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Abstract: Misappropriation of public lands is an ongoing government concern. In Brazil, the beach
zone is public property, but many private establishments use it for economic purposes, requiring
constant inspection. Among the undue targets, the individual mapping of straw beach umbrellas
(SBUs) attached to the sand is a great challenge due to their small size, high presence, and agglutinated
appearance. This study aims to automatically detect and count SBUs on public beaches using
high-resolution images and instance segmentation, obtaining pixel-wise semantic information and
individual object detection. This study is the first instance segmentation application on coastal areas
and the first using WorldView-3 (WV-3) images. We used the Mask-RCNN with some modifications:
(a) multispectral input for the WorldView3 imagery (eight channels), (b) improved the sliding
window algorithm for large image classification, and (c) comparison of different image resizing
ratios to improve small object detection since the SBUs are small objects (<322 pixels) even using
high-resolution images (31 cm). The accuracy analysis used standard COCO metrics considering the
original image and three scale ratios (2×, 4×, and 8× resolution increase). The average precision
(AP) results increased proportionally to the image resolution: 30.49% (original image), 48.24% (2×),
53.45% (4×), and 58.11% (8×). The 8× model presented 94% AP50, classifying nearly all SBUs
correctly. Moreover, the improved sliding window approach enables the classification of large areas
providing automatic counting and estimating the size of the objects, proving to be effective for
inspecting large coastal areas and providing insightful information for public managers. This remote
sensing application impacts the inspection cost, tribute, and environmental conditions.

Keywords: Mask-RCNN; multispectral; deep learning; object detection

1. Introduction

Public land management is essential for the effective use of natural resources with
implications for economic, social, and environmental issues [1]. Government policies
establish public areas in ecological, social, or safety-relevant regions (i.e., natural fields
and historic spaces), offering services ranging from natural protection to recreation [1,2].
However, managing public interests to promote social welfare over private goals is a
significant challenge. Especially in developing countries, recurrent misuse of public land [3],
and illegal invasions (i.e., the use of public lands for private interests) [4] are among the
most common problems.
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Coastal zone areas concentrate a large part of the world population, despite being
environmentally sensitive with intense natural processes (erosion, accretion, and natural
disasters) [5] and constant anthropic threats (marine litter, pollution, and inappropriate
use) [6,7]. The coastal zone is a priority for developing programs for continuous moni-
toring and misuse detection. In Brazil, coastal areas belong to the Federal Government,
considering the distance of 33 meters from the high-medium water line in 1831 (known
as “navy land”). Beaches and water bodies have guaranteed public access according to
the Brazilian Forest Code. Therefore, Brazilian legislation establishes measures for public
use, economic exploitation, environmental preservation, and recovery considering coastal
areas’ socio-environmental function. The inspection of beach areas in Brazil is a challenge,
as the Union’s Heritage Secretariat does not have complete and accurate information about
this illegal occupation throughout the country. The undue economic exploitation of the
urban beach strip leads to an increase in the number of illegal constructions, a reduction in
government revenue due to non-registration, environmental problems, visual pollution,
beach litter, among others. Many illegal installations in urban beaches are masonry con-
structions for private or commercial use. In addition, tourist infrastructure for food and
leisure extends several straw beach umbrellas (SBUs) (fixed in the sand by local traders)
to the sand strip without permission. Given the potential impact on the environment and
the local economy, the monitoring and enforcement to curb private business development
in public spaces must be constant and efficient [5], mainly to avoid uncontrolled tourism
development [8,9]. The inspection must ensure the legal requirements, avoid frequent
changes that lead to lawful gaps, and minimize differences arising from conflicts of interest.

Conventionally, the inspection process imposes a heavy burden on state and federal
agencies, containing few inspectors with low frequency on site. In this regard, geospatial
technologies and remote sensing techniques are valuable for public managers since they
enable monitoring changes in the landscapes and understanding different patterns and
behaviors. Thus, an excellent potential for remote sensing application by government
control agencies is detecting unauthorized constructions in urban areas [10,11]. Several
review articles address the use of remote sensing and geospatial technology in coastal
studies [12–16]. Currently, geospatial technology is a key factor for the development
and implementation of an integrated coastal management, allowing a spatial analysis for
studies of environmental vulnerability, landform change (erosion and accretion), disaster
management, protected areas, ecosystem, economic, and risk assessment [17–20].

