
lens1−1

∑
j=1

d(PjPj+1) (7)

Based on the above calculation, the projection angle factor and distance factor of the
whole trajectory can be obtained:

OFang(TR) =
Ns

∑
n=1

εn ·OFang(TRSubn) (8)

OFdis(TR) =
Ns

∑
n=1

εn ·OFdis(TRSubn) (9)

where Ns is the number of segments of the trajectory, and εn is the occupancy of the original
trajectory segment TRSubn in the trajectory TR, which can also be expressed by its length
proportion.

Finally, the trajectory profile fitting degree is defined as OF = ϕang ·OFang + ϕdis ·
OFdis, ϕang and ϕdis are the importance weights of projection angle factor and projection
distance factor respectively, and the sum of them is 1.

In summary, the calculation of trajectory profile fitting degree is an aggregation
process from sub segment trajectory segment to the whole trajectory, which fully reflects
the influence of the angle and distance difference between the approximate trajectory and
the original trajectory on the similarity. At the same time, the trajectory profile fitting
degree, the projection angle factor and the projection distance factor are all dimensionless,
and the values are normalized, thus the applicability is better.
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3. The PSOTSC Algorithm

The PSOTSC algorithm is developed in this section where the high-quality segmenta-
tion solution is found through particle swarm optimization to achieve better segmentation
accuracy and compression rate. First, the overall framework of the algorithm is introduced.
Then some key processing links in the algorithm are illustrated in detail, such as particle
swarm segmentation optimization method, particle update strategy based on NARJ and
the satisfaction judgment method.

3.1. Overall Framework

Trajectory segmentation and compression need to deal with the contradiction or
balance between segmentation accuracy and compression rate. Retaining more original
trajectory points can bring better similarity, but at the expense of compression rate. On
the contrary, excessive pursuit of data compression rate will deteriorate the quality of
approximate trajectory, which loses the significance of similar compression. How to
optimize the whole effect of trajectory segmentation and compression? The PSOTSC
algorithm is developed, which takes the selection of trajectory segmentation feature points
as the starting point, and gives full play to the global optimization advantages of PSO. A
better target trajectory segmentation and compression solution can be found. Compared
with the results obtained by previous algorithms, the new solution can achieve better data
compression rate on the same degree of trajectory similarity, i.e., fewer original trajectory
points are retained. From another point of view, it can make the compressed trajectory
more similar to the original trajectory under the same data compression rate level. The
framework of PSOTSC is shown in Algorithm 1.

Algorithm 1 PSOTSC

Input: A set of trajectories STR = {TR1, TR2, . . . , TRN}
Output: A set of compressed trajectories STR′ =

{
TR′1, TR′2, . . . , TR′N

}
A compression ratio of δC and a segmentation accuracy of δP

01: for each TR ∈ STR do
02: Number of segments NS = 1;
03: while true do
04: Search optimal segmentation solution SegSol = PSOSegSearch(NS);
05: Calculate the compression ratio δCTR and segmentation accuracy δPTR of TR;
06: Satisfaction judgment SJ = TSCSuccess(δPTR, δCTR);
07: if SJ = 1
08: break;
09: Increase number of segments NS = NS + 1;
10: end while
11: end for
12: Generate a set of compressed trajectories STR′

13: Calculate δC and δP of STR′

First, the input and output of the PSOTSC algorithm should be clarified. In general, the
input of the algorithm is the original trajectory data set, which contains many trajectories
with large amount of data. The output of the algorithm is the compressed trajectory
data set and the evaluation values of data compression rate and segmentation accuracy.
The compressed data set contains approximately processed trajectories, which are one-
to-one corresponding to the trajectories in the original data set. The key links in the
internal processing of the algorithm also have parameters that need to be set by the user,
such as the scale of particle swarm, the number of search iterations, etc., which will be
described in the subsequent parts of this section. Second, the basic method of trajectory
segmentation optimization based on PSO is established (line 4), which can complete the
search of the optimal segmentation solution under a fixed number of segments. After
that, the fixed number of segments will start from 1 and increase from small to large to
search for the corresponding optimal segmentation solution (line 2–10). By calculating
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and evaluating the compression ratio and segmentation accuracy, a solution meeting the
satisfaction requirements will be found (line 5–8). Finally, each trajectory in the original
data set is optimized by the above method (line 1–11), the compressed trajectory data set
can be generated (line 12), and the compression ratio and segmentation accuracy are given
(line 13).

