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Abstract: Land surface temperature (LST) is an essential parameter in the climate system whose
dynamics indicate climate change. This study aimed to assess the impact of multitemporal land
use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province,
China. The research methodology consisted of four main components: Landsat data collection
and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and
impact of multitemporal LULC change on LST. The results revealed that urban and built-up land
continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change
on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban
areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile,
according to decomposition analysis, regarding the influence of LULC change on LST, the urban
and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be
reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land
surface temperature.

Keywords: multitemporal land use and land cover classification; land surface temperature; single-
channel; harmonic analysis; Landsat; Hefei City; China

1. Introduction

Land surface temperature (LST) is an essential parameter in the climate system, and
its dynamics can be used to indicate climate change [1–8]. Generally, LST is regularly
measured from a thermal infrared (TIR) band of satellite sensors, such as Landsat (moder-
ately spatial resolution) and MODIS (high temporal resolution). Additionally, the derived
LST data from the TIR bands of a satellite are crucial to understanding the impacts of
urbanization on account of land use and land cover (LULC) change [9]. LST is a quantity
concerning the surface of the Earth, which is highly variable in space and time. The tempo-
ral variability mainly comes from the annual and daily cyclical changes in solar radiation
and is further affected by weather conditions, while the spatial variability is impacted by
surface characteristics, such as albedo, emissivity, soil moisture, and topography [10–15].

Moreover, the estimated satellite LST, as primary input data, has been applied to
determine the near-ground air temperature in various studies, such as urban heat island
mapping and its intensity analysis due to urbanization [16–34].

Nevertheless, all the mentioned LST-related research only focuses on the analysis of a
single satellite scene. Many researchers can choose only one satellite scene from one year
to estimate LST data due to cloud coverage. The interference of clouds is a critical issue
in satellite derived LST data. Xu and Shen [35] stated that LST cannot be retrieved from
remote sensing images that are covered by clouds, and the lack of LST information caused
by cloud coverage limits the application of remote sensing LST data.
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Moreover, the temporal analysis of the thermal landscape needs to consider the
thermal characteristics that change over time. Non-stationary modeling of the temporal
thermal landscape can be avoided by dividing time-series observations into different
segments corresponding to different LULC types [9]. Therefore, it is valuable and necessary
to use the time-series LST dataset to reveal the urban thermal dynamics resulting from land
cover transformation [36]. Unfortunately, time-series LST datasets at a medium spatial
resolution, i.e., Landsat, with regular temporal frequency, are not readily available for
public service.

Many studies have been conducted to reconstruct time-series LST data from satellite
sensors with various approaches to minimize the effect of cloud cover in recent years.
Nonetheless, most of the studies focused on low spatial and high temporal resolutions.
For example, Neteler [37] reconstructed daily MODIS LST data in the central–eastern
area of the Alps based on the temperature gradient using all available daily LST data
during 2000 and 2008. Ke et al. [38] used the regression kriging method to reconstruct the
1462 eight-day MODIS LST data in the central Qinghai–Tibet Plateau. Xu and Shen [35]
applied the harmonic analysis (HA) algorithm to remove cloud-affected observations
and reconstructed 8-day LST for MODIS LST data in 2005 over the Yangtze River Delta
region in China. Kang et al. [39] reconstructed daily MODIS LST data in 2014 based on
the spatiotemporal autocorrelation of land surface variables for the Babao River Basin of
the Tibetan Plateau in Northwestern China. Therefore, the HA model has become one of
the most widely used models to fit time-series data, because it can identify and remove
contaminated pixels [8,40] and simulate time-series curves through temporal dimensional
interpolation with fewer available input data [41]; thus, it is here proposed to reconstruct
time-series Landsat LST data.

In this study, the reconstruction of time-series LST with multitemporal LULC datasets
will be developed to correct the existing error of LST due to contaminated pixels and
overestimated LST values under the MATLAB environment. In practice, a spatiotemporal
indicator cube (correct and incorrect pixels) will be constructed using a reshape function
by converting space to time in order to indicate which pixel’s LST values need to be
correct. Then, the incorrect LST values are replaced with new LST values using the HA
model, whereas the correct LST values remain; thereby, a time-series LST dataset can be
reconstructed using a reshape function by converting time to space. Using spatial and
decomposition analyses, the derived time-series LST data will be further applied to examine
the impact of LULC change on LST in Hefei City due to rapid urbanization between 2001
and 2020. In the study, all available Landsat 5/7/8 scenes over the city in this period
were downloaded to classify LULC dataset using harmonic analysis with a minimum
spectral distance algorithm [42], estimate time-series LST using the single-channel method,
reconstruct time-series LST using a harmonic analysis model, and examine the impact of
LULC change on LST.

The objectives of this study were (1) to classify multitemporal LULC maps using
harmonic analysis with a minimum spectral distance algorithm, (2) to estimate time-series
LST data using a single-channel algorithm, (3) to reconstruct time-series LST data using a
harmonic analysis model, and (4) to examine the impact of LULC change on LST using
spatial analysis and decomposition analysis. Ultimately, the adopted and developed
methods were applied to classify LULC datasets in 2001, 2006, 2014, and 2020, and to assess
the status and changes that directly impact the land surface temperature in the spatial and
time domain in Hefei City, Anhui Province, China.

2. Materials and Methods
2.1. Study Area

Hefei City is the capital city of Anhui Province, China, and the largest city of this
province as well, comprising four urban districts (Shushan, Luyang, Yaohai, and Baohe),
one county-level city (Chaohu), and four counties (Changfeng, Feidong, Feixi, and Lujiang).
Hefei City covers an area of 11,465 km2 and is situated between 116◦30′–118◦00′ E and



ISPRS Int. J. Geo-Inf. 2021, 10, 809 3 of 32

30◦30′–33◦00′ N. Hefei has a north subtropical monsoon climate with four distinct seasons.
Its winter and summer are long, but spring and autumn are shorter. The winter is cold
and dry, the summer is hot, while the spring and autumn are wet and warm. It is situated
between the Yangtze River and the Huai River and is dominated by plains and hills. The
city’s altitude is mostly between 15 and 80 meters, with the highest altitude of 595 meters.
The terrain of the main urban area slopes from the northwest to the southeast. Chaohu
Lake, one of China’s five largest freshwater lakes, is 55 kilometers long from east to west
and 21 kilometers wide from north to south. It has a water area of approximately 770 km2

and is situated southeast of the study area (Figure 1). In addition, in Figure 1, Point_U,
Point_A, Point_F, and Point_W are four points taken from the old town, rice fields, forest
parks and Chaohu Lake, representing the four LULC types of urban and built-up land,
agricultural land, forest land and water bodies, respectively. Moreover, the LULC types at
these four points have not changed during 2001–2020. Furthermore, Point_AU is taken
from Hefei Xinqiao International Airport, in the northwest of Hefei City, and its LULC type
has changed from agricultural land to urban and built-up land around 2010.

Figure 1. Location map of the study area.

Meanwhile, the rapid social and economic development of Hefei City has driven
the expansion of the city, led to the transformation of natural land cover and changes in
the biophysical environment, and changed the surface energy process [43]. According
to reports released by the Statistics Bureau of Anhui Province [44] in 2020, the urban
population of Hefei City increased from 1.38 million persons in 2001 to 2.91 million persons
in 2019, and this phenomenon led to LULC change in the city: built-up areas increased from
125 km2 in 2001 to 481 km2 in 2019 (Table 1). These statistics indicate the rapid urbanization
of Hefei City between 2001 and 2019. As a result, the scope of selection data in this study
is focused on this period. Therefore, available time-series Landsat datasets between 2001
and 2020 were collected to assess the impact of multitemporal LULC change on LST due to
urbanization in Hefei City.
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Table 1. Urban population and built-up areas of urban districts of Hefei City from 2001 to 2019 *.

Year Urban Population (Million) Built-Up Areas (km2)

2001 1.38 125
2002 1.47 148
2003 1.56 148
2004 1.64 148
2005 1.75 225
2006 1.93 225
2007 1.98 225
2008 2.03 280
2009 2.09 280
2010 2.16 326
2011 2.18 360
2012 2.22 378
2013 2.41 393
2014 2.45 403
2015 2.51 416
2016 2.59 460
2017 2.70 461
2018 2.81 466
2019 2.91 481

* The statistics data from Statistics Bureau of Anhui Province only include four urban districts.

2.2. Datasets

Due to the limitation of cloud cover, the available Landsat images with cloud cover of
less than 90% were used in this study [45]. Therefore, a series of a total of 552 scenes (Level-1
products, path 121/row 38) between 1 January 2001 and 31 December 2020 were down-
loaded via the USGS website (https://earthexplorer.usgs.gov/) (accessed on 25 February
2021). Among them, 145 images were from Landsat 5, 289 images were from Landsat 7,
and 118 images were from Landsat 8, and the distribution of these images is shown in
Figure 2.

Figure 2. The distribution of available Landsat 5, 7, and 8 imageries from January 2001 to
December 2020.

The MODIS water vapor data (MOD05_L2 collection 6.1 products) of MODIS/Terra
with the same date as a selection of Landsat data were downloaded from the LAADS DAAC
website (https://ladsweb.modaps.eosdis.nasa.gov/) (accessed on 25 February 2021).

2.3. Research Methodology

The research methodology comprised four components: (1) Landsat data collection
and preparation, (2) multitemporal LULC classification, (3) time-series LST dataset recon-

https://earthexplorer.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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struction and verification, and (4) impact of multitemporal LULC change on LST. The
workflow and connections between each component are presented in Figure 3.