However, few remote sensing studies focus on the detection of tourist infrastructure
objects on the beach for inspection. Beach inspection requires high-resolution images and
digital image processing algorithms that identify, count, and segment small objects of
interest, such as the SBUs. Among the remote sensing data, high-resolution orbital images
have the advantage of periodic availability and coverage of large areas at a moderate cost,
unlike aerial photographs and unmanned aircraft systems (UASs) of limited accessibility.
Typically, high-resolution satellite images acquire a panchromatic band (from 1 meter to
sub-metric resolutions) and multispectral bands (spectral bands of blue, green, red, and
near-infrared with spatial resolutions ranging from 1 to 4 m), such as IKONOS (Panchro-
matic: 1 m; Multispectral: 4 m), OrbView-3 (Panchromatic: 1 m; Multispectral: 4 m),
QuickBird (Panchromatic: 0.6 m; Multispectral: 2.4 m), GeoEye-1 (Panchromatic: 0.41 m;
Multispectral: 1.65 m), and Pleiades (Panchromatic: 0.5 m; Multispectral: 2 m). Unlike
the satellites mentioned above, the WorldView-2 (WV2) and WorldView-3 (WV3) images
present a differential for combining the panchromatic band (0.3 m resolution) with eight
multispectral bands (Resolution 1, 24 m): coastal (400–450 nm), blue (450–510 nm), green
(510–580 nm), yellow (585–625 nm), red (655–690 nm), red edge (705–745 nm), near-infrared
1 (NIR1) (770–895 nm), and near-infrared 2 (NIR2) (860–1040 nm). Therefore, WorldView-2
and WorldView-3 have additional spectral bands compared to other sensors (coastal, yel-
low, red edge, and NIR2), valuable for urban mapping [21]. Therefore, the conjunction of
the spectral and spatial properties of the WorldView-2 and WorldView-3 images is an ad-
vantage in the detailed classification process in complex urban environments. Few studies
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assess infrastructure detection on the beach. Llausàs et al. [22] conducted a study on private
swimming pools on the Catalan coast to estimate water use from WorldView-2 images and
Geographic Object-Based Image Analysis (GEOBIA). Papakonstantinou et al. [23] used
UAS images and GEOBIA to detect tourist structures in the coastal region of the Santorini
and Lesvos islands. Despite the wide use of the GEOBIA, deep learning (DL) segmentation
techniques demonstrate greater efficiency than GEOBIA in the following factors: (a) greater
precision and efficiency; (b) high ability to transfer knowledge to other environments and
different attributes of objects (light, color, size, shape, and background); (c) requires less
human supervision; and (d) less noise interference [24–27].

The DL methods promote a revolution in several fields of science, including visual
recognition [28], natural language processing [29,30], speech recognition [31,32], object
detection [33,34], medical image analysis [35–37], person identification [38–40], and drug
discovery [41–43] and genomics [44,45]. Like other fields of knowledge, DL achieves state-
of-the-art performance in remote sensing [46–48] with a significant increase in articles after
2014 [49]. In a short period, several review articles have reported about DL and sensing,
considering different applications [50,51], digital image processing methods [46,49,52–55],
types of images [56–60], and environmental studies [61]. DL algorithms use neural net-
works [62], a structure composed of weighted connections between neurons that iteratively
learn high and low-level features such as textures and shapes through gradient descent [63].
Moreover, convolutional neural networks (CNN) have great usability in image processing
because of their ability to process data in multi-dimensional arrays [64]. There are many
applications with CNN models, e.g., classification, object detection, semantic segmentation,
instance segmentation, among others [46]. The best method often depends on the problem
specification.

Nonetheless, instance segmentation and object detection networks enable a distinct
identification for elements belonging to the same class, suitable for multi-object identi-
fication and counting. A drawback when comparing instance segmentation and object
detection networks is real-time processing, in which instance segmentation usually presents
an inference speed lower than object detection. Nevertheless, instance segmentation models
bring more pixel-wise information, crucial to determining the exact object dimensions.