3.2. Particle Swarm Segmentation Optimization

Particle swarm optimization is an evolutionary computation technology based on
swarm intelligence. It originated from biologists’ observation and research on the behavior
of birds’ foraging process. It has the characteristics of fast calculation speed, good robust-
ness, strong global convergence ability, being easy to understand, easy to realize, etc. In the
PSO algorithm, the potential solution of each optimization problem is a bird in the search
space, which is called the “particle”. The particle has a fitness value representing whether
it is close to the target and a speed value representing its update speed and search direction.
The flow of PSO algorithm is shown in Figure 3.
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The algorithm is initialized as a group of random particles (random solution) and
finds the optimal solution through iteration. The quality of the solution is evaluated by
the fitness of the particles. In each iteration, each particle tracks two “optimal particles” to
update itself; one is the local optimal particle found by itself, the other is the global optimal
particle found by the swarm. The particles follow them to search in the solution space. The
advantage of the PSO algorithm is that there is no crossover and mutation operation, and
it relies on particle speed and fitness evaluation to complete the search. In the iterative
evolution, only the optimal particle transmits information to other particles, therefore the
optimization speed is fast and the solution accuracy is high. At the same time, the structure
of the algorithm is simple and easy to implement.

PSOSegSearch method is designed to realize the application of PSO in trajectory
segmentation solution search, which is the core of the PSOTSC algorithm shown in
Algorithm 2. PSOSegSearch method needs to solve two key problems: one is how to
establish the mapping relationship between the trajectory and the particle; the other is
what kind of driving mechanism particles use to update and quickly optimize. To solve
the first problem, PSOSegSearch method maps the compressed trajectory to the particle,
which is expressed as a one-dimensional sequence with the same length as the original
trajectory. The original trajectory points to be retained and discarded in the sequence are
assigned different values. In this way, the problem is simplified, and the process seems
simple and straightforward. However, if the length of the original trajectory is very long, it
will increase the length of the particle and affect the effect of the algorithm, which leads to
the second problem mentioned above. PSOSegSearch method proposes a NARJ particle
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update strategy, which can speed up the search of segmentation solution and improve the
efficiency of the PSOTSC algorithm. The content of NARJ will be described in detail in
Section 3.3.

Algorithm 2 PSOSegSearch

Input: Trajectory points ordered by time TR = {P1, P2, . . . , Plen}
A set of parameters of PSO Para_PSO = {NP, NI , C1, C2, Wmax, Wmin, Vmax, Vmin}
A threshold of trajectory profile fitting TPFmin
A number of compressed trajectory segments NS

Output: Compressed trajectory points ordered by time TR′ = {Pu0 , Pu1 , Pu2 , . . . , Pus−1 , Pus}
01: Initial particle swarm and velocity ps =

{
p1, p2, . . . , pNp

}
, v_ps =

{
vp1, vp2, . . . , vpNp

}
02: while n ≤ NI and gTPFbest < TPFmin do
03: for each p ∈ ps do
04: Calculate fitness f p = TraPro f ileFitting(TR, p);
05: end for
06: Find Current best particle pbest ∈ ps and best fitness pTPFbest with maximum f p;
07: Update global best particle gbest and best fitness gTPFbest;
08: for each p ∈ ps do
09: Calculate velocity vp using gbest;
10: Update particle based on NARJ strategy pe = NARJParUpdate(p);
11: end for
12: end while
13: Construct compressed trajectory TR′;

The input of the algorithm is the original trajectory TR = {P1, P2, . . . , Plen}. The basic
parameters of PSO include the number of particles NP, the maximum number of iterations
NI , the learning factor C1, C2, the maximum and minimum inertia weight Wmax, Wmin
and the maximum and minimum velocity Vmax, Vmin.The threshold of trajectory profile
fitting degree is TPFmin, and NS is the number of trajectory segments. First, the algorithm
needs to complete the initialization of particle swarm (line 1), and the premise is to define
the particle format. For trajectory TR, the compressed trajectory is expressed as TR′ ={

