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Abstract: Dockless electric scooters (e-scooter) have emerged as a green alternative to automobiles
and a solution to the first- and last-mile problems. Demand anticipation, or being able to accurately
predict spatiotemporal demand of e-scooter usage, is one supply–demand balancing strategy. In
this paper, we present a dockless e-scooter demand prediction model based on a fully convolutional
network (FCN) coupled with a masking process and a weighted loss function, namely, masked FCN
(or MFCN). The MFCN model handles the sparse e-scooter usage data with its masking process and
weighted loss function. The model is trained with highly correlated features through our feature
selection process. Next-hour and next 24-h prediction schemes have been tested for both pick-up
and drop-off demands. Overall, the proposed MFCN outperforms other baseline models including
a naïve forecasting, linear regression, and convolutional long short-term memory networks with
mean absolute errors of 0.0434 and 0.0464 for the next-hour pick-up and drop-off demand prediction,
respectively, and the errors of 0.0491 and 0.0501 for the next 24-h pick-up and drop-off demand
prediction, respectively. The developed MFCN expands the collection of deep learning techniques
that can be applied in the transportation domain, especially spatiotemporal demand prediction.

Keywords: e-scooter; micromobility; free-floating systems; urban mobility; mobility-as-a-service;
spatiotemporal demand; demand prediction; fully convolutional network

1. Introduction

In many cities around the world, e-scooters have emerged as a new, trendy mobility
option. There are two different types of scooters currently dominating the market, the
(stand-up) e-scooter and the electric mobility scooter (small motorcycle where the driver
sits). The focus of this study is the stand-up e-scooter that is experiencing explosive growth
and adoption in urban areas [1]. Introduced by Bird, the US operator in Santa Monica,
California in 2017, the dockless e-scooter service has expanded rapidly to other countries.
A number of e-scooter-share companies are available today with Lime and Bird being
the two dominant operators in the US and Canada [1]. The e-scooter sharing services
integrate mobile payment and GPS tracking into the system, which greatly eases use
and management. E-scooters communicate their locations to a central server through an
embedded GPS sensor and communication module. A customer accesses a network of
available scooters with information on their location and battery level via a smartphone
app. After locating a scooter, the user can unlock the scooter by scanning a quick response
code on the scooter and start their trip. Upon completion of their trip, the user has to park
the scooter properly and end their trip on the mobile app [2].

The surge of shared e-scooter service popularity is attributed to many factors including
shared mobility trend, millennials’ consumer demand, technological advancement and ven-
ture capital [3]. Scooter providers often advertise it as an excellent first and last mile mode
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to public transit, which supports modal shift towards more sustainable transportation as
well as being a tool for enabling more equity in mobility [4]. From planning and adminis-
tration perspectives, the social, economic, and environmental benefits of shared e-scooter
services make them an attractive mobility option to advocate for [4,5]. Hollingsworth
et al. [6] showed that environmental impacts such as global warming impacts associated
with the use of shared e-scooters are dominated by materials, manufacturing, and trans-
portation for e-scooter collection for charging and rebalancing. Previous studies emphasize
that the burden from the electricity used to charge the scooter contributes only 4.7% of the
total impact as reported by [6] and 3.8% as reported by [7]. There are avenues for reduction
of the environmental impacts associated with shared e-scooter use, including developing ef-
ficient rebalancing strategies by accurately predicting spatiotemporal demand of e-scooter
usage [8] and the use of fuel-efficient vehicles for collection [6]. Abduljabbar et al. [9]
surveyed many studies that show the benefits of micro-mobility services in addressing
transportation challenges, including congestion, access inequality, and traffic emissions.
Palm et al. [10] discussed the equity performance of emerging mobility services, including
shared electric scooters. Given the inequality in transit stop coverage and pedestrian
infrastructure, emerging mobility services, including scooters, may improve transit access
as a first/last-mile connection to many communities with inadequate coverage [11,12].

Cities that are building sustainable transportation system as one of their key prior-
ities can support shared e-scooter service interest and growth based on the argument
that increasing the demand for non-motorized movement through the enhancement of
active-modes systems and integrating/linking these systems to support transit can reduce
pressure on urban transport infrastructure. There is also a movement towards mobility
services aggregation, ideally having public transit as a core service, to provide personalized,
shared, and multimodal mobility services, such as mobility as a service (MaaS) [13]. While
a MaaS ecosystem depends entirely on a range of transport modes, a mobility service can
operate outside a MaaS ecosystem (e.g., e-scooters). The success of the shared e-scooter
service in a new city will depend on different factors, including travel demand for active
modes, built environment, transportation infrastructure, and safety, among others. Re-
searchers have been developing different methodologies to assess the readiness of different
neighborhoods in a city for active transportation systems using walkability indexes and
urban metrics that describe the city, among others [14,15].