However, instance segmentation brings difficulties in its implementation. The first is
the annotation format, where most instance segmentation models use a specific annotation
format that is not straightforward from traditional annotations. The second is that most
algorithm uses conventional red, green, and blue (RGB) images, whereas remote sensing
images often present more spectral channels and varied dimensions. The third problem is
adjusting the training images to a specific size to train the models. To classify a large area
requires post-processing procedures. Object detection algorithms require only the bounding
box coordinates, which are much more straightforward than instance segmentation that
requires each object’s bounding boxes and polygons.

Another recurrent problem is the poor performance of DL algorithms on small ob-
jects since they present low resolutions and a noisy representation [65]. Common ob-
jects in context (COCO) [66] characterizes objects sizes within three categories: (a) small
objects (area < 322 pixels); (b) medium objects (322 < area < 962); and (c) large objects
(area > 962 pixels). The average precision (AP) score (main metric) has nearly half of the
performance on small objects within the COCO challenge than on medium and large
objects. According to a review article by Tong et al. [67], few studies focus on small object
detection, and despite the subject’s relevance, the current state is far from acceptable in
most scenarios and still underrepresented in the remote sensing field. In this regard, an
effective method is to increase the image dimensions. In this way, the small objects will
have more pixels, differentiating them from noise.

The present research aims to effectively identify, count, and estimate SBU areas using
multispectral WordView-3 (WV-3) imagery and instance segmentation to inspect and
control tourist infrastructure properly. Very few works use instance segmentation on
the remote sensing field, and none of those use WV-3 images or in beach areas. Thus,
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our contributions are threefold: (1) a novel application of instance segmentation using
multispectral WV-3 images on beach areas, (2) leverage the existing method for classifying
large areas using instance segmentation, and (3) analyze and compare the effect of the DL
image tiles and their metrics.

2. Materials and Methods

The methodology is subdivided into the following steps: (A) dataset; (B) instance
segmentation approach; (C) image mosaicking using sliding window; and (D) performance
metrics (Figure 1).

Figure 1. Methodological flowchart.

2.1. Dataset
2.1.1. Study Area

The study area was Praia do Futuro in Fortaleza, Ceará, Brazil, with intense tourist
activities (Figure 2). The research used WorldView-3 images from 17 September 2017 and
18 September 2018, provided by the European Space Agency (ESA) with a total length of
400 km2. The WorldView-3 images combine the acquisition of panchromatic (with 0.31 m
resolution) and multispectral (with 1.2 m resolution and eight spectral bands) bands. Thus,
we use the Gram–Schmidt pan-sharpening method [68] with nearest neighbor resampling
to maximize image resolution and preserve spectral values [69]. The pan-sharpening
technique aims to combine the multispectral images (with low spatial resolution and
narrow spectral band) with the panchromatic image (with high spatial resolution and wide
spectral band), extracting the best characteristics of both data and merging in a product
that favors the data interpretation [70]. The Gram–Schmidt technique presents high fidelity
in rendering spatial features, being a fast and straightforward method.
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Figure 2. Study area with a zoomed area from the WorldView-3 image.

2.1.2. Annotations

Annotations assign specific labels to the objects of interest, consisting of the ground
truth in model training. Instance segmentation programs use the COCO annotation format,
such as Detectron2 software [71] with the Mask-RCNN model [72]. Consequently, several
annotation tools have been proposed for traditional photographic images considering the
COCO format, such as LabelMe [73,74], Computer Vision Annotation Tool (CVAT) [75],
RectLabel (https://rectlabel.com, accessed on 5 October 2021), Labelbox (https:///labelbox.
com, accessed on 5 October 2021), and Visual Object Tagging Tool (VoTT) (https://github.
com/microsoft/VoTT, accessed on 5 October 2021). In remote sensing studies, an extensive
collection of annotation tools is present in Geographic Information Systems (GIS) with
several procedures to capture, store, edit and display georeferenced data. Therefore, an
alternative to taking advantage of all the technology developed for spatial data is to convert
the output data from the GIS program to COCO annotation format. In the present research,
we converted GIS data to the COCO annotation format [66] from the program developed
in the C++ language proposed by Carvalho et al. [76]. Thus, the SBUs’ ground truth
digitization used ArcGIS software. Since instance segmentation requires a unique identifier
(ID) for each object, each SBU had a different value (from 1 to N, with N being the total
number of SBUs).

