
 International Journal of

Geo-Information

Article

Regionalization of Rainfall Regimes Using Hybrid RF-Bs
Couple with Multivariate Approaches

Muhamad Afdal Ahmad Basri 1, Shazlyn Milleana Shaharudin 1,* , Kismiantini 2, Mou Leong Tan 3 ,
Sumayyah Aimi Mohd Najib 4, Nurul Hila Zainuddin 1 and Sri Andayani 5

����������
�������

Citation: Ahmad Basri, M.A.;

Shaharudin, S.M.; Kismiantini;

Tan, M.L.; Mohd Najib, S.A.;

Zainuddin, N.H.; Andayani, S.

Regionalization of Rainfall Regimes

Using Hybrid RF-Bs Couple with

Multivariate Approaches. ISPRS Int.

J. Geo-Inf. 2021, 10, 689. https://

doi.org/10.3390/ijgi10100689

Academic Editor: Wolfgang Kainz

Received: 30 July 2021

Accepted: 11 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris,
Tanjong Malim, Perak 35900, Malaysia; M20201000214@siswa.upsi.edu.my (M.A.A.B.);
nurulhila@fsmt.upsi.edu.my (N.H.Z.)

2 Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta,
Yogyakarta 55281, Indonesia; kismi@uny.ac.id

3 GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, Gelugor,
Pulau Pinang 11800, Malaysia; mouleong@usm.my

4 Department Geography and Environment, Faculty of Human Sciences, Universiti Pendidikan Sultan Idris,
Tanjong Malim, Perak 35900, Malaysia; sumayyah@fsk.upsi.edu.my

5 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta,
Yogyakarta 55281, Indonesia; andayani@uny.ac.id

* Correspondence: shazlyn@fsmt.upsi.edu.my

Abstract: Monthly precipitation data during the period of 1970 to 2019 obtained from the Mete-
orological, Climatological and Geophysical Agency database were used to analyze regionalized
precipitation regimes in Yogyakarta, Indonesia. There were missing values in 52.6% of the data,
which were handled by a hybrid random forest approach and bootstrap method (RF-Bs). The present
approach addresses large missing values and also reduces the Root Mean Square Error (RMSE) and
the Mean Absolute Error (MAE) in the search for the optimum minimal value. Cluster analysis was
used to classify stations or grid points into different rainfall regimes. Hierarchical clustering analysis
(HCA) of rainfall data reveal the pattern of behavior of the rainfall regime in a specific region by
identifying homogeneous clusters. According to the HCA, four distinct and homogenous regions
were recognized. Then, the principal component analysis (PCA) technique was used to homog-
enize the rainfall series and optimally reduce the long-term rainfall records into a few variables.
Moreover, PCA was applied to monthly rainfall data in order to validate the results of the HCA
analysis. On the basis of the 75% of cumulative variation, 14 factors for the Dry season and the
Rainy season, and 12 factors for the Inter-monsoon season, were extracted among the components
using varimax rotation. Consideration of different groupings into these approaches opens up new
advanced early warning systems in developing recommendations on how to differentiate climate
change adaptation- and mitigation-related policies in order to minimize the largest economic damage
and taking necessary precautions when multiple hazard events occur.

Keywords: rainfall; principal component analysis (PCA); hierarchical clustering analysis (HCA);
imputation method; random forest-bootstrap algorithm (RF-Bs)

1. Introduction

Rainfall is the most significant variable in climatology and hydrological modelling.
Indonesia is a particularly important area for intervention and research surrounding the
impact of natural disasters as it is a part of the area of geological instability known as the
‘Ring of Fire’. Thus, it is a country that regularly experiences mud slides, flooding and
earthquakes. One particularly relevant feature of the rainfall regime in Indonesia is the
occurrence of episodes of rain of an extreme character, which has the potential to become
hazardous in Indonesia. For instance, consecutive waves of flash floods hit Sleman regency
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as stated in Indonesia’s Special Region of Yogyakarta and Bandung regency in West Jaya
on 21 February 2020 and 18 February 2020.