P1, Pu1 , Pu2 , . . . , Puk , Plen
}

, where Pu1 , Pu2 , . . . , Puk is the segment feature point. Then, the
trajectory TR with k segment feature points can be mapped into a sequence of 0 and 1,
and the position of 1 in the sequence is P1, Pu1 , Pu2 , . . . , Puk , Plen. Therefore, we define the
particle format as sequence p = {1, Φ, 1} and the length is len. Φ is a sequence of 0 and 1
with the length of len− 2, and the number of 1 in the sequence is k. Random particle means
randomizing the position of 1 or the number of 1, representing a random segmentation
solution. If the number of trajectory segments is fixed, only the position of 1 needs to
be randomized. In order to simplify the calculation, the particle can also be defined as
p = Φ, which is transformed into p = {1, Φ, 1} when the algorithm finally outputs the
compressed trajectory.

The algorithm will keep on searching for optimization, as long as the number of
iterations n is no more than NI and the trajectory profile fitting degree of the global optimal
segmentation solution is less than TPFmin (line 2). In each iteration, the fitness f p is
calculated for all particles (line 3–5), i.e., the fitting degree of the compressed trajectory
represented by the particles and the original trajectory. The fitness function is defined as
TraPro f ileFitting. The original trajectory TR and particle p are the inputs of this function.
The calculation of the function has been described in detail in Section 2.2. The particle
pbest with the highest fitness is selected to update the global optimal particle gbest and
optimal fitness gTPFbest (line 6–7). Then, the speed of all particles is modified according
to the global optimal particle gbest (line 9), and the particle state is updated based on the
particle update strategy of NARJ, which will be discussed later. Finally, the algorithm ends
the iteration and outputs the compressed trajectory TR′.
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3.3. NARJ Particle Update Strategy

In PSO, particle updating is driven by whether the quality of the current particle is
close to the quality of the optimal particle. For a particle used to represent a compressed
trajectory, the quality of the particle is its profile fitting degree with the original trajectory.
The higher the fit, the better the quality of the particle. Therefore, the first problem to be
solved is how to evolve a high-quality particle into a better one. A high-quality particle
means that the selection of trajectory segmentation feature points is basically reasonable. It
only needs to adjust the position of segmentation feature points a little to try to obtain a
better solution on the original basis, while excessive or random adjustment of a reasonable
segmentation solution may destroy the original balance. Will this fall into the dilemma
of local search? What about low-quality particles? These are the next two problems to be
solved. The segmentation solution represented by a low-quality particle is not reasonable
and needs to be greatly adjusted to try new possibilities. Some segmentation feature
points can be selected randomly in the solution and can jump to other positions randomly.
Such changes can not only solve the problem of rapid disintegration and the updating of
low-quality particles, but also ensure that the PSOTSC algorithm will not fall into local
optimization.

Thus, the basic consideration of NARJ particle update strategy is that the segment
feature points of high-quality particles are adjusted in their neighborhood, and the proba-
bility of evolving into better particles will be larger than that of feature points randomly
adjusted. Meanwhile, low-quality particles need to adjust the feature points randomly in a
large range to get rid of the current state and try a new segmentation solution to improve
the search efficiency. Algorithm 3 gives the NARJParUpdate of particle update strategy.

Algorithm 3 NARJParUpdate

Input: A particle p ∈ ps and its fitness f p
A neighborhood adjustment span Sp
A number of adjusted feature points Na

Output: An evolved particle pe
01: Select Na feature points;
02: Evaluate the quality of particle p with its fitness f p;
03: if p is high-quality then

/* Neighborhood Adjustment*/
04: Change the feature points in ±Sp range;
05: else

/* Random Jump */
06: Change the feature points randomly;
07: end if
08: Set the value of the new points to 1 and the old points to 0;
09: Replace the old particle p with the evolved one pe;

The input of the algorithm is particle p and its fitness f p, the neighborhood adjustment
span Sp and the number of adjusted feature points Na. In the evolution process, whether
it is neighborhood adjustment or random jump, the segment feature points that change
the position are randomly selected (line 1), generally 1~2, so that the search efficiency
will not be affected because of the strong randomness. High-quality particles adjust the
neighborhood of segment feature points, while low-quality particles adjust the position
of segment feature points randomly (line 2–7). The direction of feature point adjustment
is random, which can be adjusted forward or backward. In neighborhood adjustment,
each feature point is taken as the center, and the feature point position is changed within
the range ±Sp (line 4). The span Sp depends on the total length of the trajectory and the
interval of the trajectory points. If the trajectory is long, the interval of the trajectory points
is small or the number of points is large, it is necessary to increase the span appropriately
to improve the search speed. However, if the interval of trajectory points is larger, and the
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number of trajectory points is less, the span should be reduced. The algorithm outputs the
evolved particle pe and replaces the original particle p.