2.1.3. Clipping Tiles and Scaling

Our research targets are very small (<162 pixels) and very crowded in most cases. A
powerful yet straightforward operation to improve small objects’ detection is to scale the in-
put image [67]. We evaluated the ratios of 2×, 4×, and 8× the original image. The cropped

https://rectlabel.com
https:///labelbox.com
https:///labelbox.com
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT
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tiles considered 64 × 64 pixels in the original image, which increased proportionally with
the different scaling ratios (128 × 128, 256 × 256, and 512 × 512, respectively).

2.1.4. Data Split

For supervised DL tasks, the usage of three sets is beneficial to evaluate the proposed
model. The training set usually presents most of the samples, which is where the algorithm
will understand the patterns. However, the training set alone is insufficient since the final
model may be overfitting or underfitting. In this regard, the validation set plays a crucial
role in keeping track of the model progress. A common approach is to save the model with
the best performance on the validation set. Nevertheless, this procedure also brings a bias.
With that said, the model is often preferable to be done using an independent test set. Thus,
we distributed the cropped tiles into training, validation, and test sets as listed in Table 1.
The number of instances shows a high object concentration, with an average of nearly ten
objects per 64 × 64 pixel image.

Table 1. Data split in the training validation and testing sets with their respective number of images
and instances.

Set Number of Images Number of Instances

Train 185 1780
Validation 40 631

Test 45 780

2.2. Instance Segmentation Approach
2.2.1. Mask-RCNN Architecture

Facebook Artificial Intelligence Research (FAIR) introduced the Mask-region-based
convolutional neural network (Mask-RCNN) as an extension of previous studies for object
detection architectures: RCNN [77], Fast-RCNN [78], and Faster-RCNN [79]. The Mask-
RCNN uses the Faster-RCNN as a basis with the addition of a segmentation branch that
performs a binary segmentation on each detected bounding box using a fully convolutional
network (FCN) [80] (Figure 3).
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The region-based algorithms present a backbone structure (e.g., ResNets [81], ResNeXts [82],
or other CNNs) followed by a region proposal network (RPN). However, the Mask-RCNN
has a region of interest (RoI) align mechanism, in contrast to the RoIPool. The benefit of
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this method is a better alignment of each RoI with the inputs that removes any quantization
problems on the RoI’s boundaries. Succinctly, the model aims to identify the bounding
boxes, classify the bounding box classes, and apply a pixel-wise mask on the bounding box
objects. The loss function considers the three elements, being the sum of the bounding box
loss (Lossbbox), mask loss (Lossmask), and classification loss (Lossclass), in which Lossmask
and Lossclass are log loss functions, and Lossbbox is the L1 loss.

Moreover, we use the Detectron2 [71] software, which uses the Pytorch framework.
Since this architecture is usually applied to traditional images (3 channels), it requires some
adjustments to be compatible with the WV-3 imagery (TIFF format and have more than
three channels) [76].

2.2.2. Model Configurations

To train the Mask-RCNN model, we made the necessary source code changes for
compatibility and applied z-score normalization based on the training set images. We only
used the ResNeXt-101-FPN (X-101-FPN) backbone since the objective is to analyze scaling.

Regarding hyperparameters, we applied: (a) Stochastic gradient descent (SGD) opti-
mizer with a learning rate of 0.001 (divided by ten after 500 iterations); (b) 256 ROIs per
image; (c) five thousand iterations; (d) different anchor box scales for the original image
(4, 8, 12, 16, 32), 2× scale image (8, 16, 24, 32, 64), 4× scale image (16, 32, 48, 64, 128),
and 8× scale image (32, 64, 48, 128, 256). To avoid overfitting, we applied the following
augmentations on the training images: (a) random horizontal flip, (b) random vertical flip,
(c) random rotation. Finally, we used Nvidia GeForce RTX 2080 TI GPU with 11GB memory
to process and train the model.