The dockless e-scooter sharing service is an emerging transportation mode and as
such, limited research has investigated aspects of its adoption and operations. One of the
main concerns of cities and municipal governments is that few studies were conducted
prior to the adoption of the shared e-scooter service [16,17]. A number of companies and
cities have been running pilot shared e-scooter services before permanently establishing
e-scooters [5,18–21]. In many parts of the world, local administrations are making a number
of legislation adjustments to find workable solutions such as implementing low speed
zones in high pedestrian areas [5,18,19]; implementing designated parking zones in high
demand parking areas [5,20,21]; adopting bylaws to allow for better enforcement and
address operational concerns [5,18].

While the shared e-scooter services have been popular, their introduction has also
caused considerable debates over access, space, speed, and safety, as well as rider behav-
ior [1]. In order to improve the operation and management of shared e-scooter services,
more studies regarding users’ reaction toward the services such as customer demand, usage
pattern, and potential impacts on environment and transportation are required [22]. Liao
and Correia [22] surveyed results from existing research on e-scooters and their findings
showed that research studies pertaining to shared e-scooter services have focused on a
number of facts ranging from spatiotemporal usage pattern analysis [2,5,23,24]; analysis of
factors that influence the demand for e-scooter services [4,25,26]; and studies that evaluate
the environmental, transport, and land use impacts [24,27–29] to studies that predict the
demand for e-scooter services [8]. In addition, the arrival of e-scooters challenges the
status quo of infrastructure use and makes the conflicts of interest in public space obvious.
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Further studies are required to understand the conflicts that emerge between micromobility
systems and other modes and pedestrians. For instance, Balsa-Barreiro et al. [30] developed
methods to study driving patterns and their relationship with geographical areas using
naturalistic driving methods.

Since the e-scooter sharing service is still in its infancy period, its impact has not yet
reached everyone. In many parts of the world, local administrations are making legislation
adjustments to find workable solutions for e-scooter operations and management. Thus, the
findings of future research may contain variations as deployment and adoption gradually
increase over time. For instance, the preference for service attributes may change as the
services reach more users than just the early adopters [22].

Much of the prior research has utilized the emerging wealth of purposely sensed
data (e.g., traditional agency big data) [31–33], opportunistic data (e.g., mobile phone
data) [34–36], and crowdsensing (e.g., social media data) [37] for travel demand modeling
of the emerging mobility services (e.g., ride-hailing and on-demand taxi service) [38–41],
public transit [31,42], and the freight and logistic sectors [43,44]. Despite the considerable
growth in the demand for and usage of e-scooters, research on e-scooter demand prediction
is still sparse due to its emerging and evolving nature. To bridge these gaps, we’ve
developed a methodology for short-term demand prediction of e-scooters pick-up and
drop-off. A masked fully convolutional network is used to predict the number of e-scooter
pick-up and drop-off events. Such information enables planners and e-scooter providers to
quantitatively evaluate and prioritize e-scooter device relocation (re-balancing) strategies
that improve e-scooter service operation and usage. So, the aim of the study is to develop a
predictive model that is suitable for e-scooter spatiotemporal demand that performs well
when compared with the state-of-the-art methods.

This paper is organized as follows. Our methodology is described in Section 2,
followed by an empirical study of shared e-scooter service in Calgary, Canada using the
proposed methods, detailed in Section 3. Conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Dataset

In July 2019, a shared e-scooter service was introduced to Calgary, Canada with the
companies Lime deploying 1000 and Bird deploying 500 scooters. The City of Calgary
provided us with a dataset of e-scooter usage over a period of 75 days from 15 July 2019
to 27 September 2019. Calgary covers an area of 825 km2 with its population of 1,285,711.
The shared e-scooter service is dockless, i.e., there are no designated parking stations. A
user can rent and return the e-scooter at any location using a mobile app. Each time an e-
scooter was rented, its usage information was recorded, from which the data available to us
included the date, hour (hour of the day in which the scooter was rented), day of the week,
trip duration (in minutes), trip length (in kilometers), and starting/ending geolocations
(latitude, longitude). To protect data privacy, the starting and ending geolocations were
normalized by the City into 300-m2 hexagonal grids.

Data included 459,478 total e-scooter rides from 4901 different starting grid locations
to 5242 ending grid locations. Average demand for each day of the week is shown in
Figure 1, where the demand rises from Monday to Wednesday then drops slightly and rises
again and drops on Sunday. Saturday has the highest average daily demand, which was
presumably generated largely by weekend recreational trips. When considering hourly
demand, Figure 2 shows the overall average demand as well as demand across each day
of the week. Overall, the demand begins to rise from 5 a.m. then drops down slightly
during the 9 a.m. hour, rises to a peak during the 4 p.m. hour, then gradually drops to the
lowest level during the 4 a.m. hour. The morning peak (6 a.m.–8 a.m.) is only observed for
weekdays, which is most likely due to daily commuting to work.