An example is given to illustrate various situations in the process of particle update,
as shown in Figure 4. Only one feature point is adjusted for each evolution, and the
neighborhood adjustment span is 1.

For a high-quality particle, neighborhood adjustment will produce two possible results.
One is the evolution into a better particle, which is obviously the expected result. The other
is that the quality becomes worse. The solution is to restore the particle to its original state,
so that in the next round of evolution it will try to adjust again based on a good state. In
Figure 4, the segment feature points of high-quality particle are P2 and P5, and adjusting
P2 to P3 may lead to a better solution. However, adjusting P5 to P6 will generate a bad
solution, so it is necessary to restore P6 to P5. In the next evolution, P5 will try to adjust to
P4 with a certain probability.
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For a low-quality particle, the neighborhood adjustment of feature points cannot
change the bad state fundamentally, but random jump can bring the possibility of “reversal”.
Of course, it may also make the quality worse. In Figure 4, the selection of segment feature
point for a low-quality particle is P4 and P7. After evolution, P7 jumps to P5, which brings a
better solution. The subsequent evolution can adjust the feature points in the neighborhood,
such as the high-quality particle. The jump from P4 to P2 further worsens the quality, and
the particle will directly enter the next evolution to reflect the randomness and globality.

3.4. Satisfaction Judgment

If the number of segments of the trajectory is 1, i.e., there are no segment feature
points except the first and last two points of the trajectory, then the compression ratio
of the original trajectory is the best. On the contrary, the segmentation accuracy can be
improved by setting as many segmentation feature points as possible and retaining the
profile information of the original trajectory, but a certain data compression ratio will be
sacrificed. Therefore, we need to find a balance between the number of segments and the
accuracy of segmentation. When the satisfaction is reached, we judge that the trajectory
segmentation and compression is complete.
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Definition 5. Compression–accuracy contribution rate is the contribution to the trajectory seg-
mentation accuracy at the expense of a certain data compression rate, expressed as

CPCR =
δP(i + 1)− δP(i)
δC(i + 1)− δC(i)

, 1 ≤ i ≤ len− 2 (10)

where δP(i) is the segmentation accuracy of the trajectory divided into i segments, which is expressed
by the trajectory profile fitting degree, and δC(i) is the data compression ratio after the trajectory is
divided into i segments, i.e., the ratio of the number of compressed trajectory points to the number of
original trajectory points.

Therefore, the satisfaction decision function TSCSuccess can be expressed by the
compression–accuracy contribution rate, and the input of the function is the segmentation
accuracy and data compression rate of the compression trajectory. When the rate declines
continuously, it means that the improvement of segmentation accuracy by sacrificing
compression rate is not obvious, and segmentation can be terminated at this time. Users
can also set the threshold directly to control the segmentation and compression process
according to their own separate requirements for compression rate and segmentation
accuracy. When the compression rate or segmentation accuracy reaches the threshold, the
process will be stopped, and the satisfaction judgment can be customized.

4. Results and Discussion
4.1. Experimental Setting

We use two real trajectory data sets and one simulated trajectory data set of maneuver-
ing target to verify the effectiveness of the PSOTSC algorithm. The first real data set is the
Atlantic hurricane data set from the National Hurricane Center (NHC). It contains all the
hurricane movement data from 1851 to 2019. This paper uses all the trajectory data with
more than two sampling points, including 1861 trajectories and 51,807 sampling points.
The longest trajectory has 133 sampling points, and the average length is 27.8, as shown in
Figure 5.
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Another real data set is the Starkey ungulate telemetry data set. It contains radio-
telemetry locations of elk (Cervus elaphus), mule deer (Odocoileus hemionus) and cattle
collected at the Starkey Experimental Forest and Range in northeastern Oregon between
1993 and 1996. We randomly selected 67 targets in the data set, including 102,976 location
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data. Some trajectories are shown in Figure 6. If each target is represented by only one
trajectory, the number of points of the longest one is 4007.
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Figure 6. Ungulate data.