2.3. Image Mosaicking Using Sliding Windows

In remote sensing, the images often present interest areas much larger than the images
used in training, validation, and testing. This problem requires some post-processing
procedures. This process is not straightforward since the edges of the frames usually present
errors. In this context, the sliding window technique has been used to various semantic
segmentation problems [83–86], in which the authors establish a step value (usually less
than the frame size) and take the average from the overlapping pixels to attenuate the
border errors. The problem persists in object detection and instance segmentation since
predictions from adjacent frames would output distinct partial predictions for the same
object. Recently, de Carvalho et al. [76] proposed a mosaicking strategy for object detection
using a base classifier (Figure 4B), vertical edge classifier (Figure 4C), and horizontal edge
classifier (Figure 4E). Our research adapted the method by adding a double edge classifier
since some errors may persist (https://github.com/osmarluiz/Straw-Beach-Umbrella-
Detection, accessed on 5 October 2021).
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2.3.1. Base Classification

The first step is to apply a base classifier (BC) (considering all elements) using a sliding
window starting at x = 0 and y = 0, and stride values of 512 (Figure 5B). This procedure
produces partial classification on the frame’s edges between consecutive frames, resulting
in more than one imperfect classification for the same object, which is a misleading result.
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2.3.2. Single Edge Classification

The second step is to classify objects located in the borders (partially classified ob-
jects by the BC). We applied the vertical edge classifier (VEC) to classify elements in
consecutive frames vertical-wise, composed of a sliding window that starts at x = 256
and y = 0 (Figure 5C). Similarly, to horizontal-wise consecutive frames, we applied
the horizontal edge classifier (HEC), with a sliding window that starts at x = 0 and
y = 256 (Figure 5D). Both strategies use 512-pixel strides. In addition, to avoid the high
computational cost, the VEC and HED only classify objects that start before the center of
the image (x < 256 for the VEC and y < 256 for the HEC) and end after the image’s center
(x > 256 for the VEC and y > 256 for the HEC).

2.3.3. Double Edge Classifier

An additional problem for crowded object areas such as SBUs are objects located at
the BC borders horizontal-wise and vertical-wise, presenting a double edge error (DEC).
Thus, we enhanced the mosaicking by applying a new sliding window, starting at x = 256
and y = 256 with 512-pixel strides (Figure 5E).

2.3.4. Non-Maximum Suppression Sorted by Area

Furthermore, each object located at the images’ borders may present more than
one classification for the same object, partial classifications from consecutive BC frames
(incorrect classifications), and a unique, complete classification (correct classification) from
the HEC, VEC, or DEC (Figure 5). The elimination of excessive boxes used the non-
maximum suppression ordered by area, guaranteeing only the classification of the most
significant element (complete object). Figure 5 shows an example of an element located at
double edges, where the DEC classification is the largest and the correct one.

2.4. Performance Metrics

The model evaluation considered the following COCO metrics [66]: average precision
(AP), AP50, and AP75. The AP is a ranking metric that calculates the area under the
precision-recall curve. However, in object detection, it is crucial to determine a minimum
overlap between the predicted bounding box and the ground truth bounding box to
evaluate a correct classification. Thus, another element is the intersection over union
(IoU) (Figure 6).
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In this regard, the COCO AP considers the average among ten intersection over union
(IoU) thresholds (from 0.5 to 0.95 with 0.05 steps), while AP50 and AP75 scores consider a
fixed threshold of 0.5 and 0.75.

3. Results
3.1. Performance Metrics

Table 2 lists the detection (Box) and segmentation (Mask) results with different image
scaling ratios and the X-101-FPN backbone. Results on the original image presented similar
results compared to the COCO dataset scores. Moreover, scaling presented significant
improvement, in which 2× scaling increased nearly 20% in the AP score, and 8× scaling
increased nearly 30% AP.

Table 2. COCO metrics (AP, AP50, and AP75) for segmentation (mask) and detection (box) on the
different ratio images.