On average, each trip lasted for 12.84 min and traveled for 1.85 km, where the trip
duration and trip length distributions are shown in Figures 3 and 4, respectively. Distribu-
tions are plotted using a logscale because they seemingly follow a long tail distribution
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and so they are more observable on a logscale. There were 166,271 trips and over one-third
of all trips (36.19%), were less than 1 km. For these short distances, e-scooters may replace
walking rather than driving as observed and discussed in [28,45].
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Geographically, e-scooter demand was mostly seen in the city center area and along
the public transit stations for light rail and bus. Overall spatial distribution of e-scooter
demand as well as aggregated demand for each day of the week across the city of Calgary
are shown in Figure 5, where brighter color implies higher demand and green dots indicate
public transit station locations. Peripheral demand took place mostly over the weekend,
especially in the Northwest area of the city where there is a recreational flow along the
Bow River.
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2.2. Predictive Model

Our approach to scooter demand prediction was to consider spatial demand density as
an image. With the same spatial coordinates, a prediction can be made based on a series of
historical demand densities (density maps). This approach allows us to take advantage of a
machine learning technique used in computer vision called the fully convolutional network
or FCN [46], which is a deep learning model typically used for image segmentation. Taking
a similar approach to the image segmentation, the output of the FCN is the predicted spatial
demand instead of class confidence. FCN was chosen over the conventional convolutional
neural network, or CNN [47], because FCN performs a pixel-wise operation, so that it
does not contain fully connected layers. Hence, the output of the FCN can be an image
of the same size as the input images rather than an image class, as produced by a CNN.
Technically, the CNN is used for classification of the whole images, i.e., identifying a
class of them, while the FCN, on the other hand, is used for a pixel-wise classification
i.e., determining a class of each pixel. Hence, the FCN is more suitable for spatial and
temporal correlated data points, which can be considered as image pixels of spatial demand
in our case.

FCN based network architectures have the proven ability of learning spatial patterns
in image segmentation tasks or temporal patterns in flow estimation tasks [48]. The number
of required parameters for training FCNs is not high. Hence, they can be trained quite fast.
Therefore, they are highly flexible to the application of any geographical-based masks to
the FCN model as additional information. Since the network is not deep, the image size is
not large in our scenario and we wanted to retain the output’s resolution, we chose not to
use the pooling layers as in the standard FCN, or upsampling layers and skip connections
as in the U-Net [49], or unpooling layers with pooling indices as in the SegNet [50].

2.2.1. Data Preparation

In the initial step, our spatial demand information must be prepared into a form of
image, so that it can be fed into the FCN model. The standard convolutional layers in
the neural networks are defined based on a cartesian coordinate system (discrete) and
the input/output data is stored in a 3D array system. Therefore, in order to use the
standard libraries for implementing convolutional layers to neural networks, we needed to
transform the demand data from the original hexagonal grids to rectangular grids. The
original 300-m2 hexagonal grids were therefore mapped onto 220 × 240-m2 rectangular
grids where any demands associated with the hexagonal grids were transferred into the
newly assigned grids, as shown in Figure 6, which is still within a reasonable walking
distance, reachable within 5 min by foot given an average walking speed of 1.47 m/s [51].
However, the proposed methodology is applicable to other grid sizes. Spatial demand can
then be plotted on an image of size 167 × 106 pixels that covers all scooter demand in the
city of Calgary.
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With the rectangular grids, sample images of density maps reflecting pick-up and
drop-off demand levels (distinguished by color) during 2–3 p.m. on Sunday, 28 July 2019,
are shown in Figure 7.
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2.2.2. Global Masking

A global mask (shown in Figure 8) was created to guide the FCN to focus on only
pixels with potential demand based on the entire past demands, so that the model only
learns and predicts within the masked area or region of interest (ROI). The ROI was
generated according to Equation (1).

ROI(i, j) =

1 ∑
t

p(i, j, t) + d(i, j, t) > 0

0 otherwise
(1)

where p(i, j, t) and d(i, j, t) are pick-up and drop-off demands at position (i, j), at time t.
ROI value at grid (i, j) or ROI(i, j) is set to one if there exits at least one demand (pick-up or
drop-off) in that grid in the previous record and is set to zero if there is no demand in that
grid in the previous record. This ROI scheme can also be applied in other scenarios besides
our case, such as value assignment based on other geographical or area information, e.g.,
physical environments, urban settings, and so on.
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Figure 8. Global mask created to guide the FCN with ROI.
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2.2.3. Feature Selection

As human mobility has a high degree of temporal and spatial regularity [52], our
approach to feature selection was to select spatial demand densities (in the form of images)
that correlate well with the predicted period. So, the absolute differences and average
correlation coefficients between pick-up and drop-off demands for time difference k are
calculated as follows.

ADS(k) = ∑
i, j ∈ ROI

t ∈ TRAIN

|p(i, j, t)− p(i, j, t− k)|+ ∑
i, j ∈ ROI

t ∈ TRAIN

|d(i, j, t)− d(i, j, t− k)| (2)

ADC(k) = ∑
i, j ∈ ROI

t ∈ TRAIN

|p(i, j, t)− d(i, j, t− k)|+ ∑
i, j ∈ ROI

t ∈ TRAIN

|d(i, j, t)− p(i, j, t− k)| (3)

where ADS(k) and ADC(k) are absolute differences in demands at time difference k in
hour units, ROI is a set of the positions (i, j) where ROI(i, j) = 1, and TRAIN is a set of
the time in the training set.