Figure 3. Workflow and connections of research methodology components.

2.3.1. Landsat data collection and preparation

All downloaded time-series Landsat datasets between 2001 and 2020, with 552 scenes,
were prepared in four separate steps according to four significant processes of this com-
ponent: contaminated pixel recognition, contaminated pixel assessment, TOA spectral
reflectance conversion, and time-series LST conversion and water vapor content depth
extraction. The details of each step are described in the following sections.

(1) Contaminated pixel recognition

Each pixel in the quality assessment (QA) band of Landsat 5, 7, and 8 products
comprises information associated with the terrain, radiometric saturation, cloud, and
cloud shadow. In this step, Landsat QA tools [46] with per-pixel filtering techniques were
applied to identify the coverage of contaminated pixels. The percentage of coverage of
contaminated pixels was calculated based on the number of contaminated pixels of each
scene and the number of pixels in the study area (Hefei City). If the contaminated pixel’s
coverage of an image in the study area was greater than 50%, it was removed prior to
data analysis.

(2) Contaminated pixel assessment

In this step, the percentage of the total clearly observed pixels (non-contaminated
pixels) and the percentage of total images by percentage of contaminated pixels were first
extracted to reduce the number of scenes and costs, and the higher percentage of the clearly
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observed total pixels was used for the data analysis. Then, the percentage of total images
and total clearly observed pixels, according to 10 interval classes (≤10, ≤20, . . . , ≤100), of
the percentage of contaminated pixels (%), was calculated using Equations (1) and (2):

Pimage,i =
Nimage,i

N
∗ 100% (1)

Ppixel,i =
∑

j
0 Nj ∗ (1− j) ∗M

N ∗M
∗ 100% (2)

where Pimage,i, Ppixel,i, and Nimage,i are the percentage of total images, percentage of total
clearly observed pixels, and number of images, respectively, where i is the percentage
of contaminated pixels (≤10%, ≤20%, . . . ≤100%), and N is the number of total images
(N = 552 in this study). j is the percentage of contaminated pixels (%), Nj is the number of
images when the percentage of contaminated pixels (%) is j, and M is the number of pixels
in the image.

(3) TOA spectral reflectance conversion

Radiometric correction (e.g., sensor calibration, atmospheric correction, terrain correc-
tion, and relative radiation normalization) is essential to guarantee the homogeneity of the
time-series data for change detection [47]. The Landsat Ecosystem Interference Adaptive
Processing System (LEDAPS) and the Landsat 8 Surface Reflection Code (LaSRC) are used
to convert Landsat TM/ETM and OLI level-1 data to surface reflectance Landsat Surface
Reflectance Higher-Level Data Products [48,49].

The TOA spectral reflectance was converted from Landsat Level-1 products using
Equation (3) as suggested by USGS [48,49].

ρλ′ = Mρ ∗Qcal + Aρ (3)

where ρλ′ is the TOA spectral reflectance, Qcal is the digital number value, and Mρ and Aρ

are the reflectance multiplicative scaling factor and additive scaling factor, respectively.

(4) Time-series LST conversion and water vapor content depth extraction

For time-series LST conversion, the single-channel (SC) algorithm that was developed
by [50,51] was applied to calculate LST using Equations (4) to (6).

Ts = γ

[
1
ε
(ϕ1Lsen + ϕ2) + ϕ3

]
+ δ (4)

γ ≈ T2
sen

bγLsen
(5)

δ ≈ Tsen −
T2

sen
bγ

(6)

where Ts is the land surface temperature, ε is the surface emissivity, γ and δ are two
parameters, and Tsen is the at-sensor brightness temperature (BT); bγ are 1256 K, 1277 K,
and 1324 K for Landsat 5 band 6, Landsat 7 band 6, and Landsat 8 band 10, respectively,
and ϕ1, ϕ2, and ϕ3 are the atmospheric functions.

The practical approach proposed in the SC method includes the approximation of the
atmospheric functions defined in Equation (7) versus the atmospheric water vapor content
from a second-order polynomial fit, expressed in matrix notation as follows: ϕ1

ϕ2
ϕ3

 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 w2

w
1

 (7)
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where the coefficients cij are obtained by simulation, w is the atmospheric water vapor
content.

In practice, the atmospheric functions ϕ1, ϕ2, and ϕ3 for band 6 of Landsat 5/7 and
band 10 of Landsat 8 can be obtained from Equations (8) and (9) suggested by [50,51]. ϕ1

ϕ2
ϕ3

 =

 0.14714 −0.15583 1.1234
−1.1836 −0.37607 −0.52894
0.04554 1.8719 −0.39071

 w2

w
1

 (8)

 ϕ1
ϕ2
ϕ3

 =

 0.04019 0.02916 1.01523
−0.38333 −1.50294 0.20324
0.00918 1.36072 −0.27514

 w2

w
1

 (9)

Meanwhile, the required BT for LST calculation was calculated in two steps: convert-
ing digital numbers of the TIR band to spectral radiance using Equation (10) and converting
spectral radiance to BT using Equation (11).

Lλ = ML ∗Qcal + AL (10)

BT = K2/ ln(K1/Lλ + 1) (11)

where Lλ is the spectral radiance (W/ (m2·sr·µm)), Qcal is the digital number value, and
ML and Aλ are the radiance multiplicative scaling factor and additive scaling factor,
respectively. BT is the brightness temperature in Kelvin (K); K1, and K2 are the thermal
conversion constants.

For emissivity extraction, since the emissivity changes with the wavelength, the
normalized difference vegetation index (NDVI) threshold method developed by [52] is
widely used for emissivity calculation. Here, the NDVI threshold method is improved by
introducing the normalized difference water index (NDWI) to quickly identify the water
bodies and produce a uniform emissivity value because the emissivity of water bodies
is quite stable in comparison with non-water bodies. Finally, Equations (12) and (13) are
applied to calculate the emissivity of different land surfaces.

ελ =


εwλ

εsλ

εvλ·Pv + εsλ·(1− Pv) + Cλ

εvλ·Pv + Cλ

NDWI > 0
NDWI ≤ 0 and 0 < NDVI < NDVIs

NDWI ≤ 0 and NDVIs ≤ NDVI ≤ NDVIv
NDWI ≤ 0 and NDVI > NDVIv

(12)

Cλ = (1− εsλ)·εvλ × F′·(1− Pv) (13)

where ελ is the band emissivity, εvλ, εsλ, and εwλ are the emissivity of vegetation, soil, and
water bodies, respectively, Pv is the proportion of vegetation, Cλ is a coefficient related to
surface roughness (C = 0 for a flat surface), NDVIv and NDVIs are the NDVI for a fully
vegetated pixel and a fully soil pixel, respectively, and F′ is a geometrical factor ranging
between zero and one, F′ = 0.5 is generally chosen, as suggested by [52].

The proportion of vegetation was estimated as follows [53]:

Pv =

(
NDVI − NDVIs

NDVIv − NDVIs

)2
(14)

In this study, the values of NDVIv and NDVIs are 0.5 and 0.2, respectively, as sug-
gested by [52].
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The average emissivity of representative materials was calculated based on the spectral
response function of the thermal infrared (TIR) band of Landsat using the ASTER spectral
database [54] with Equation (15), suggested by [55], as shown in Table 2.

X =

∫ λ2
λ1

f (λ)X(λ)dλ∫ λ2
λ1

f (λ)dλ
(15)

where X is the average emissivity in the thermal infrared band of Landsat, X(λ) is various
spectral quantities considered as emissivity, λ1 and λ2 are the lower and upper boundaries
of the wavelength in the TIR band of Landsat, and f (λ) is the spectral response function.

Table 2. The emissivity of representative materials in Landsat TIR bands.

TIR Bands
Wavelength

(µm)

Emissivity

Water Bodies Soil Vegetation

Band 6 of Landsat 5 10.40–12.50 0.9887 0.9724 0.9834
Band 6 of Landsat 7 10.40–12.50 0.9892 0.9712 0.9828

Band 10 of Landsat 10 10.60–11.19 0.9908 0.9695 0.9817

The water vapor content is an essential parameter for LST conversion using the SC
algorithm since Landsat itself does not have a band that can detect water vapor content
depth; as an alternative, the MODIS water vapor data was used in this study because the
time of MODIS/Terra obtaining the data during the day is very close to the time when
Landsat acquires the data. The digital number values were divided by the scaling factor
(1000) to extract the vertical column of water vapor content depth in cm [56].

2.3.2. Multitemporal LULC Classification

Multitemporal LULC datasets, which included urban and built-up land (U), agricul-
tural land (A), forest land (F), and water bodies (W), were classified using the method
developed by Sun and Ongsomwang [42]. In practice, the clearly observed and identified
contaminated pixels (with value 0 or 1) from all selected scenes were firstly applied to
construct a spatiotemporal cube. Similarly, six spatiotemporal cubes were created from six
spectral reflectance bands (with values 0 to 1). Then, two time-dimension datasets, which
were obtained through reading pixel by pixel from the cubes, were combined to remove the
contaminated pixels for the time-series spectral reflectance reconstruction (see Figure 4).

The spectral reflectance data were further used for multi-temporal LULC classification
using the following steps.

(1) Stable pixels of the LULC type extraction. Four LULC maps (2001, 2006, 2014, and
2020) classified using the maximum likelihood classifier algorithm were simulta-
neously superimposed to identify the common area of each LULC type from four
different years. The derived results show the stable pixels for each LULC category
from 2001 to 2020.