Ratio (Size) Type AP AP50 AP75

8× (512 × 512) Box 58.12 94.56 66.06
Mask 56.76 93.73 63.86

4× (256 × 256) Box 53.45 93.01 60.76
Mask 52.89 92.21 58.87

2× (128 × 128) Box 48.24 89.66 46.54
Mask 49.09 90.24 49.84

1× (64 × 64) Box 30.49 74.68 15.68
Mask 36.69 77.42 27.50

Small objects negatively affect the strictest metrics (highest IoU, e.g., AP75). Slight
errors in the bounding box position on small objects (with fewer pixels) significantly reduce
the IoU (implying low AP scores). In turn, the mistakes are much less impactful when
increasing the image dimensions. However, a limitation to the indefinite increase in the
image dimensions is the high computational cost.

3.2. Scene Classification

We used the X-101-FPN model with the best scaling ratio (8×) scores, applying it in
a 3072 × 2048 pixel image (also using 8× scaling) to validate the mosaicking technique.
Figure 7A demonstrates a satisfactory classification even in crowded areas. This process
excluded 66 partial classifications in total (Figure 7B), and the trained model has proven to
distinguish SBUs from other elements such as tourist beach umbrellas.

Figure 8 shows three zoomed areas (1, 2, and 3) where the top images present the
complete (correct) classification results, whereas the bottom images show the partial
(incorrect) classifications deleted by the non-max suppression sorted by area algorithm.
Figure 8A–C shows the DEC, VEC, and HEC, respectively. Another interesting point is
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that example 3.2 shows that one of the partial predictions has greater confidence than the
correct prediction (97% against 96%), demonstrating that the non-maximum suppression
ordered by area brings improved results.

Figure 7. Classifications considering the correct classifications (A) and the deleted partial classifica-
tions from each object (B).

Figure 8. Representation of the three distinct classification scenarios, considering the (A) dou-
ble edge classification (DEC), (B) vertical edge classification (VEC), and (C) horizontal edge
classification (HEC).
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Table 3 lists quantitative values that may be very helpful in decision making. This
methodology enables automatic counting and detection within large areas using Mask-
RCNN. The sizes of the SBUs are very similar, with the average and median sizes very close
and a standard deviation of 0.2 m2. In addition, the algorithm was able to differentiate very
close objects, showing a good usage of instance segmentation models for crowded regions.

Table 3. Analysis of the detected objects regarding their counting, average size, median size, mini-
mum size, maximum size, and standard deviation, considering the 8× scaled image.

Description Result

Count 148 SBUs
Average SBU size 4172 pixels (5.8 m2)
Median SBU size 4027 pixels (5.6 m2)

SBU Standard Deviation 161.60 pixels (0.2 m2)
Minimum SBU Size 2693 pixels (3.8 m2)
Maximum SBU Size 7278 pixels (10.2 m2)

Average SBU size 4172 pixels (5.8 m2)
Median SBU size 4027 pixels (5.6 m2)

4. Discussion

Instance segmentation is a state-of-the-art computer vision segmentation method that
enables many practical approaches for identifying objects at the pixel level. Most instance
segmentation studies use large datasets (e.g., COCO [66], Cityscapes [87], or Mapillary Vis-
tas [88]) in a ready-to-use format. Developing datasets for instance segmentation is highly
complex and labor intensive, requiring annotation experts and a suitable storage format
for DL models. Difficulties worsen for orbital remote sensing images by the need to choose
the places of each image tile and the existence of very little annotation software available
that considers geospatial data’s particularities. With that said, in in a Web of Science search
up to November 11, considering the keywords “instance segmentation”, “remote sensing”,
and “deep learning”, we found only 22 peer-reviewed journal articles. Despite the gains in
efficiency and quality of results, the limited number of papers using instance segmentation
demonstrates the difficulties reported. The present research demonstrates that instance
segmentation allows a significant gain in inspection efficiency in coastal areas that have not
yet been explored. Within these 22 articles, Soloy et al. [89] also explored the beach areas,
but with a different approach, as the authors used photos taken by the iPhone to quantify
grain size on pebble beaches.