CORRS(k) =
1
2
(R(p(t), p(t− k)) + R(d(t), d(t− k))) (4)

CORRC(k) =
1
2
(R(p(t), d(t− k)) + R(d(t), p(t− k))) (5)

where CORRS(k) and CORRC(k) are the average correlation coefficients of the demands at
time difference k, and R(a, b) represents a Pearson correlation coefficient between variables
a and b.

Features were selected among varying values of k based on ADS, ADC, CORRS, and
CORRC. The values of k that produce the top 20 lowest ADS and ADC, and the top
20 highest CORRS and CORRC were considered and selected as the input feature map.
Table 1 shows the selected features from the varying k values for two prediction schemes:
next hour or (t + 1) prediction and next 24-h or (t + 24) prediction. Intuitively, there are
high correlations between the next hour demand and the immediate previous demands
like the current (t − 0) and last hour (t − 1) demands, as well as yesterday’s same hours
i.e., (t − 22), (t − 23), (t − 24), and last week’s similar hours, i.e., (t − 143), (t − 166),
(t − 167), and (t − 143), for instance. The same presumption can be made for the next
24-h demands. Thereby, those highly correlated demand hours are listed in Table 1. Both
prediction schemes can be useful for scooter operational management for a short-term as
well as long-term planning.

Table 1. Selected features for the next-hour (t + 1) prediction and the next 24-h (t + 24) prediction.

Prediction Scheme Values of k in (t−k)

Next hour prediction 0, 1, 22, 23, 24, 143, 166, 167, 168, 191, 335, 336, 503, 504
Next 24-h prediction 0, 1, 120, 121, 143, 144, 145, 168, 312, 313, 336, 480, 481, 648

2.2.4. Network Architecture

We modified the FCN model by adding the masking process to better guide the model,
and hence developed a new network architecture, namely, the Masked Fully Convolutional
Network (MFCN), as shown in Figure 9. The input of the MFCN is a series of historical
pick-up and drop-off demand density images (maps) at time t− k as shown in the Table 1,
totally 28 feature maps.
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There is no pooling layer in the network in order to keep the resolution of the output
as the input’s size. The network consists of two branches: regression and classification.
The regression branch is for predicting a demand image or map. Since the demand map
consists of a large number of zeros (after the global mask is applied), the classification
branch is applied to mask these zero values, as a local mask, i.e., the time-variant mask. The
output of the classification branch is pick-up or drop-off demand class map (with some
confidence level from 0–1.0), which will then be quantized to 0 or 1 by the threshold value
of 0.5 (where 0 implies zero demand and 1 implies non-zero demand). The output of the
regression branch is a map with predicted spatial demand values.

The thresholding and multiplying layers are there to allow only some masked pixels to
influence weight updating in the regression branch, i.e., reducing the effect of zero-demand
pixels. The multiply layer is an elementwise operation, i.e., producing an entry-wise
product. The number of convolutional layers, the number of feature maps in each layer,
and the size of the filters can be modified based on how much spatial correlation spreads
to the neighboring pixels in a given demand prediction problem. In our case, we used a
1 × 1 filter for the first convolutional layer to reduce the dimension of the input (i.e., the
number of input feature maps) from 28 to 10, so that it consequently reduced the number of
trainable parameters. A 3 × 3 filter was used for the next convolutional layer for modeling
the spatial relation between the pixels and their adjacent pixels. Finally, a 1 × 1 filter was
used for the last convolutional layer to decode the feature map (i.e., outputs of the previous
layer) into the pick-up and drop-off demand values/classes.

2.2.5. Loss Function

To optimize our prediction by minimizing the error, a loss function is used as another
important component of our MFCN model. Loss is simply a prediction error that is used to
calculate the gradients, which are then used to update the weights of the MFCN. This is
how our network is trained. The loss function is defined as follows.

e = ∑ w(y)(ŷ− y)2 + γ ∑(m̂ log(m) + (1− m̂) log(1−m)) (6)

where y and ŷ are the actual demand in each position and its prediction (including pick-up
and drop-off demands) in the regression branch, m and m̂ are the actual active class (i.e.,
zero or non-zero demands) in each position and its prediction (including pick-up and
drop-off demands) in the binary classification branch, and γ is a weight for scaling the
errors between weighted mean squared error (WMSR) and binary cross entropy, where
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w(y) =


1
y
y2

for unweighted MSE
for the first order weighted MSE

for the sec ond degree order weighted MSE
(7)

Therefore, the total loss is the sum of the regression loss from the regression branch
and the binary cross entropy loss from the classification branch.