(2) Harmonic function curve transformation and standard harmonic curve construction.
The sample points from four stable LULC types were randomly selected and trans-
formed into harmonic function curves. These curves were further used to construct
standard harmonic curves for the six spectral bands.

(3) Spectral distance measurement and probability calculation. The normalized spectral
distance between the standard harmonic function curve of each LULC type and an
unclassified pixel at the same specific time point was calculated. Then, the normalized
spectral distance of an unclassified pixel to any LULC type was applied to calculate
the probability of an unclassified pixel being a specific LULC type.

(4) Multitemporal LULC classification. The average probabilities of an unclassified pixel
being a specific LULC type (U, A, F, and W) from among the six spectral bands (blue,
green, red, NIR, SWIR1, and SWIR2) were calculated and compared to identify the
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highest value; the corresponding LULC type that provided the highest probability
was then assigned to an unclassified pixel at a specific time point. For further details,
see Sun and Ongsomwang [42].

Figure 4. Time-series spectral reflectance reconstruction.

In addition, producer’s accuracy (PA), users’ accuracy (UA), overall accuracy (OA),
and Kappa hat coefficient were assessed based on the error matrix between classified
multitemporal LULC data and ground reference information from Landsat data them-
selves [57]. The number of samples for thematic accuracy assessment was calculated based
on Equation (16), suggested by [57,58]. The allocation of sample points could be realized by
utilizing a stratified random sampling technique. In practice, reference information of each
sample point was visually interpreted using the elements (e.g., color, size, shape, shadow,
and texture) of image interpretation [59] and compared with the classified LULC type to
construct an error matrix for thematic accuracy assessment.

N =
BΠi(1−Πi)

bi
2 (16)

where Πi is the portion of a population in the ith class out of k classes that has the proportion
closest to 50%, bi is the desired precision (e.g., 5%) for the class, B is the upper (α/k) × 100
percentile of the Chi-square distribution with 1 degree of freedom, and k is the number of
classes.

2.3.3. Time-Series LST Reconstruction and Verification

As mentioned previously, LST-related research frequently focuses on the analysis of
a single scene. Therefore, the HA model with multitemporal spatiotemporal cubes was
applied to reconstruct time-series LST in order to minimize error. Under this component,
four separate steps, including the construction of an indicator cube for LST correction,
simulation of LST using the HA model, time-series LST reconstruction, and verification of
the LST dataset, are implemented (Figure 5), as follows:
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(1) Construction of indicator cube for LST correction

The indicator cubes, including the data and algorithm cube, were separately con-
structed using a reshape function by converting space to time in order to determine the
correctness of LST estimation by the SC algorithm. In this step, the data cube (LST esti-
mated from clear or contaminated pixels) and algorithm cube (water vapor content depth
is higher than or lower than 3 g/cm2) were first separately prepared using the reshape
function by converting space to time. Then, they were multiplied to construct an indicator
cube for LST correction.

For data cube preparation, the time-series LST values calculated using the SC al-
gorithm from clearly observed pixels were considered correct LST values. In contrast,
LST values calculated using the SC algorithm from contaminated pixels were considered
incorrect LST values. Thus, the values of the data cube consisted of 0 (incorrect LST) and 1
(correct LST).

For algorithm cube preparation, the time-series water vapor content depth dataset of
MODIS was classified into two groups using the threshold value of 3 g/cm2 to indicate the
correctness of the algorithm, as suggested by [50,51]. If time-series LST values were calcu-
lated from pixels with a water vapor content depth of less than or equal to 3 g/cm2, they
were considered correct time-series LST values. If time-series LST values were calculated
from pixels with a water vapor content depth higher than 3 g/cm2, they were considered
incorrect LST values. Therefore, the values of the algorithm cube included 0 (incorrect
LST according to water vapor content depth) and 1 (correct LST according to water vapor
content depth).

Subsequently, the data cube and algorithm were combined to construct the indicator
cube, with a value of 0 and 1, using a multiplicative operation for time-series LST correction.

(2) Simulation of LST using the HA model

To obtain the characteristics of time-series LST values, the selected estimated LST from
clearly observed pixels between 2001 and 2020 was converted into a spectral harmonic
curve with an HA model by applying Equation (16), modified from Zhu and Woodcock [9].

y = a + bt + A cos
(

2π

T
t− ϕ

)
(17)

where t is the Julian date, y is the reconstructed LST value at the Julian date t, T= 365, a, b,
A, and ϕ are values of the intercept, slope, amplitude, and phase, respectively.

In this step, the estimated LST cube, the indicator cube with the value of 0 or 1, and
the LULC cube, with a value of LULC type 1, 2, 3, or 4 (i.e., 1 is urban and built-up land,
2 is agricultural land, 3 is forest land, and 4 is water bodies) were used to calculate the
simulated LST using the HA model. The time-series estimated LST of each location was
first divided into a LULC time-series homogeneous segment; then, harmonic terms could
be calculated from the correct LST (value of indicator cube = 1), in which the harmonic
terms were constant in each segment. Accordingly, the simulated time-series LST values
could be recalculated at any time according to the harmonic terms.

(3) Time-series LST reconstruction

The estimated LST cube and simulated LST cube were simultaneously applied to
construct time-series LST between 2001 and 2020 according to the indicator cube, as
follows:

If the LST indicator cube showed that the estimated LST values were correct, the
reconstructed LST values were taken from the estimated LST dataset.

If the LST indicator showed that the estimated LST values were incorrect, recon-
structed LST values were taken from the simulated LST dataset.

Based on this approach, a new LST cube was first reconstructed and then reshaped
from time to space to create a time-series LST dataset.
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(4) Verification of LST dataset

As mentioned in the previous section, the reconstructed time-series LST values came
from two parts: one came from the time-series estimated LST using the SC algorithm,
and the other came from the simulated time-series LST value based on HA recalculation.
Subsequently, the estimated time-series LST values using the SC algorithm with clear
pixels and a depth of water vapor content less than or equal to 3 g/cm2 were acceptable,
as suggested by [50,51]. On the contrary, the simulated time-series LST values with
contaminated pixels or a depth of water vapor content higher than 3 g/cm2 were required
in order to verify whether the calculated values were consistent with the actual ground
temperature values. However, it is difficult to obtain the precise ground temperature of
this part in actual operation due to the atmospheric influence (cloud, water vapor) and
other conditions, making it difficult to verify the accuracy of this simulated value directly.

Accordingly, as an alternative, the simulated time-series LST data using the HA model
were compared with correct estimated time-series LST using the SC algorithm for the
verification of the dataset using the mean error (ME) and mean absolute error (MAE), as
suggested by [60,61], as:

ME =
∑n

i=1(yi − xi)

n
(18)

MAE =
∑n

i=1|yi − xi|
n

(19)

where xi is the correct estimated LST value, yi is the corresponding simulated LST value,
and n is the total number of correct LST pixels of all scenes.

2.3.4. Impact of multitemporal LULC change on LST

In this study, the impact of multitemporal LULC change on LST was examined with
two approaches, including the time domain using decomposition analysis and the spatial
domain using spatial analysis.

(1) Spatial analysis and impact of LULC change on LST

The impact of LULC change on LST was assessed using zonal statistics analysis based
on the derived LST and multitemporal LULC data in 2001, 2006, 2014, and 2020. The
area and mean LST of urban and non-urban areas of Hefei City and their subordinate
districts/counties/county-level city in 2001, 2006, 2014, and 2020 were counted, respectively.
Furthermore, we evaluated the LST difference between urban and non-urban areas in
different regions in different years and the LST difference in urban areas at different scales.

(2) Decomposition analysis and impact of LULC change on LST

The reconstructed LST was first decomposed into three parts—trend component (inter-
cept and slope), seasonality component (amplitude and phase), and residual component—
according to each pixel’s LULC type. Equations that were modified from Fu and Weng [45]
were applied to calculate these components as follows:

Yt = Tt + St + εt (20)

Tt = a + bt (21)

St = A cos
(

2π

T
t− ϕ

)
(22)

where t is the Julian date, Yt is the time-series observation, Tt is the trend component, St is
the seasonality component, and εt is the noise. a and b are the linear trend coefficients, A
and ϕ are the periodic coefficients, T = 365.

Next, the impact of LULC change on LST was evaluated based on the derived har-
monic terms of LST from a 20-year period. In this study, three aspects, including (1)
harmonic terms of average LST values of different LULC types; (2) the distribution of
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harmonic terms of LST of different LULC types; and (3) the impact of LULC change on
harmonic terms of LST, were investigated.

Figure 5. Workflow for time-series LST reconstruction and verification.
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Firstly, the average LST values of four different LULC types were calculated for all
selected scenes from 2001 to 2020. Meanwhile, the four groups of LST values were plotted
as curves. Then, the HA was used to fit these groups of curves in order to obtain harmonic
terms (intercept, slope, amplitude, and phase) for comparison of the intra-annual and
inter-annual LST changes of different LULC types.

In addition, the values of the harmonic term of LST of each LULC type were also
counted based on the time-series LULC data. Then, the frequency of each harmonic term
of each LULC type was plotted as a histogram distribution to compare each harmonic term
value. Since the sample size and bin width of the histogram from different LULC types are
different, it is difficult to compare them. Herein, the normalized histogram was presented.
Moreover, the average value of the harmonic term of the LST of each LULC type was also
extracted and compared to their values.