4.1. Multichannel Instance Segmentation Studies

Few studies addressed instance segmentation using multi-channel imagery. Most
studies use RGB images [90–92] or even three-channel images from the combination of
digital orthophoto map and near-infrared band from the Landsat-8 [93]. The usage of
multi-channels in remote sensing is widespread, allowing for more efficient detection
than traditional RGB images (e.g., camera photos). Basically, there are four scenarios in
remote sensing for using multi-channel inputs: (1) sensors with many spectral bands,
(2) time series, (3) change detection, and (4) a combination between these characteristics
(e.g., a time series of multispectral images). Using multispectral imagery, de Carvalho
et al. [76] made a study on center pivot irrigation systems using Landsat-8 images. The au-
thors compared the usage of seven channels with the traditional RGB, showing a difference
of 3% in the AP metric when using more channels. Hao et al. [94] used a multiband input
for the Mask-RCNN for identifying tree-crowns and estimating their height. Concerning
time series applications, de Albuquerque et al. [95] used Sentinel-1 time series (up to eleven
channels) for mapping center pivots. The authors reported an increased performance when
including more time frames. In a different approach, de Albuquerque et al. [27] used
Sentinel-2 time series (up to 24 channels), considering four spectral bands per temporal
frame for effectively mapping regions with a cloud presence.
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4.2. Methods for Large Area Classification

A significant problem is that a DL adaptation for remote sensing applications uses
large-size images. In this regard, the present research used mosaicking with sliding
windows for object detection/instance segmentation. This procedure is more common in
semantic segmentation approaches using overlapping pixels [84–86,96]. The method uses
a sliding window with a step size smaller than the frame dimensions, causing overlapping.
Averaging the overlapping areas mitigates errors, providing better accuracy metrics and
visual results. However, for instance segmentation models, the procedure must consider the
bounding boxes. In this sense, we modified the method proposed by de Carvalho et al. [76],
introducing the double edge classifier (DEC) that is more efficient in extremely crowded
areas, such as the SBUs. The methodology effectively eliminates frame discontinuity
problems by considering the prediction under the best circumstance, providing a viable
solution for mapping large areas.

The capability to apply an instance segmentation algorithm over a large area enables
a thorough scene understanding, which is vital for public inspection. For example, our
study allows automatic counting of all SBUs and a series of other statistics, such as average
size, median size, and standard deviation of the sizes, among others. These quantitative
results increase the amount of information for public managers to act. In addition, it is
possible to extract the exact location of each element just by getting the coordinates of each
bounding box.

4.3. Small Object Problem

Small objects often underperform in many datasets. For example, in the COCO dataset,
the APsmall metric is much lower than the APmedium and APlarge metrics. This effect is
related to increasing noise with decreasing object size. In the review of Tong et al. [67], im-
age scaling is a straightforward approach to improve small object detection. Nevertheless,
no study compares the effect of different scaling and improved object detection. In this
regard, this research compares three scaling ratios for mapping SBUs, which are very small
objects. This comparison can guide other studies further studies of small object detection
in other scenarios. Our results show that image scaling (even as an image augmentation
built-in method) may be a plausible and effective solution. The AP metrics increased more
than 20%, considering eight times the original size. Even so, doubling the dimensions
already provided a significant increase. This analysis is relevant since increasing the image
dimensions might present computational problems (e.g., memory, and processing time).

Some other alternatives have been studied for detecting small objects. Zhang et al. [97]
proposed a scale adaptive proposal network by modifying the Faster-RCNN architecture.
This innovative approach has broad applications where there are datasets of many different
sizes. Nonetheless, considering different scales might not be enough for very small objects,
especially for AP scores, where few mistakes in the bounding box drastically reduce this
accuracy metric. Generative adversarial networks (GAN) algorithms also present advances
in studies with small objects [65]. In remote sensing, Ren et al. [98] proposed an advanced
end-to-end GAN to increase image resolution and apply the Faster-RCNN network in object
detection. Therefore, a viable alternative for future studies would be the development of
algorithms using GAN for surveillance in coastal areas. In the traditional RGB images from
the COCO data set, Kisantal et al. [99] made an augmentation system based on copying
and pasting small objects into different images to increase the representativeness of a
small object in a larger number of images. This augmentation is a promising strategy for
datasets with different scaled images. However, it can be computationally expensive in
multichannel imaging and in detecting many small objects.