3. Results

To evaluate our MFCN model for both prediction schemes (i.e., next-hour and next 24-
h predictions), we used the first 61 days of scooter data for training the model and the last
14 days for testing. We compared the performance of our proposed MFCN model against
three baseline models. The first baseline is a naïve forecasting, which simply predicts the
demand to be the same as the previous occurrence, i.e., predicting the next hour demand
(ŷ(t + 1)) to be the same as the last hour demand (y(t)) for instance. The second baseline
is the linear regression model [53] trained with the same set of data as our model and
the same selected features listed in Table 1. The third baseline is the e-scooter prediction
model proposed by Ham et al. [8], which is based on the autoencoder and convolutional
long short-term memory (LSTM) network, also trained with the same training set. For
the Ham et al. model, three different sets of the number of hidden states were examined
(i.e., 100, 200, and 300 states) from which the model performed best with 200 hidden states,
and hence this setup was used for our comparative analysis. The mean absolute error
(MAE) and max absolute error (Max AE) were used for the performance measurement and
comparison between the models and are defined by Equations (8) and (9), respectively.

MAE =
∑n

i=1(yi − ŷi)

n
(8)

Max AE = max
i∈{1,2,..., n}

(yi − ŷi) (9)

The performance of all models when used for the next-hour demand prediction is
shown in Table 2, which includes the detail on the associated loss function used, the size
of features, the number of parameters, and the values of MAE and Max AE for different
levels of demand as well as the overall demand (i.e., entire ROI). Higher populated areas
are likely to be associated with higher levels of demand; however, this doesn’t mean that a
lower demand areas are not important, as the scooter operator ideally wants to provide the
right amount of service in all areas. Therefore, the model performance was thus evaluated
across different levels of demand throughout the service area. Our proposed MFCN model
was examined with three different loss functions to observe the effect of weighting in
model penalization through the loss function (i.e., the higher the order, the greater penalty
in model learning). For visibility in reading the result in Table 2, the lowest error value in
each column is highlighted in bold. Overall, when considering the overall demand across
the entire ROI, the proposed MFCN with MSE loss function performs best with MAE of
0.0434. Recognizing areas with zero demand is also critical for the scooter operator in
scooter dispatching, so zero demand prediction (y = 0) was experimented. As a result, our
MFCN with MSE has the best performance with MAE = 0.0057 and Max AE = 8.0060. For
the non-zero demand prediction (y > 0), the proposed MFCN with MSE also has the best
performance with MAE = 1.5180. When different levels of demand are considered, the
MFCN with MSE is the best predictor with MAE = 1.2136 and Max AE = 11.4640 for the
demand ranging from 1–5 scooters, i.e., y ∈ [1,5], mostly located in the outskirts of the city.
However, it is interesting and intuitive to observe that when the demand gets higher, or in
the other words, as we get closer to the city center, the MFCN with a higher-order WMSE
loss function performs better, and is the best among other compared models. Therefore,
it is reasonable to suggest that the proposed MFCN is the most suitable model for the
next-hour pick-up demand prediction where its associated loss function (MSE or WMSE)



ISPRS Int. J. Geo-Inf. 2021, 10, 773 11 of 17

can be chosen in relation to the targeted demand level, which is often linked to the service
area.

Table 2. Performance of the proposed MFCN model compared with other baseline models for the next-hour or t + 1 pick-up
demand prediction, based on the mean absolute error (MAE) and max absolute error (Max AE).

Model Loss
Function

Feature
Size

No. of
Parameters

MAE (Max AE)

ROI y = 0 y > 0 y∈[1,5] y∈[6,10] y∈[11,15] y∈[16,25] y∈[26,∞)

ŷ(t + 1) = y(t) None 1 0 0.0625 0.0162
(35.0000) 1.8727 1.5047

(90.0000)
3.8417

(31.0000)
5.4476

(17.0000)
7.4194

(25.0000)
14.9825

(83.0000)

Linear Regression MSE 28 58 0.0518 0.0119
(8.4370) 1.6105 1.2379

(14.2270)
3.3343

(15.8740)
5.2931

(14.2820)
8.6092

(20.5480)
19.5238

(83.5030)

Ham et al. [8]
(200 hidden states) MSE 10 2.2M 0.0571 0.0085

(14.9810) 1.9562 1.5040
(20.4000)

3.8679
(16.3930)

6.6450
(14.0320)

11.1413
(24.0000)

26.0813
(93.0000)

Proposed
MFCN (3 conv) MSE 28 2.4k 0.0434 0.0057

(8.0060) 1.5180 1.2136
(11.4640)

2.9911
(12.7480)

4.5346
(13.0740)

6.5914
(21.0440)

16.7551
(87.3700)

Proposed
MFCN (3 conv)

WMSE
(1st order) 28 2.4k 0.0524 0.0098

(23.2360) 1.7143 1.5319
(22.4460)

2.4801
(29.7540)

3.6251
(18.9810)

5.0078
(18.6700)

14.0859
(79.4560)