Furthermore, the pixels with the LULC change from possible changes (e.g., A to U, F
to U, W to U, etc.) were selected under HA. The harmonic term values of the LST of these
selected pixels before and after the LULC change were extracted, and the average value
and its change were calculated. The measurement units of change based on intercept, slope
(speed of change), amplitude, and LST phase were K, K/year, K, and days, respectively.

3. Results
3.1. Selection of Landsat Data Using QA Tools

The percentages of images and clearly observed pixels as a cumulative histogram
of the study area from the 552 downloaded scenes are presented in Figure 6. Based on
this information, if images with a percentage of contaminated pixels ≤10% were selected,
approximately 16% of the total scenes could be utilized. These images contained approxi-
mately 50% clearly observed pixels; therefore, approximately 50% of the clearly observed
pixels were ignored.

Figure 6. Comparison between the percentage of total images and percentage of total clearly
observed pixels.

In this study, the images with a percentage of contaminated pixels ≤50% were chosen.
Through this selection, the percentage of total images was reduced from 100% (552 scenes)
to 55% (305 scenes), but this 55% of images contained 87% of the total clearly observed
pixels, i.e., when 45% of the images were removed, only 13% of clearly observed pixels
were ignored. Finally, 78 images from Landsat 5, 165 images from Landsat 7, and 62 images
from Landsat 8, with a total of 305 images, were selected for further data analysis in this
study.

After recognizing the pixel quality with Landsat QA tools, the clearly observed digital
values and contaminated pixels of all the chosen images were 1 and 0, respectively. Figure 7
shows the example of the distribution of clearly observed and contaminated pixels from
Landsat 5 and 7. The contaminated pixels in Figure 7a primarily resulted from cloud and
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cloud shadow, while the contaminated pixels in Figure 7b comprise cloud, cloud shadow,
and gaps.

Figure 7. Two examples of clearly observed and contaminated pixels in Hefei City: (a) Landsat 5,
date 11 May 2003, and (b) Landsat 7, date 17 May 2011.

3.2. Multitemporal LULC Classification and Change Detection

The results of the chosen multitemporal LULC maps in 2001, 2006, 2014, and 2020
from time-series Landsat datasets between 2001 and 2020 are displayed in Figure 8.

Table 3 shows the area and percentage of the annual LULC after mode filtering (major
filtering) of 13 LULC maps in 2001, 16 LULC maps in 2006, 14 LULC maps in 2014, and 11
LULC maps in 2020.

Table 3. Areas and percentages of classified LULC map in 2001, 2006, 2014, and 2020.

LULC Type
2001 2006 2014 2020

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Urban and built-up land 234.75 2.05 433.91 3.78 1051.66 9.17 1519.30 13.25
Agricultural land 9342.94 81.49 9039.13 78.84 8399.09 73.25 7422.05 64.73

Forest land 920.98 8.03 915.82 7.99 975.61 8.51 1458.83 12.72
Water bodies 966.98 8.43 1076.78 9.39 1039.29 9.06 1065.47 9.29

Total 11,465.65 100 11,465.65 100 11,465.65 100 11,465.65 100

The percentage of urban and built-up land increased from 2.05% in 2001 to 13.25%
in 2020. Meanwhile, the percentage of forest land and water bodies increased from 8.03%
and 8.43% in 2001 to 12.72% and 9.29% in 2020, respectively. In contrast, the proportion of
agricultural land declined from 81.49% in 2001 to 64.73% in 2020.

The results show that urban and built-up land in Hefei City underwent a dramatic
increase due to urbanization from 2001 to 2020. The expansion of urban and built-up land
is presented in Figure 9.
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Figure 8. Spatial distribution of classified LULC map in: (a) 24 July 2001; (b) 28 June 2006;
(c) 5 August 2014; and (d) 5 August 2020.

This result highlight that urban and built-up land from 2001 to 2006 expanded outward
from the downtown area of Hefei City, and newly developed areas emerged around this
core area, covering an area of 199.16 km2. Furthermore, newly emerging developed urban
and built-up land from 2006 to 2014 still occurred within the extent of the downtown area
of Hefei City, while most newly emerging developed land was expanded in the southwest
and south (Chaohu direction) of the city, covering an area of 617.75 km2. In addition, Hefei
City continued to expand outward during 2014 and 2020, and the urban and built-up land
of the four urban districts (Shushan, Luyang, Yaohai, and Baohe) and the two neighboring
counties (Feidong and Feixi) was connected. In contrast, the urban and built-up lands of
two outlying counties (Changfeng and Lujiang) and one county-level city (Chaohu) far
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from the downtown area of Hefei City have been independently expanding outward in the
past 20 years.

Figure 9. The urban and built-up land in 2001 and its expansion.

3.3. Thematic Accuracy Assessment

The thematic accuracy assessment was performed using 443 samples, which were
selected based on the multinomial distribution, with the desired precision of 5% and a
confidence level of 85%. Table 4 presents the error matrix and thematic accuracy on 24 July
2001, 28 June 2006, 5 August 2014, and 5 August 2020.

Table 4. Error matrix and thematic accuracy of LULC classification in 2001, 2006, 2014, and 2020.

Year LULC
Reference Information Test Class Row

Total
PA (%) UA (%) OA (%) Kappa

Hat (%)U A F W

2001 Map
class

U 42 6 2 0 50 93.33 84.00

93.00 87.97
A 3 254 2 1 260 92.03 97.69
F 0 11 55 0 66 91.67 83.33
W 0 5 1 61 67 98.39 91.04

Column Total 45 276 60 62 443

2006 Map
class

U 45 5 0 0 50 88.24 90.00

91.65 85.56
A 6 252 4 3 265 91.97 95.09
F 0 10 51 1 62 91.07 82.26
W 0 7 1 58 66 93.55 87.88

Column Total 51 274 56 62 443

2014 Map
class

U 45 6 1 0 52 83.33 86.54

91.42 83.79
A 8 273 3 5 289 93.17 94.46
F 1 7 42 0 50 91.30 84.00
W 0 7 0 45 52 90.00 86.54

Column Total 54 293 46 50 443

2020 Map
class

U 52 12 0 1 65 94.55 80.00

90.52 83.13
A 3 257 3 2 265 88.62 96.98
F 0 17 46 0 63 93.88 73.02
W 0 4 0 46 50 93.88 92.00

Column Total 55 290 49 49 443

As a result, the OA from the four maps varied from 90.52% to 93.00%, with an average
value of 91.65%, while the Kappa hat coefficients ranged from 83.13% to 87.97%, with an
average value of 85.11%. In addition, the average PA of each LULC type from the four
maps, which is a measure of omission error [62], varied from 83.33% for urban and built-up
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land to 98.39% for water bodies. Meanwhile, the average UA of each LULC type, which is
a measure of the commission error [62], varied from 73.02% for forest land to 97.69% for
agricultural land.

3.4. Estimation of Time-Series LST Dataset

All selected 305 images were adopted to estimate LST using the SC method. Figure 10
presents an example of the three primary pre-processing products, including BT, emissivity,
and atmospheric water vapor content, and the LST result. It can be clearly observed that
the BT in the central urban area was higher than the BT of Chaohu Lake in the southeast.
In addition, the emissivity of water bodies was higher, while urban and built-up land
emissivity was lower. Furthermore, the atmospheric water vapor content in the north of
Chaohu Lake was higher, while most land areas’ atmospheric water vapor content was
lower. Furthermore, LST distribution was roughly the same as BT, but lower and upper
boundary values of LST were higher than BT.

Figure 10. Spatial distribution LST with the three primary pre-processing products from Landsat
TM, date 29 September 2002: (a) BT, (b) emissivity, (c) water vapor content, and (d) LST.
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3.5. Reconstruction of Time-Series LST Dataset

The LST values estimated from the contaminated pixels in the images are usually
inaccurate. Therefore, it is necessary to reconstruct the LST values of these pixels. Figure 11
shows an example of one pixel (Point_AU in Figure 1) from 305 selected scenes according
to the processing steps of LST reconstruction.

Figure 11. Primary calculation process and results of one pixel. (a) Estimated LST values (305 scenes); (b) estimated LST
data after ignoring contaminated values (185 scenes); (c) simulated LST recalculated using HA for each period based on
harmonic terms (305 scenes); and (d) reconstructed time-series LST (305 scenes).

Figure 11a shows the estimated LST data of one pixel from 305 scenes. It reveals that
most of the LST values oscillated above and below 300 K, but some of the values from some
scenes were very high or very low (e.g., around the years 2002 and 2008). Figure 11b shows
the estimated LST data of one pixel after ignoring contaminated values. As a result, only
185 scenes remain, and the extreme values have been removed. Most of the LST values
varied between 270 and 330 K. It is also clear that the LST value fluctuated 20 times with the
seasons (corresponding to the Landsat data from 2001 to 2020). Figure 11c shows simulated
LST data using HA for each segmented LULC period based on harmonic terms. As a result,
the remaining 185 scenes of this pixel were divided into two periods according to the
LULC type. Among them, the yellow curve represents the simulated LST of agricultural
land (first period), and the red curve represents the simulated LST of urban and built-up
land (second period). Then, the harmonic function parameters could be simulated for
each period. Meanwhile, the simulated LST data of 305 scenes were recalculated from the
parameters. Figure 11d shows the reconstructed time-series LST of 305 scenes of this pixel.