The maneuvering target simulation trajectory data set is based on the maneuvering
target tracking simulation model in Section 4.2 of [31], which generates 50 trajectories, each
with a length of 50. Figure 7 shows all the trajectories of the simulation data set and some
typical trajectories. It can be seen that the trajectories generated by the simulation reflect
stronger target motion changes and contain certain randomness, which are in line with the
motion characteristics of maneuvering targets in the battlefield.
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The PSOTSC algorithm in this paper and the compression algorithms such as DP,
TRACLUS and TCSS used for comparison were edited and implemented in MATLAB
R2016b. All experiments were carried out on Windows 7 operating system with Intel®

Core™ i5-7500, memory size 8 GB.

4.2. Results of Segmentation Accuracy
4.2.1. Real Trajectory Data

We use real data to test the segmentation and compression effect of this algorithm un-
der different numbers of particles and iterations. First, some representative long trajectories
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in the hurricane data set are segmented. It can be seen from Figure 8 that the segmented
trajectories keep the profile features of the original trajectories. By increasing the number of
particles from 20 to 50 and the number of iterations from 10 to 20, the segmentation effect
is obviously better.
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One hundred Monte-Carlo statistical experiments were carried out on the whole
hurricane data set to analyze the compression effect of the PSOTSC algorithm; the statistical
analysis results are shown in Table 1. Let the mean values of compression rate and accuracy
be m_CR and m_AY, respectively, and the standard deviation values be sd_CR and sd_AY.
When the segmentation accuracy is controlled at around 98.3%, the overall trajectory
compression rate increases with the increase in the number of particles or the number of
iterations, which means that the particle swarm optimization can find a better segmentation
and compression solution while maintaining the segmentation accuracy. It can be found
from the standard deviation results that the standard deviation gradually decreases with
the increase in the number of particles and iterations, which indicates that the stability of
the optimal search is also increasing.

Table 1. Performance with different parameter values in hurricane data set experiments.

Particles Iterations m_CR sd_CR m_AY sd_AY

5 5 23.1972% 0.0237% 98.3321% 0.0102%
10 5 22.5092% 0.0211% 98.354% 0.0069%
20 10 21.6146% 0.0182% 98.3918% 0.0062%
40 15 21.2099% 0.0171% 98.4182% 0.0047%
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For ungulate data set, the experiments of the PSOTSC algorithm were also carried out
to test the performance. Unlike the experiments for hurricane data set, which uses fixed
trajectory segmentation accuracy to find the change of trajectory data compression rate,
this time the compression rate is stable at a certain level, i.e., it retains the same number
of trajectory points, and finds the change of trajectory segmentation accuracy with the
numbers of particles and iterations. One hundred Monte-Carlo statistical experiments
were carried out on the whole data set, and the results are shown in Table 2. It can be
seen that whether the compression ratio is controlled to 20% or 30%, we can get better
trajectory segmentation accuracy with the expansion of particle swarm size and the increase
in iteration times. At the same time, we also note that for the ungulate data set, the
segmentation accuracy is generally lower than that of the hurricane data set. This is
because the trajectories in the ungulate data set have obvious polyline characteristics.
Intuitively, the points constituting these polylines should be trajectory feature points,
therefore the proportion of redundant data is lower than that of hurricane trajectories,
which can be seen from Figure 6.

Table 2. Performance with different parameter values in ungulate data set experiments.

Particles Iterations Compression Ratio m_AY sd_AY

5 5 20% 82.7117% 0.0431%
10 5 20% 83.1876% 0.0368%
20 10 20% 84.1799% 0.0249%
5 5 30% 86.6399% 0.0347%