Proposed
MFCN (3 conv)

WMSE
(2nd order) 28 2.4k 0.0799 0.0163

(20.1900) 2.5647 2.4042
(33.9710)

3.5038
(41.0600)

3.9200
(29.8330)

4.3432
(20.1340)

10.7125
(76.4970)

The next-hour prediction of drop-off demand was also tested in the same way as the
pick-ups since being able to recognize drop-off demand also helps the scooter operator in
their proactive scooter dispatching process. A similar result was observed when consid-
ering the entire ROI, zero demand, and non-zero demand, that the MSCN with MSE loss
function has the best performance (see Table 3). The regression model beats our MFCN
with MSE by 0.0156 scooters in MAE for the [1,5]-demand level. From the demand level
of at least six scooters, the proposed MFCN with WMSE has the best performance by
producing similar results in the pick-up prediction, i.e., the higher order of WMSE yields
a better performance for higher demand levels. Consequently, a similar suggestion to
the pick-up demand prediction can be made here that for the next-hour drop-off demand
prediction the MFCN model is the most suitable predictor, except for the [1,5]-demand
level as the linear regression tends to perform slightly better.

Table 3. Performance of the proposed MFCN model compared with other baseline models for the next-hour or t + 1 drop-off
demand prediction, based on the mean absolute error (MAE) and max absolute error (Max AE).

Model Loss
Function

Feature
Size

No. of
Parameters

MAE (Max AE)

ROI y = 0 y > 0 y∈[1,5] y∈[6,10] y∈[11,15] y∈[16,25] y∈[26,∞)

ŷ(t + 1) = y(t) None 1 0 0.0641 0.0174
(18.0000) 1.8036 1.4707

(29.0000)
3.8298

(23.0000)
5.1723

(17.0000)
8.6047

(35.0000)
16.9434

(56.0000)

Linear Regression MSE 28 58 0.0524 0.0124
(20.7040) 1.5423 1.2357

(14.1930)
3.2180

(11.1310)
4.9081

(13.0490)
8.2106

(23.7730)
20.2705

(55.9280)

Ham et al. [8]
(200 hidden states) MSE 10 2.2M 0.0559 0.0078

(13.4100) 1.8418 1.4465
(18.9050)

3.6415
(12.1180)

6.9028
(15.0000)

12.3292
(25.0000)

26.5623
(59.8670)

Proposed
MFCN (3 conv) MSE 28 2.4k 0.0464 0.0063

(12.4130) 1.5382 1.2513
(15.3500)

3.1714
(13.7140)

4.5551
(13.0000)

7.4168
(20.0910)

19.1214
(51.5870)

Proposed
MFCN (3 conv)

WMSE
(1st order) 28 2.4k 0.0559 0.0115

(16.3220) 1.7071 1.5275
(21.4960)

2.6053
(15.3670)

3.6906
(12.7310)

5.8654
(17.5140)

15.7879
(49.8510)

Proposed
MFCN (3 conv)

WMSE
(2nd order) 28 2.4k 0.0835 0.0188

(19.5390) 2.4905 2.3654
(37.0830)

3.2192
(22.8850)

3.5912
(19.6370)

4.6726
(24.6100)

13.9334
(54.0960)

Our MFCN model outperforms the Ham et al. model [8], which is the state of the art
in e-scooter demand prediction. The dense connection in the LSTM’s layers of the Ham
et al. model requires a large number of trainable parameters. Although dense connection
allows the network to learn the relation between each output and input pixel throughout
the image, high correlation is mostly found between the neighboring pixels in the case
of scooter demand prediction. Another shortcoming of the Ham et al. model is that its
prediction is based only on a few previous demand values (i.e., LSTM with five steps).
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However, the demand during time t + 1 is highly correlated not only with the demands in
the previous few timestamps but also the same time a day earlier (t− 23) and the same time
a week earlier (t− 167), as our model has taken into account (features listed in Table 1). So,
the feature selection process described in our methodology could be applied to potentially
improve its prediction performance. The feature selection process has shown its significant
impact as evidenced by seeing that a simple linear regression model outperforms a much
more sophisticated model like Ham et al.’s by using the features listed in Table 1. Another
potential improvement on the Ham et al. model is to use a CNN over its recurrent neural
network (RNN) to allow the model to pay attention to each previous time step equally. To
cope with the spare input, the Ham et al. model uses the autoencoder to compress the input
image into latent features, while our MFCN model uses the masking process and weighted
loss function. Using the weighted loss function enables us to shape the loss distribution
more effectively.