Meanwhile, Figure 12 shows the examples of the estimated, simulated, reconstructed
LST data and the differences between the estimated LST and reconstructed LST for
11 May 2003. In Figure 12a, it can be seen that the LST data in the northeast of the city
were significantly underestimated (blue color), and this area is approximately consistent
with the contaminated area in the northeast in Figure 7a. In addition, Figure 12b shows
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the simulated LST data, whose values in this scene were calculated from harmonic terms.
Figure 12c shows the reconstructed LST, where the underestimated LST in the northeast
and other areas of the city has been corrected using the simulated LST. Figure 12d shows the
difference between the estimated LST and reconstructed LST (estimated LST–reconstructed
LST), and the estimated LST of the contaminated pixel is more than 3 K lower than the
reconstructed LST (blue color).

Figure 12. Reconstruction of LST product from different processing steps, date: 11 May
2003: (a) estimated LST; (b) simulated LST; (c) reconstructed LST; and (d) estimated LST—
reconstructed LST.

The ME value between the simulated LST using the HA model and the estimated LST
using the SC method on clearly observed pixels was 0.03 K. Simultaneously, the MAE, which
ignores positive and negative offset, was 1.54 K. As a result, the replacement of estimated
LST with simulated LST on the contaminated pixels can be accepted because the ME value
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is less than 1 K. The multitemporal LST maps on 21 May 2001, 27 May 2006, 1 May 2014,
and 17 May 2020, which were selected from the time-series LST dataset between 2001 and
2020, are presented in Figure 13. It is easy to see that the spatial distribution of the LST in
Figure 13 was highly related to the LULC type in Figure 8. The urban and built-up land
had the highest LST value, followed by agricultural land and forest land. On the contrary,
the LST value in water bodies was the lowest.

Figure 13. Spatial distribution of LST: (a) 21 May 2001; (b) 27 May 2006; (c) 1 May 2014; and
(d) 17 May 2020.

3.6. Impact of LULC Change on LST
3.6.1. Impact of LULC Change on LST Using Spatial Analysis (Space Domain)

Table 5 shows the area and mean LST of urban and non-urban land use types in
2001, 2006, 2014, and 2020 at five different research areas (the whole Hefei City, four
urban districts (Shushan, Luyang, Yaohai, and Baohe), two counties closed to urban
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districts (Feidong, and Feixi), two counties faraway from urban districts (Changfeng, and
Lujiang), and one county-level city (Chaohu)). Regardless of the scale and year, the LST in
urban areas is higher than that in non-urban areas, but these differences are not the same
for different scales and different years. Meanwhile, the LST of urban areas in different
districts/counties/subordinate-city is also different compared with the LST of urban areas
in the whole Hefei City. As the scope of urban area in Shushan, Luyang, Yaohai, and Baohe
increased from 138.49 km2 in 2001 to 474.66 km2 in 2020, the LST also increased from
298.11 K to 304.94 K. In addition, the finding of the urban area of four urban districts is in
line with the report of the Statistics Bureau of Anhui Province [44], reporting that built-up
areas in four urban districts of Hefei City increased from 125.00 km2 in 2001 to 481.00 km2

in 2019.

Table 5. Area and mean LST of urban and non-urban types in 2001, 2006, 2014, and 2020.

Research Area LULC Type *
2001 2006 2014 2020

Area
(km2)

Mean
LST ** (K)

Area
(km2)

Mean LST
(K)

Area
(km2)

Mean LST
(K)

Area
(km2)

Mean LST
(K)

Hefei City Urban 234.75 298.11 433.91 302.06 1051.66 298.17 1519.30 303.09
Non-Urban 11230.90 295.81 11031.73 297.99 10413.99 295.29 9946.34 299.52

Shushan, Luyang,
Yaohai, and Baohe

Urban 138.49 298.11 258.71 302.57 419.74 299.18 474.66 304.94
Non-Urban 1182.01 295.05 1061.78 298.27 900.75 295.79 845.84 300.36

Feidong and Feixi Urban 40.03 297.92 72.45 301.31 263.54 297.99 486.34 302.73
Non-Urban 3849.83 296.01 3817.42 298.25 3626.32 295.98 3403.53 300.47

Changfeng and
Lujiang

Urban 23.38 298.12 60.38 301.49 223.06 297.51 364.55 301.64
Non-Urban 4164.86 295.98 4127.86 298.13 3965.19 295.33 3823.69 299.17

Chaohu City Urban 32.81 298.29 42.34 301.00 145.32 296.47 193.71 302.14
Non-Urban 2034.23 295.50 2024.70 297.03 1921.72 293.70 1873.34 298.14

* Urban: urban and built-up land; non-urban: agricultural land, forest land, and water bodies. ** The LST in 2001, 2006, 2014, and
2020 in this table refers to the median composite of 13 LST maps in 2001, 16 LST maps in 2006, 14 LST maps in 2014, and 11 LST maps
in 2020, respectively.

Meanwhile, the LST of urban area in Feidong and Feixi increased from 297.92 K to
302.73 K when the range increased from 40.03 km2 to 486.34 km2. In the meantime, the LST
of urban areas in Changfeng and Lujiang increased from 298.12 K to 301.64 K when the
area increased from 23.38 km2 to 364.55 km2. Moreover, the scope of urban area in Chaohu
City increased from 32.81 km2 in 2001 to 193.71 km2 in 2020; the LST also increased from
298.29 K to 302.14 K.

Figure 14a shows the differences of LST between urban and non-urban areas. For
the whole Hefei City scale, the difference of LST between urban and non-urban areas is
gradually increasing, which rose from 1.52 K in 2001 to 3.57 K in 2020. The LST difference
between urban and non-urban areas in Shushan, Luyang, Yaohai, and Baohe districts is
even greater, increasing from 3.06 K in 2001 to 4.58 K in 2020. However, the difference
of LST between urban and non-urban areas in Changfeng and Lujiang counties is small,
growing from 2.14 K in 2001 to 2.47 K in 2020. Therefore, the difference of LST between
urban and non-urban areas in 2020 is higher than in 2001.

Figure 14b shows the difference of LST of the urban areas between four small research
areas and the Hefei City. For Shushan, Luyang, Yaohai, and Baohe districts, which are
the center of Hefei City, the LST is high than the average LST of whole Hefei City, the
differences of LST are 0.41 K, 1.04 K, 1.01 K, and 1.78 K in 2001, 2006, 2014, and 2020,
respectively. For Feidong and Feixi counties, close to the center of Hefei City, as the urban
area was relatively isolated and surrounded by lots of non-urban areas before 2006, the
LST is lower (−0.60 K in 2001 and −1.38 K in 2006) than the average LST of whole Hefei
City. With the urban growth, a filling and axial expansion appeared, and the urban areas of
these two counties were almost integrated with the Shushan, Luyang, Yaohai, and Baohe
districts. The LST is almost the same (−0.14 K in 2014 and 0.04 K in 2020) as the average
LST of whole Hefei City. For Changfeng and Lujiang counties, which are far away from the
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center of Hefei City, the urban area was developing in isolation for a long time; therefore,
the LST of urban area is lower than the Hefei City’s average. Due to the uneven regional
development, this difference is getting bigger (−0.65 K in 2001, −1.86 K in 2020). For
Chaohu City, a county-level city (subordinate cities of Hefei City), located in the east of
Chaohu Lake, the LST of the urban area was close to the average LST of the whole Hefei
City in 2001 (−0.23 K). Since then, the LST in the urban area has been lower than the
average LST in the urban area of the whole Hefei City.

Figure 14. The difference of LST in 2001, 2006, 2014, and 2020 between: (a) urban and non-urban area; (b) four small research
areas and the Hefei city in urban area.

This finding is an expected result because when another land cover is transformed
into urban and built-up land, LST will be increased. These phenomena indicate the impact
of LULC change on LST when the other land cover types, i.e., agricultural land, forest
land, and water bodies, are converted to urban and built-up land. Another finding is that
the difference of LST between urban and non-urban areas is becoming larger, and LST
has an obvious spatial agglomeration effect. The LST of small fragmented urban areas is
easily affected by the surrounding non-urban areas, which can help cool the LST, leading to
smaller differences in LST between urban and non-urban areas. With the development of
the city, the fragmented urban land gradually expands and merges to form large contiguous
areas. The surrounding non-urban areas have no obvious cooling effect on them, resulting
in a greater LST difference between urban and non-urban areas. In addition, the LST of
these contiguous urban areas is also higher than that of the fragmented urban areas.

3.6.2. Impact of LULC Change on LST using Decomposition Analysis (Time Domain)

The impact of LULC change on LST using decomposition analysis is separately de-
scribed and discussed in this section.

(1) Calculation and verification of harmonic terms of LST

Figure 15 shows the results of the decomposition analysis using time-series LST at four
points (Point_U from urban and built-up land, Point_A from agricultural land, Poin_F from
forest land, and Point_W from water bodies, See Figure 1) from LULC unchanged areas.
In detail, Figure 15a,c,e,g demonstrate the estimated LST (black circles) and simulated
LST (trend component + seasonality component, blue curve) for urban and built-up land,
agricultural land, forest land, and water bodies, respectively. Figure 15b,d,f,h show LST
residuals (the difference between estimated LST and simulated LST) of urban and built-up
land, agricultural land, forest land, and water bodies, respectively.

As a result, the mean residuals for selected four points from four different LULC types
are 0.22 K, 0.12 K, −0.49 K, and 0.02 K, respectively, which are close to zero. Meanwhile,
the residuals fluctuate around zero without exhibiting evident patterns. In other words,
the residual distribution is close to a normal distribution with a mean of zero. These low
and randomly distributed residuals mean that the error is small when estimated LST is
represented by the sum of the trend and seasonality components. Thus, it is possible to
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analyze the effect of LULC change on LST using the trend component and seasonality
component of LST in the time domain with a small error.