The natural water cycle, also known as the hydrologic cycle, explains the continual
movement of water on, above, and beneath the Earth’s surface. Water is constantly chang-
ing phases, from liquid to vapour to ice, and this occurs in the blink of an eye and over
millions of years. Precipitation becomes an important parameter as an input of water
resource infrastructure planning and management. Because of this, understanding the
characteristics of rainfall from recorded time series data is essential in the sustainability of
water resources management in the future [1]. Rainfall is one of the climate variables that
is important to study due to the various rainfall patterns in each region in Indonesia [2]. In
general, Indonesian rainfall patterns are influenced by several factors, such as, monsoon,
Inter-tropical Convergence Zone (ITCZ), El Nino-Southern Oscillation (ENSO), and other
regional circulations in Pacific and Indian oceans [3].

A common issue in hydro-climatic analysis is related to missing data. Imputing
missing data is the most suitable and most practical way to proceed. Missing values of
this study are referred to for some of the observations in the dataset are blank due to
reasons such as technical or human recording error. The problem of missing values in
meteorological series is particularly significant in developing countries, where gauging
stations are scarce and the degree of missingness is large due to the high cost of maintenance
of the weather station. Thus, ignoring missing data can eventually lead to partial and biased
results in data analysis [4]. According to Dodeen [5], the solution to this problem is a real
challenge, when a large proportion (30% or more) of data is missing. The dataset containing
50–60% of missing values are regarded as a high degree of missingness in precipitation time
series [6] and are difficult to fill. The number of rain gauge stations with complete records
is extremely limited in Indonesia due to missing data that occurs frequently for a variety
of reasons, such as rainfall station repositioning, changes in the environment, defective
tools and network restructuring [7]. A significant number of river basins in less developed
nations have deficient dataset issues, since there is a lack of gauging stations combined
with substandard data compiling and storage procedure [8]. The missing mechanism
had to be studied to achieve the effective imputation method from these rainfall data.
For a reliable conclusion regarding rainfall conditions, the missing rainfall details must
be treated correctly in order to achieve an accurate outcome. The present study tests a
classical imputation method, called Random Forest (RF) to filling in missing monthly
precipitation data in a dataset with 52.6% of missing values in a rain gauge station in
Yogyakarta, Indonesia. Nevertheless, large Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) values were obtained using conventional RF. Due to this problem,
an effective technique is discovered in managing missing rainfall data, particularly for
tropical regions, for obtaining a precise rainfall valuation. In terms of dealing with large
missing values, we need to enhance imputation methods in order to cater for large missing
values and to reduce the RMSE and MAE values.

Several methods have been used to investigate spatial rainfall patterns, e.g., spatial
interpolation, k-means clustering, Pearson’s correlation, regional frequency analysis, and
support vector machines [9–13]. Hierarchical Clustering Analysis (HCA), an unsupervised
machine learning technique that enables us to discover patterns in our data without
attempting to gain a specific insight, is widely used in data science. Cluster analysis
divides rainfall dataset into groups with comparable characteristics. However, rainfall data
can be categorized as a large dimensional dataset, hence it is difficult to analyze the rainfall
patterns using clustering analysis only. Therefore, a combination of cluster analysis with
Principal Component Analysis (PCA) is needed to reduce the data dimension issue.

PCA is a dimensionality reduction technique that is frequently used to reduce the
dimensionality of big data sets by reducing a large collection of variables into a smaller set
that retains most of the information. One of the advantages of PCA is in its reduction of
the number of variables in data collection, but the idea in dimensionality reduction is to
trade off some accuracy for simplicity. In general, smaller datasets are easier to study in
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visualizing rainfall since machine learning algorithms can analyze data easier and quicker
without having to handle irrelevant factors. However, PCA is lack of effectiveness on
clustering the rainfall data for the analysis. Therefore, study combines HCA and PCA to
cluster the rainfall patterns and reduce the dimension for further analysis.