10 5 30% 87.4521% 0.0254%
20 10 30% 88.6618% 0.0189%

The advantages of NARJ particle update strategy are verified, and the segmentation
accuracy of PSOTSC with NARJ is compared with that of standard PSOTSC with the same
number of segments (the same compression ratio), particles and iterations. One hundred
Monte-Carlo statistical experiments were carried out on typical trajectories in hurricane
and ungulate data sets. The number of particles and iterations is 20 and 10, respectively,
and the number of segment feature points increases. The average segmentation accuracy
comparison of the two methods under different number of segment feature points is
obtained, as shown in Figure 9. When the numbers of particles, iterations and reserved
trajectory feature points are the same, the PSOTSC algorithm using NARJ strategy can
obtain higher trajectory segmentation accuracy than the standard PSO algorithm. In other
words, the neighborhood adjustment and random jump make the particle swarm to search
the trajectory segmentation solution in a more reasonable mode.
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4.2.2. Maneuvering Target Simulation Data

The profile of hurricane trajectory is relatively simple, and the trajectory generated
by the maneuvering target tracking simulation model has more obvious motion changes,
including sharp turning, moving along the arc, etc. The segmentation and compression
experiments were carried out for typical maneuvering trajectories. As shown in Figure 10,
the segmented trajectory generated by PSOTSC can fit the original trajectory profile well.
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4.3. Results of Algorithm Comparison

Compared with DP, TRACLUS and TCSS typical segmentation and compression
algorithms, the advantage of the PSOTSC algorithm is verified on real trajectory data
set and maneuvering target simulation data set. The experimental results are shown
in Figure 11. In the experiment of real trajectory data set, the number of initialization
particles NP is 15 and the maximum number of iterations NI is 5. The DP algorithm needs
to adjust the distance threshold to obtain the optimal segmentation, and the threshold
sampling point in the experiment is dDP = [8, 6, 4, 3, 2, 1.5, 1, 0.7, 0.5, 0.3]. The segmentation
algorithm in TRACLUS will be affected by trajectory scaling, and different scaling ratios
will affect the segmentation accuracy. The scaling ratio in the experiment is rTRACLUS =
[1, 2, 3, 5, 10, 15, 20, 25, 30]. The segmentation accuracy of the TCSS algorithm is affected by
the angle threshold setting, and the angle threshold setting in the experiment is aTCSS =
[80, 70, 60, 50, 40, 30, 20, 15, 10]. In the experiment of maneuvering target simulation data
set, the parameters dDP, rTRACLUS and aTCSS still need to be adjusted.

As shown in Figure 11, the segmentation accuracy compression ratio curve obtained
by the PSOTSC method is at the bottom of all comparison method curves, which can
not only show that the PSOTSC method can achieve the lowest compression ratio under
the same segmentation accuracy level, but can also show that the PSOTSC method can
obtain the highest segmentation accuracy under the same compression ratio requirements.
Therefore, this method has advantages over typical methods in segmentation accuracy and
compression ratio.
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5. Conclusions

In this paper, we discussed the technical route of swarm intelligence algorithm to solve
the problem of trajectory segmentation and compression, and propose a PSOTSC algorithm
based on particle swarm optimization, which transforms the trajectory segmentation prob-
lem into the global optimization problem of segment feature points. The PSOTSC algorithm
makes the selection of feature points more accurate and improves the accuracy of trajectory
segmentation. Meanwhile, the particle update strategy based on NARJ is established,
which can effectively improve the search efficiency of trajectory segmentation solution.
Compared with the standard particle swarm optimization method, the trajectory segmenta-
tion accuracy is higher under the same compression rate. The effectiveness of the proposed
method is verified by real data set and simulation data set. The experimental results show
that the PSOTSC algorithm can obtain a satisfactory segmentation and compression solu-
tion, and the compression ratio and segmentation accuracy are better than those in typical
algorithms, such as DP, TRACLUS, and TCSS. Because the PSOTSC algorithm belongs to
the global-oriented segmentation and compression method, the computational complexity
will increase greatly when facing the long trajectory with more sampling points. In future,
we will focus on reducing the time complexity of the algorithm and consider the long
trajectory pre-segmentation, search by segment and synthesis optimization to expand the
applicability of the algorithm. The PSOTSC algorithm takes advantage of SI to obtain the
optimization solution through global search, but the problem inherent in the global search
algorithm is the large computation. An intuitive and easy solution is that long trajectories
can be divided into several short trajectories to search and optimize respectively and then
complete the aggregation and overall optimization, but there may be some better way to
deal with this issue. Therefore, the next research will focus on the long trajectory global
segmentation and compression based on SI methods.
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