Figure 15. Examples of estimated LST data (after ignoring contaminated value), modeled LST and residuals: (a) estimated
and simulated LST at Point_U where LULC type is urban and built-up land, (b) residuals at Point_U, (c) estimated and
simulated LST at Point_A where LULC type is agricultural land, (d) residuals at Point_A, (e) estimated and simulated LST
at Point_F where LULC type is forest land, (f) residuals at Point_F, (g) estimated and simulated LST at Point_W where
LULC type is water bodies, (h) residuals at Point_W.

Table 6 shows the regression equations for the LST simulation that have been used in
Figure 16. The root mean square errors (RMSE) of LST simulation for urban and built-up
land, agricultural land, forest land, and water bodies are 4.465, 3.576, 3.681, and 2.808,
respectively. Meanwhile the coefficients of determination (R2) are 0.8819, 0.9019, 0.8012,
and 0.9038. The low RMSE and high R2 testify to good modeling for LST. Due to the
stability of the water body, its RMSE is smaller than other LULC types, and R2 is greater
than other types. The amplitude value of LST in urban areas (21.54 K) is higher than that
in non-urban areas (16.89 K, 14.16 K and 15.96 K), indicating the LST difference between
summer and winter in urban areas is larger, while the LST difference in non-urban areas is
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smaller. Furthermore, the intercept value of LST in urban areas (304.1 K) is also higher than
that in non-urban areas (295.5 K, 299.5 K and 293.8 K), which implies that the LST of the
urban area is higher than the non-urban area in the year of 2001 (starting date of the model).

Table 6. LST regression equation for LST modeling using linear trend component and seasonality component.

LULC Type Regression Equation RMSE R2

Urban and built-up land LST = 304.1 + 1.34 × 10-4 × t + 21.54 × cos (2 × pi × t/365 − 3.19) 4.465 0.8819
Agricultural land LST = 295.5 − 0.31 × 10-4 × t − 16.89 × cos (2 × pi × t/365 − 9.57) 3.576 0.9019

Forest land LST = 299.5 + 0.70 × 10-4 × t − 14.16 × cos (2 × pi × t/365 − 3.20) 3.681 0.8012
Water bodies LST = 293.8 + 0.44 × 10-4 × t + 15.96 × cos (2 × pi × t/365 + 15.52) 2.808 0.9038

Figure 16. Mean LSTs of four different LULC types and their trend and seasonality components: (a) mean LSTs; (b) trend
component of LST; and (c) seasonality component of LST.

Table 7 shows the regressions equation for LST simulation using the sum of non-linear
trend component and seasonality component for different LULC types. In Table 7, the
intercept values (304.7 K, 295.9 K, 299.8 K, and 294.0 K) and amplitude values (21.55 K,
16.89 K, 14.14 K, and 15.95 K) are very close to the intercept values and amplitude values
in Table 6. This finding suggests that the intercept and amplitude are two key terms for
LST regression. Meanwhile, the values of intercept and amplitude in urban are obviously
higher than those in a non-urban area. However, the values of RMSE and R2 in Table 7
are also very much the same as those of RMSE and R2 in Table 6, which shows that the
regression accuracy is not significantly improved when the complexity of the equation and
the amount of calculation are increased.
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Table 7. LST regression equation for LST modeling using non-linear trend component and seasonality component.

LULC Type Regression Equation RMSE R2

Urban and built-up land LST = 304.7 − 3.86 × 10-4 × t + 7.15 × 10-8 × t2 + 21.55 × cos (2 × pi × t/365 − 21.94) 4.467 0.8823
Agricultural land LST = 295.9 − 1.64 × 10-4 × t − 0.20 × 10-8 × t2 − 16.89 × cos (2 × pi × t/365 − 3.29) 3.584 0.9078

Forest land LST = 299.8 − 1.61 × 10-4 × t + 3.03 × 10-8 × t2 − 14.14 × cos (2 × pi × t/365 − 28.33) 3.691 0.8014
Water bodies LST = 294.0 − 0.67 × 10-4 × t + 1.52 × 10-8 × t2 + 15.95 × cos (2 × pi × t/365 − 28.47) 2.815 0.9038

(2) Harmonic terms of average LST values of different LULC types

Figure 17 shows the mean LST values of different LULC types from every scene (305
scenes) and its trend and seasonality component. Figure 17a shows the average LST values
of four different LULC types (U, A, F, and W) with red, yellow, green, and blue curves,
respectively. As a result, the average LST values of urban and built-up land on different
dates were higher than other LULC types.

Figure 17. Distribution of normalized histogram distribution of harmonic term for four different LULC types: (a) intercept
term, (b) slope term, and (c) amplitude term.

In addition, Figure 16b,c illustrate the trend and seasonality component of the mean
LSTs of each LULC type after the decomposition procedure. Detailed information of
the harmonic terms is provided in Table 8. The intercept term of the trend component
suggests that the mean LST values of urban and built-up land, agricultural land, forest
land, and water bodies in 2001 were 299.96 K, 298.97 K, 297.96 K, and 293.77 K, respectively.
Meanwhile, the slope term of the trend component indicates that the mean LST value
increased by 0.09 K/year, 0.05 K/year, 0.01 K/year, and 0.05 K/year for urban and built-
up land, agriculture land, forest land, and water bodies, respectively. Additionally, the
amplitude term of the seasonality component suggests that the intra-annual variability
of urban and built-up land, agricultural land, forest land, and water bodies was 18.43 K,
16.16 K, 14.56 K, and 15.36 K, respectively. In addition, the differences of LST phase values
among four LULC types are very small, indicating that the maximum value of LST and
the minimum value of LST for different LULC types appear almost on the same time. This
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finding shows that the average LST, increasing speed of LST, and annual LST change in
urban and built-up land were higher than those in other land cover types.

Table 8. The trend and seasonality components of mean LSTs of each LULC type.

LULC Types
Trend Component Seasonality Component

Intercept (K) Slope (K/Year) Amplitude (K) Phase (Days)

Urban and built-up land 299.96 0.09 18.43 −0.06
Agricultural land 298.97 0.05 16.16 −0.33

Forest land 297.96 0.01 14.56 6.21
Water bodies 293.77 0.05 15.36 −3.30

(3) Distribution of harmonic terms of LST of different LULC types

The normalized histogram distribution of the three main harmonic terms (intercept,
slope, and amplitude) of LST for different LULC segments is displayed in Figure 17.
Meanwhile, the mean and variance values of the main harmonic terms of LST of four LULC
types are presented in Table 9. As a result, the mean and variance values of the intercept
term of LST of four LULC types are 301.64 K, 300.18 K, 298.77 K, 294.90 K, and 2.88 K,
1.92 K, 5.13 K, 3.03 K, respectively. In addition, the mean and variance values of the slope
term of LST of four LULC types are 0.105 K/year, 0.016 K/year, 0.003 K/year, 0.013 K/year
and 0.194 K/year, 0.154 K/year, 0.367 K/year, 0.149 K/year, respectively. Further, the mean
and variance values of the amplitude term of LST of four LULC types are 20.42 K, 17.49 K,
15.61 K, 17.03 K, and 1.90 K, 1.29 K, 1.66 K, 1.14 K, respectively. This finding also indicates
that the average LST, increasing speed of LST, and annual LST change in urban areas were
higher than those in other land cover types.

Table 9. The mean and variance value of the main three harmonic terms.

LULC Types
Intercept (K) Slope (K/year) Amplitude (K)

Mean Variance Mean Variance Mean Variance

Urban and built-up land 301.64 2.88 0.105 0.194 20.42 1.90
Agricultural land 300.18 1.92 0.016 0.154 17.49 1.29

Forest land 298.77 5.13 0.003 0.367 15.61 1.66
Water bodies 294.90 3.03 0.013 0.149 17.03 1.14

(4) Impact of LULC change on harmonic terms of LST

Table 10 lists the mean values of LST harmonic terms from the pixels and demonstrates
that their LULC type changed from agricultural land, forest land, and water bodies to
urban and built-up land during 2001 and 2020.

Table 10. Thermal signatures and thermal signature changes of the LULC change type.

Change Types
Intercept (K) Amplitude (K)

Before After Change Before After Change

Agricultural land to urban and built-up land 300.46 302.23 1.77 19.13 20.54 1.41
Forest land to urban and built-up land 300.49 301.89 1.40 17.28 19.03 1.75

Water bodies to urban and built-up land 297.05 298.50 1.45 17.75 18.62 0.87

As a result, the difference values of LST in terms of intercept and amplitude are 1.77 K
and 1.41 K, in converting agricultural land to urban and built-up land. Meanwhile, in the
transformation of forest land to urban and built-up land, the difference values of LST in
terms of intercept and amplitude are 1.40 K and 1.75 K. At the same time, in the conversion
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of water bodies to urban and built-up land, the difference values of LST in terms of intercept
and amplitude are 1.45 K and 0.87 K.

In summary, when other types of LULC are converted to urban and built-up land,
their intercept and amplitude values will increase. This finding is similar to the values of
the harmonic parameters shown in Figure 17; in other words, the intercept and amplitude
values of urban and built-up land are higher than those of other LULC types. This finding
implies that the average LST and annual LST change in urban areas are higher than those
in other non-urban areas.