The overall performance of the proposed MFCN model in terms of the average
prediction error (MAE) for the next-hour prediction scheme for both pick-up and drop-off
demands is shown in Figure 10. It can be observed that the error rises on Monday and
Saturday. This is due to the fact that the model takes the same set of selected features (listed
in Table 1) for all predictions made, regardless of the day type, i.e., weekday, weekend,
holiday, and so on. Consideration of different sets of selected features based on day type
can potentially improve the performance of the MFCN model, which is worth future
research for the model’s further improvement.
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sion outperforms the MSCN with MSE by 0.0618 scooters for positive demand (y > 0) pre-
diction. The linear regression also performs well for the [1, 5]-demand level with MAE of 
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Figure 10. Average prediction error in terms of MSE loss of the proposed MFCN in each hour and
each day of the week of the next-hour or t + 1 prediction for (a) pick-up and (b) drop-off demands.

In addition to the next-hour demand prediction, we also conducted an experiment on
the next 24-h prediction for both pick-up and drop-off demands. In this prediction scheme,
the Ham et al. model was not included in our experiment as their model was designed only
for next-hour predictions. The result of the pick-up demand prediction is shown in Table 4.
A similar trend in model performance with the next-hour prediction is also observed here
in the next 24-h prediction scheme. Our MFCN model without weighted loss function has
the best performance overall (ROI, y = 0, and y > 0). Yet, when different levels of demand
were considered, the MFCN without weighted loss function has the best MAE for only the
[1,5]-demand level, while the MFCN with first order weighted loss function outperforms
other models for the demand ranging from 6 to 15 scooters. As the demand level becomes
even larger, the MFCN with second order weighted loss function (i.e., greater penalty in
model learning) intuitively emerges as the best predictor for pick-up demand of greater
than 16 scooters, which is often seen around the city center area.
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Table 4. Performance of the proposed MFCN model compared with other baseline models for the next 24-h or t + 24 pick-up
demand prediction, based on the mean absolute error (MAE) and max absolute error (Max AE).

Model Loss
Function

Feature
Size

No. of
Parameters

MAE (Max AE)

ROI y = 0 y > 0 y∈[1,5] y∈[6,10] y∈[11,15] y∈[16,25] y∈[26,∞)

ŷ(t + 1) = y(t) None 1 0 0.0686 0.0186
(35.0000) 2.0233 1.6139

(92.0000)
3.9394

(86.0000)
6.4434

(75.0000)
8.7028

(24.0000)
22.2807

(92.0000)

Linear Regression MSE 28 58 0.0538 0.0114
(19.0860) 1.7082 1.3029

(29.0070)
3.5371

(14.0520)
5.8054

(14.3870)
9.0964

(23.9050)
23.8689

(87.4850)

Proposed
MFCN (3 conv) MSE 28 2.4k 0.0491 0.0072

(12.5950) 1.6850 1.3307
(16.7230)

3.1609
(11.4780)

5.2500
(13.5990)

8.7423
(24.0000)

23.9104
(88.4540)

Proposed
MFCN (3 conv)

WMSE
(1st order) 28 2.4k 0.0630 0.0142

(15.8010) 1.9700 1.7618
(21.6630)

2.7033
(15.5900)

4.1097
(14.6500)

6.2884
(24.0000)

20.4071
(84.4270)

Proposed
MFCN (3 conv)

WMSE
(2nd order) 28 2.4k 0.1040 0.0212

(21.8550) 3.3352 3.1745
(29.3290)

4.3369
(28.4040)

4.3816
(21.3830)

4.4718
(24.0000)

16.2115
(80.9770)

The next 24-h drop-off prediction experiment was conducted in a similar way, the
results of which are shown in Table 5. The MFCN with MSE has the best performance
overall (ROI) as well as for zero-demand prediction (y = 0). Interestingly, the linear
regression outperforms the MSCN with MSE by 0.0618 scooters for positive demand (y > 0)
prediction. The linear regression also performs well for the [1,5]-demand level with MAE
of 1.2385. The MFCN with first order WMSE is the best predictor for [6, 10]-demand level,
while the MFCN with second order WMSE outperforms other models for all other greater
demand levels (from 11 scooters onwards).

Table 5. Performance of the proposed MFCN model compared with other baseline models for the next 24-h or t + 24
drop-off demand prediction, based on the mean absolute error (MAE) and max absolute error (Max AE).

Model Loss
Function

Feature
Size

No. of
Parameters

MAE (Max AE)

ROI y = 0 y > 0 y∈[1,5] y∈[6,10] y∈[11,15] y∈[16,25] y∈[26,∞)

ŷ(t + 1) = y(t) None 1 0 0.0703 0.0206
(64.0000) 1.9168 1.5522

(38.0000)
3.9233

(73.0000)
6.1527

(63.0000)
9.4535

(55.0000)
22.1698

(80.0000)

Linear Regression MSE 28 58 0.0545 0.0140
(19.2720) 1.5612 1.2385

(16.5710)
3.2434

(12.4270)
5.1742

(14.1640)
8.7959

(24.9810)
23.7204

(74.9180)

Proposed
MFCN (3 conv) MSE 28 2.4k 0.0501 0.0078

(15.2290) 1.6230 1.3130
(14.8920)

3.0823
(10.9180)

5.2701
(13.9340)

9.4133
(25.0000)

24.9182
(73.9240)

Proposed
MFCN (3 conv)