4.4. Accuracy Metric Analysis for Small Objects

Even though there is broad applicability of the COCO metrics for instance segmenta-
tion datasets (including the COCO dataset), the AP50 is the most appropriate metric for
analyzing small objects (especially in datasets in which all objects are small) since very
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few mistakes drop the performance metrics significantly. Figure 9 shows two theoretical
examples A and B, in which the prediction and the ground truth bounding boxes have the
exact spatial dimensions.

Figure 9. Theoretical examples of predictions on (A) small and (B) large objects, and their corre-
sponding IoU in different overlapping scenarios.

When considering small objects, a slight mistake of one pixel horizontally and ver-
tically has an IoU of 69.25%, impacting the AP and AP75 metric. A one-pixel error in a
100 × 100-pixel bounding box generates a 96.10% IoU, showing the attenuation of slight
errors in larger objects. This research shows that the simple increase in object dimensions
allows the algorithm to have a better accuracy score. Therefore, generating ground truth
data, especially for small objects, must be done rigorously to avoid misleading metrics.

4.5. Policy Implications

The Brazilian Government is responsible for the administration and inspection of
federal properties. According to Normative Instruction No. 23, of 18 March 2020, the
inspection action may have a preventive or coercive nature, requiring a field inspector to
investigate possible irregularities committed against federal properties. The inspection
action is predominantly coercive through denunciation, when the improper action is
consolidated, leaving only the repair of the damage. The lack of preventive action causes
an increase in unlawful acts and the filing of numerous lawsuits, with deprivation of use of
areas and legal uncertainty.

In Brazil, beach areas are public properties protected by environmental legislation
(CONAMA resolution No. 303 of 20 March 2002) as permanent preservation areas and
consist of Navy land, where private occupation (private, commercial, or industrial) requires
payment of a fee for the use of the public area. Beach areas are constant targets of economic
exploitation and improper tourism and need constant surveillance. In this context, the
development of remote and semi-automated methods of surveillance of property misuse
becomes fundamental.

Therefore, the instance segmentation of multispectral remote sensing images demon-
strates a high potential to establish an effective action with a solid preventive impact due
to the rapid infraction detection. However, the procedure should be improved, including
other activities without prior authorization in coastal areas such as landfills, deforestation,
construction, fences, or other improvements, which could be developed in future lines
of research.
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5. Conclusions

The automatic remote sensing detection of tourist infrastructure in beach areas is es-
sential for government surveillance, requiring quick and periodic information for decision
making. The coastal regions of Brazil are government property, being areas with specific
taxation for use and environmental protection. This study proposed a methodology based
on instance segmentation to identify straw beach umbrellas (SBUs), the most common
tourist structure on Brazilian beaches. The developed method integrates different solutions
for the use of instance segmentation in remote sensing data: (1) multi-channel models,
(2) small object detection, and (3) classification of large areas. Therefore, we modified
Detectron2’s Mask-RCNN model to account for multi-channel image inputs in TIFF format,
compared different scaling ratios on the original image, and improved the existing method
for classifying large images using the sliding window technique. Our results show that
increasing image dimensions significantly improve the AP metric from 30% to 58%. In
addition, the less strict metric (AP50) showed results from 74% to 94%. Image scaling
is a computationally expensive solution, so we initially considered the original image
dimensions of 64 × 64 pixels. In addition, even though we evaluated up to eight times the
original dimensions (resulting in a 512 × 512 image), a two-times resizing already provides
a significant increase. Thus, the research needs to define a trade-off in computational cost
and in the quality of predictions.

Another problem is the accumulation of errors on the frame edges, which intensify
with overcrowded objects. Our innovative proposal to use double edge classification (DEG)
solved the problem simply and efficiently. The architecture of all exposed methods is a
suitable solution for accurately detecting small objects in large areas using multispectral
data, providing insightful information for public managers. For example, statistical analysis
of the SBUs on a 3072 × 2048 test image identified 148 objects with an average size of 5.8 m2.
The bounding box centroid established the exact geographic location. Future studies in
this area will consider more beach elements, exploring objects and background elements,
and other segmentation tasks such as panoptic segmentation.
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