4. Discussion
4.1. Landsat Image Selection

The number of finally selected Landsat scenes between 2001 and 2020 in this study
was reduced by 45% (from 552 to 305 scenes) through contaminated pixel recognition and
assessment based on the Landsat QA band. The strength of this procedure lies in two
aspects: a decrease in the number of Landsat scenes and the cost of data analysis, and
recognition of the clearly observed and contaminated pixels. However, the percentage and
distribution of clearly observed and contaminated pixels must be identified, calculated,
and evaluated according to information from the Landsat QA band.

4.2. Multitemporal LULC Classification and Change Detection and Accuracy Assessment

Multitemporal LULC classification and change detection were successfully conducted
using the algorithm proposed by Sun and Ongsomwang [42] in this research. This approach
can be used to quickly classify and map LULC data and their changes at any time and
period. According to the thematic accuracy assessment, as reported in Section 3.3, the
OA value of LULC maps in 2001, 2006, 2014, and 2020 and its average are higher than
90%. This finding indicates that the classified maps can provide acceptable results, as
recommended by [63]. Likewise, the Kappa hat values of the four maps are higher than
80%; they represent strong agreement or accuracy between the classified LULC map and
the ground reference data [64].

Moreover, the derived overall accuracy is comparable with other studies. For instance,
Marco et al. [65] applied 281,962 Landsat scenes to classify a series of land cover maps at
continental scale for Australia between 1993 and 2008 at a 5-year time-step using Google
Earth Engine (GEE), with an OA of approximately 93%. Zhu and Woodcock [9] classified
time-series land cover maps from Landsat datasets (1982–2011) in coastal New England in
the United States, achieving an OA of approximately 90%. Viana et al. [66] classified LULC
maps with time-series Landsat datasets from 1995 to 2015 with 221 Landsat images in the
municipality of Beja in the Alentejo region of Portugal, providing an OA of 76%. Franklin
et al. [67] classified land cover with time-series Landsat datasets (1990–2010) in the Boreal
Mixedwood Region of Northern Ontario, Canada, providing an OA of approximately
87.98%. Utilizing all available Landsat images (2011–2015) of Melbourne, Sao Paulo,
Hamburg, and Chicago, Zhang et al. [68] quantified the changes of seasons in different
urban land cover types; the overall accuracy percentage was higher than 86%, and the
Kappa hat coefficient was greater than 0.80.

4.3. Time-Series LST Estimation, Simulation, and Reconstruction

The time-series LST reconstruction through LST estimation using the SC method
and LST simulation using the HA model is a semi-automatic process performed that can
provide an acceptable result. Nevertheless, there are some limitations concerning this
approach. Firstly, images with a high temporal frequency are needed to guarantee the
accuracy of the result by this method. Therefore, a large amount of data storage space
and long processing times are required. Secondly, the SC algorithm is a widely used
LST inversion algorithm [69–72] that provides RMSEs of around 1.5 K when water vapor
content is less than 3 g/cm2. However, the SC algorithm provides RMSEs higher than
5 K when water vapor content is greater than 3 g/cm2 [50,51]. Therefore, when the water



ISPRS Int. J. Geo-Inf. 2021, 10, 809 28 of 32

vapor content of a pixel (which may be a non-contaminated pixel) is greater than 3 g/cm2,
the estimated LST of this pixel will be replaced by the simulated LST. It may ignore some
valuable LST extreme points.

4.4. Impact of LULC Change on LST

The LULC change on LST shows that the average LST, annual LST change in urban
areas are higher than those in other non-urban areas. Rapid urbanization across many
regions globally is altering the existing LULC, which is significantly raising the LST.

The impact of LULC change on LST in this study is comparable with other scholars’
studies. Fu and Weng [45] analyzed the impact of time-series LULC change on LST with
Landsat imagery using decomposition analysis in the metropolitan area of Atlanta. Their
study revealed a difference of 1.8 K per decade in the trend component between urban
and other land cover types. Meanwhile, the most considerable difference in annual LST
variation (5.7 K) and the most significant difference in the trend component (0.146 K/year)
were generated when evergreen forest was converted to medium-intensity urban land.
Khamchiangta and Dhakal [73] performed the time-series analysis of LULC characteristics
and its relationships with the intensity of the urban heat island (UHI) in the Bangkok
metropolitan area. The results showed that the built-up area constituted approximately
30% of the total area in 1991 and this sharply increased to approximately 55% in 2016. UHI
intensity continually rose from 11.91 ◦C to 16.21 ◦C between 1991 and 2016, resulting in a
nearly 5 ◦C increase in Bangkok.

4.5. Semi-Automatic Process for Multitemporal LULC Classification and LST Reconstruction

The semi-automatic process for multitemporal LULC classification and LST recon-
struction can be used to better understand the impact of LULC change on LST. However,
multitemporal analysis requires many images and long processing times. In this study,
time-series estimated LST was first calculated semi-automatically from time-series BT, emis-
sivity, and water vapor content. Then, time-series simulated LST was semi-automatically
fit from the time-series estimated LST and time-series indicator. Moreover, time-series
reconstructed LST was created semi-automatically from the indicator cube, LULC cube,
estimated LST cube, and simulated LST cube. All the processes can be programmed using
MATLAB software for quick implementation.

The most time-consuming stage is in Section 2.3.3(2). It took about 60 hours to process
the whole study with a 64-core supercomputer (about 1 second to process 1 pixel with
one core CPU); therefore, a computer with better performance can save processing time.
However, recently, GEE and the Google Cloud Platform (GCP) have emerged as impor-
tant cloud-based platforms for LULC classification. They can provide a large amount of
multi-source satellite data and a high-performance computation service. Zhang et al. [74]
proposed using the GEE platform to automatically screen invalid image pixels in Landsat
images by generating a polygon smaller than the bounding box of each scene. Xie et al. [75]
proposed a method for automating land cover classification by adopting time-series Land-
sat data on the GEE platform. Stromann et al. [76] explored dimensionality reduction
and feature selection for land cover classification with time-series Sentinel data using
GEE and GCP.

4.6. Limitations of LST Reconstruction

The QA band is very important for detecting the contaminated pixels because the
LST of these contaminated pixels will be incorrectly estimated. Therefore, these incorrectly
estimated LST values will be replaced by simulated LST for LST reconstruction, as we have
discussed in the previous sections. However, sometimes, the QA band cannot detect all
the contaminated pixels. Figure 18 shows a zoom-in view of the northeastern area of the
city, which is obtained using the mask of Figures 7a and 12a. It can be clearly seen that
the LST in a narrow “border” is still underestimated since the contaminated pixels at the
edge are not recognized by the QA band. In future work, it is better to expand the range
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of contaminated pixels, which are identified based on the QA band, by a few pixels to
avoid remaining unidentified contaminated pixels. Laraby, et al. [77] pointed out that the
error in determining the LST also depends on the distance from the cloud. In future work,
it is necessary to establish the relationship between cloud proximity and estimated LST
errors, and provide the user with a per-pixel map of estimated LST errors. Afterwards,
these estimated LST with higher errors should also be replaced with the simulated LST.

Figure 18. A zoom-in area of the estimated LST where is masked by the QA band.

5. Conclusions

In this study, the time-series land surface temperature (LST) dataset, which was firstly
estimated using the single-channel (SC) algorithm and was reconstructed to minimize
errors using harmonic analysis (HA), was successfully established to study the impact of
land use and land cover (LULC) change on LST due to urbanization. The average overall
accuracy and Kappa hat coefficients of the LULC maps of the four selected years (2001,
2006, 2014, and 2020) using harmonic analysis with a minimum spectral distance algorithm
were higher than 90% and 80%, respectively. In these four years, the average producer
accuracy and user accuracy from different LULC types were also more than 85%. For
time-series LST dataset verification, the mean error value between the simulated LST using
HA and the estimated LST using the SC method was 0.03 K. Meanwhile, the mean absolute
error was 1.54 K. In addition, the study of multitemporal LULC change on LST using
spatial and decomposition analyses confirmed that when agricultural land, forest land,
and water bodies were converted into urban and built-up land, the LST difference of urban
and non-urban areas, LST, increasing speed of LST, and annual LST change would increase
as expected. Thus, it can be reconfirmed that, in Hefei City, land use and land cover
changes due to urbanization impact the land surface temperature. Consequently, in rapidly
expanding cities, a mitigation plan to reduce LST should be prepared by the corresponding
agencies, such as the Meteorological Bureau, Planning and Natural Resources Bureau, and
Ecological Environment Bureau.

Author Contributions: Conceptualization, J.S. and S.O.; methodology, J.S. and S.O.; software, J.S.;
validation, J.S. and S.O.; formal analysis, J.S.; investigation, J.S.; resources, J.S.; data curation, J.S.;
writing—original draft preparation, J.S.; writing—review and editing, S.O.; visualization, J.S.; super-
vision, S.O.; project administration, J.S.; funding acquisition, J.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Natural Science Research Project of the Anhui Education
Department, Grant Number KJ2019A0707.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



ISPRS Int. J. Geo-Inf. 2021, 10, 809 30 of 32

Acknowledgments: The facility support from Tongling University is gratefully acknowledged by
the authors. The authors also thank the anonymous reviewers for their valuable comments and
suggestions, which improved our manuscript from various perspectives.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat

island. Int. J. Climatol. 2003, 23, 1–26. [CrossRef]
2. Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land

(SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [CrossRef]
3. Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. [CrossRef]
4. Kogan, F.N. Operational space technology for global vegetation assessment. Bull. Am. Meteorol. Soc. 2001, 82, 1949–1964.