WMSE
(1st order) 28 2.4k 0.0631 0.0142

(22.8020) 1.8820 1.6979
(18.2310)

2.6567
(15.9640)

3.9370
(13.1260)

6.7686
(25.0000)

20.8505
(72.7650)

Proposed
MFCN (3 conv)

WMSE
(2nd order) 28 2.4k 0.0916 0.0197

(19.2700) 2.7638 2.6393
(23.2960)

3.3938
(19.7940)

3.6898
(17.9540)

5.4239
(24.0500)

19.2935
(67.5760)

As an overall performance of our MFCN model, average prediction error in terms of
MSE loss in each hour and each day of the week for the next 24-h prediction scheme for
both pick-up and drop-off demands is shown in Figure 11. A similar trend is also observed
in this prediction scheme where error jumps on Monday and Saturday, which is due to
the aforementioned non-consideration of day type. The MFCN model has higher average
error in the next 24-h prediction scheme than the next-hour prediction scheme, which is
intuitive. Specifically, the next 24-h prediction scheme has 0.167 and 0.0848 higher errors
than the next-hour prediction scheme for the pick-up and drop-off demand predictions,
respectively.
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Figure 11. Average prediction error in terms of MSE loss of the proposed MFCN in each hour and
each day of the week of the next-hour or t + 24 prediction for (a) pick-up and (b) drop-off demands.

Overall, our MFCN performs better as a pick-up demand predictor than a drop-
off demand predictor in terms of the error. Since the next-hour demand is likely to be
intuitively easier to predict than looking farther into the future like next 24 h, so our MFCN
model performs better for the next hour demand prediction than the next 24-h prediction.
In summary, the MFCN model outperforms other baselines in all cases considered for
pick-up demand prediction for both schemes. For drop-off demand prediction, the MFCN
performs better than other baselines except for the next-hour prediction where demand is
low (i.e., y ∈ [1,5]), and for the next 24-h drop-off demand prediction where only positive
demands are concerned (y > 0) and low-level demand (y ∈ [1,5]) is of interest for which a
linear regression performs slightly better. As seen in the experimental result, the proposed
MFCN model can be used with a different loss function depending upon the demand level
of interest. Using MFCN with a higher-degree weighted loss function is more suitable for
areas with greater demand levels, such as the city center. Since all levels of demand are
equally important for the e-scooter operator as they seek to balance supply and demand,
with our MFCN model three choices of a loss function are available to choose from.

4. Conclusions

Provided as a dockless service, e-scooters are more flexible to use than other dock-
based micromobility services such as e-bikes that often require pick-up and drop-off
stations [54]. Dock-based shared mobility services face imbalances in the system at selected
locations in a city (e.g., bike station). However, the dockless system faces a challenge of
imbalances that cannot be measured at selected points in space, which is more widespread.
The e-scooter demand is aggregated at a zonal level, which was represented by a 220 m by
240 m grid. Therefore, grid-level demand anticipation or being able to accurately predict
spatiotemporal demand of e-scooter usage was seen as one of the rebalancing strategies. In
this work, we developed a predictive model for pick-up and drop-off demands based on
a fully convolutional network. Like other urban public transit services, the demand for
e-scooters varies with area type, population density, rider behavior, and countless other
factors [55]. Subsequently, e-scooter usage is sparse, i.e., most of the demand appears
around the city center and the rest spreads out through other parts of the town. Therefore,
our model tackles the sparsity of the e-scooter data with its masking process and weighted
loss function, and so the model is named after its core components as the masked fully
convolutional network or MFCN. The proposed MFCN model has been evaluated in terms
of prediction error against other baseline models including naïve forecasting (based only
on a previous value), linear regression, and LSTM network with autoencoder [8]. The
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experimental results show that our MFCN has the best performance overall for pick-up
demand prediction in both prediction schemes; next-hour and next 24-h demands. The
mean absolute errors of the next-hour prediction are 0.0434 and 0.0464 for pick-up and
drop-off demands respectively, while the errors of the next 24-h prediction are 0.0491 and
0.0501, respectively.

The MFCN model can play a useful role for e-scooter service providers in their
supply–demand balancing strategies that seek to leverage the anticipation of both pick-up
and drop-off spatiotemporal demands in the serviced area. Nonetheless, there are a few
limitations of the current development of the MFCN model which could be considered
in its future improvement. Firstly, the model could benefit from the sequential training
scheme with which the model gets trained once a new data stream arrives or once each
prediction is validated. Secondly, a set of different training–testing data portions could
potentially be explored for a more rigorous performance evaluation, which could lead to
another interesting research question of adequacy of training data [56]. Lastly, the model
could benefit from taking into account the day type, i.e., weekday, weekend, or holiday for
which different sets of influential features may be used. Other future research directions
include e-scooter origin–destination (O–D) estimation, visual analytics tools for e-scooter
operational monitoring and analysis, and urban traffic modeling and characterization using
e-scooter usage information.
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