[CrossRef]
5. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99.

[CrossRef]
6. Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [CrossRef]
7. Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends.

ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [CrossRef]
8. Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island

studies. Remote Sens. Environ. 2004, 89, 467–483. [CrossRef]
9. Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote

Sens. Environ. 2014, 144, 152–171. [CrossRef]
10. Bonan, G.B.; Pollard, D.; Thompson, S.L. Effects of boreal forest vegetation on global climate. Nature 1992, 359, 716. [CrossRef]
11. Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al.

Global Consequences of Land Use. Science 2005, 309, 570–574. [CrossRef]
12. Lee, E.; He, Y.; Zhou, M.; Liang, J. Potential feedback of recent vegetation changes on summer rainfall in the Sahel. Phys. Geogr.

2015, 36, 449–470. [CrossRef]
13. Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.;

Beltrán-Przekurat, A.; et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 2014, 34, 929–953.
[CrossRef]

14. Pielke, R.A. Land Use and Climate Change. Science 2005, 310, 1625–1626. [CrossRef]
15. McPherson, R.A. A review of vegetation—Atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys.

Geogr. 2007, 31, 261–285. [CrossRef]
16. Qiao, Z.; Tian, G.; Zhang, L.; Xu, X. Influences of Urban Expansion on Urban Heat Island in Beijing during 1989–2010. Adv.

Meteorol. 2014, 2014, 187169. [CrossRef]
17. Ongsomwang, S.; Dasananda, S.; Prasomsup, W. Spatio-temporal urban heat island phenomena assessment using landsat

imagery: A case study of Bangkok metropolitan and its Vicinity, Thailand. Environ. Nat. Resour. J. 2018, 16, 29–44. [CrossRef]
18. Srivanit, M.; Hokao, K.; Phonekeo, V. Assessing the Impact of Urbanization on Urban Thermal Environment: A Case Study of

Bangkok Metropolitan. Int. J. Appl. Sci. Technol. 2012, 2, 243–256.
19. Fonseka, H.P.U.; Zhang, H.; Sun, Y.; Su, H.; Lin, H.; Lin, Y. Urbanization and Its Impacts on Land Surface Temperature in Colombo

Metropolitan Area, Sri Lanka, from 1988 to 2016. Remote Sens. 2019, 11, 957. [CrossRef]
20. Li, F.; Sun, W.; Yang, G.; Weng, Q. Investigating Spatiotemporal Patterns of Surface Urban Heat Islands in the Hangzhou

Metropolitan Area, China, 2000–2015. Remote Sens. 2019, 11, 1553. [CrossRef]
21. Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial Analysis of Surface Urban Heat Islands in Four Rapidly

Growing African Cities. Remote Sens. 2019, 11, 1645. [CrossRef]
22. Qiao, Z.; Liu, L.; Qin, Y.; Xu, X.; Wang, B.; Liu, Z. The Impact of Urban Renewal on Land Surface Temperature Changes: A Case

Study in the Main City of Guangzhou, China. Remote Sens. 2020, 12, 794. [CrossRef]
23. Dang, T.; Yue, P.; Bachofer, F.; Wang, M.; Zhang, M. Monitoring Land Surface Temperature Change with Landsat Images during

Dry Seasons in Bac Binh, Vietnam. Remote Sens. 2020, 12, 4067. [CrossRef]
24. Xu, J.; Zhao, Y.; Sun, C.; Liang, H.; Yang, J.; Zhong, K.; Li, Y.; Liu, X. Exploring the Variation Trend of Urban Expansion, Land

Surface Temperature, and Ecological Quality and Their Interrelationships in Guangzhou, China, from 1987 to 2019. Remote Sens.
2021, 13, 1019. [CrossRef]

25. Shen, Z.; Xu, X. Influence of the Economic Efficiency of Built-Up Land (EEBL) on Urban Heat Islands (UHIs) in the Yangtze River
Delta Urban Agglomeration (YRDUA). Remote Sens. 2020, 12, 3944. [CrossRef]

26. Wang, R.; Hou, H.; Murayama, Y.; Derdouri, A. Spatiotemporal Analysis of Land Use/Cover Patterns and Their Relationship
with Land Surface Temperature in Nanjing, China. Remote Sens. 2020, 12, 440. [CrossRef]

27. Athukorala, D.; Murayama, Y. Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and
Nighttime Land Surface Temperatures along the Urban–Rural Gradient. Remote Sens. 2021, 13, 1396. [CrossRef]

http://doi.org/10.1002/joc.859
http://doi.org/10.1016/S0022-1694(98)00253-4
http://doi.org/10.1029/2010RG000345
http://doi.org/10.1175/1520-0477(2001)082&lt;1949:OSTFGV&gt;2.3.CO;2
http://doi.org/10.5194/hess-6-85-2002
http://doi.org/10.1016/S0034-4257(03)00079-8
http://doi.org/10.1016/j.isprsjprs.2009.03.007
http://doi.org/10.1016/j.rse.2003.11.005
http://doi.org/10.1016/j.rse.2014.01.011
http://doi.org/10.1038/359716a0
http://doi.org/10.1126/science.1111772
http://doi.org/10.1080/02723646.2015.1120139
http://doi.org/10.1002/joc.3736
http://doi.org/10.1126/science.1120529
http://doi.org/10.1177/0309133307079055
http://doi.org/10.1155/2014/187169
http://doi.org/10.14456/ennrj.2018.13
http://doi.org/10.3390/rs11080957
http://doi.org/10.3390/rs11131553
http://doi.org/10.3390/rs11141645
http://doi.org/10.3390/rs12050794
http://doi.org/10.3390/rs12244067
http://doi.org/10.3390/rs13051019
http://doi.org/10.3390/rs12233944
http://doi.org/10.3390/rs12030440
http://doi.org/10.3390/rs13071396


ISPRS Int. J. Geo-Inf. 2021, 10, 809 31 of 32

28. Liu, F.; Hou, H.; Murayama, Y. Spatial Interconnections of Land Surface Temperatures with Land Cover/Use: A Case Study of
Tokyo. Remote Sens. 2021, 13, 610. [CrossRef]

29. Mohamed, M.; Othman, A.; Abotalib, A.Z.; Majrashi, A. Urban Heat Island Effects on Megacities in Desert Environments Using
Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia. Remote Sens. 2021, 13, 1941.
[CrossRef]

30. Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A
remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [CrossRef]

31. Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities.
Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [CrossRef]

32. Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal
satellite data. Sustain. Cities Soc. 2016, 22, 19–28. [CrossRef]

33. Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban
heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [CrossRef] [PubMed]

34. Fang, G. Prediction and analysis of urban heat island effect in dangshan by remote sensing. Int. J. Smart Sens. Intell. Syst. 2015, 8,
2195–2211. [CrossRef]

35. Xu, Y.; Shen, Y. Reconstruction of the land surface temperature time series using harmonic analysis. Comput. Geosci. 2013, 61,
126–132. [CrossRef]

36. Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data.
Remote Sens. Environ. 2014, 145, 55–67. [CrossRef]

37. Neteler, M. Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data.
Remote Sens. 2010, 2, 333–351. [CrossRef]

38. Ke, L.; Ding, X.; Song, C. Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical
Approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1602–1606. [CrossRef]

39. Kang, J.; Tan, J.; Jin, R.; Li, X.; Zhang, Y. Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal
Information. Remote Sens. 2018, 10, 1112. [CrossRef]

40. Shang, H.; Jia, L.; Menenti, M. Analyzing the Inundation Pattern of the Poyang Lake Floodplain by Passive Microwave Data. J.
Hydrometeorol. 2015, 16, 652–667. [CrossRef]

41. Menenti, M.; Malamiri, H.R.G.; Shang, H.; Alfieri, S.M.; Maffei, C.; Jia, L. Observing the Response of Terrestrial Vegetation to Climate
Variability across a Range of Time Scales by Time Series Analysis of Land Surface Temperature; Springer: Heidelberg, Germany, 2016;
p. 447.

42. Sun, J.; Ongsomwang, S. Multitemporal Land Use and Land Cover Classification from Time-Series Landsat Datasets Using
Harmonic Analysis with a Minimum Spectral Distance Algorithm. ISPRS Int. J. Geo-Inf. 2020, 9, 67. [CrossRef]

43. Lo, C.P.; Quattrochi, D.A. Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A
Remote Sensing Approach. Photogramm. Eng. Remote Sens. 2003, 69, 1053–1063. [CrossRef]

44. Statistics Bureau of Anhui Province. Anhui Statistical Yearbook. Available online: http://tjj.ah.gov.cn/ssah/qwfbjd/tjnj/index.
html (accessed on 25 February 2021).

45. Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface
temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [CrossRef]

46. USGS. Landsat QA Tools User Guide; Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2017; p. 33.
47. Vicente-Serrano, S.M.; Pérez-Cabello, F.; Lasanta, T. Assessment of radiometric correction techniques in analyzing vegetation

variability and change using time series of Landsat images. Remote Sens. Environ. 2008, 112, 3916–3934. [CrossRef]
48. USGS. Landsat 4–7 Surface Reflectance (LEDAPS) Product Guide; Department of the Interior, U.S. Geological Survey: Reston, VA,

USA, 2019; p. 38.
49. USGS. Landsat 8 Surface Reflectance Code(LaSRC) Product Guide; Department of the Interior, U.S. Geological Survey: Reston, VA,

USA, 2019; p. 39.
50. Jiménez-Muñoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for

Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349.
[CrossRef]
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