Combination techniques of multivariate approaches such as cluster analysis (CA) and
PCA are the most popular methods in identifying spatial rainfall pattern recognition [14,15].
In the literature, integration of PCA and HCA to delineate rainfall clusters and identify major
factors associated with clusters is a famous approach [16]. Amiri [17] applied both PCA and
CA to monthly rainfall in Iran to cluster 42 stations into three groups. Meanwhile, according
to Dai [18], they employed the CA approach to the annual rainfall dataset at 49 rain gauges
in Somerset, Southwestern England. In India, monthly rainfall data from 1901 to 2002 for
32 rainfall stations, partially arid clusters using k-means clustering, which was located in the
individual districts of India with either entirely or partly arid lands experiencing hot and cold
weather [19]. According to Halkidi et al. [20] and Shaharudin et al. [21], CA is one of the most
useful tasks in identifying the groups and interesting patterns in the underlying data. As a
result, it is critical that any analysis incorporates as many of these variables as possible in
order to identify the spatial and temporal clustering of rainfall patterns.

There is a lack of research into the delineation of identifying rainfall patterns in
Yogyakarta, Indonesia using multivariate analysis. To fill this geographical research gap,
this study aims to use two statistical strategies based on filling the missing gap and
reduction dimension approaches in identifying the spatial and temporal torrential rainfall
patterns in Yogyakarta, Indonesia. Firstly, the RF approach was improved based on the
hybrid Random Forest with Bootstrap (RF-Bs) for imputing missing values in monthly
rainfall data. The improved RF-Bs model was developed to obtain more accurate impu-
tation values. Second, rainfall patterns in Special Region of Yogyakarta, Indonesia, were
identified using multivariate approaches, which include PCA combined with HCA. HCA
partitions observations of similar patterns into the same cluster and dissimilar patterns to
different clusters. The second step of PCA was employed in this study in order to reduce
the dimension of the data matrix and it is often used as a pre-processing method to guide
the process of grouping. This is a very significant issue and the results of such studies
could be used as a guide to climatologists or hydrologists in order to recommend actions
in mitigating flood damage and for taking necessary precautions before it occurs.

2. Study Area and Data Description

The tropical climate monsoon of the Special Region of Yogyakarta is 3133.15 square
kilometers (1209.72 square miles). In this study we consider the dominant rainfall pattern
in five regencies of the province. There are five regencies on this province, Sleman on the
North side, Kulonprogo on the West, Bantul on the South, Gunung Kidul on the Southeast,
and Yogyakarta city on the middle [22]. Monthly rainfall data for 50 years (1970–2019)
from 24 stations were obtained from the Meteorological, Climatological and Geophysical
Agency and were used to prepare into seasonal series. Within those years, the data have
12 leap months and are excluded for this study in order to standardize the data matrix
based on monthly series data. The rainfall dataset considered for the purpose of this study
is taken from 24 stations and 600 months, which constitute enough data to allow for the
identification of the main rainfall patterns.

According to Aldrian [3], Indonesia rainfall patterns are divided into three main areas,
which are monsoon region (type A), equatorial region (type B) and local climate region
(type C). Monsoon region (type A) is the dominant pattern in Indonesia because it covers
almost the entire territory of Indonesia. This area has a peak rainfall in November to March,
which is influenced by the wet northwest monsoon. A trough in May to September is
affected by the dry southeast monsoon, so it can be distinguished clearly between dry
and rainy seasons. Meanwhile, the equatorial region (type B) has two peaks in October to
November and from March to May. This pattern is influenced by a shift to the north and
the south from the ITCZ or equinox point (culmination) of the sun. Another rainfall pattern
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which occurs in Indonesia is local climate region (type C), where it has a peak in June to
July and a trough in November to February. However, Lee [1] stated that the Type A region
is affected by monsoons, type B by equinoxes, while type C is a superposition for a walker
circulatory system, Pacific Ocean tropical cyclones and very complex local conditions.

This study considered three seasonal series: dry season (June–October), rainy season
(November–March), and inter-monsoon season (April and May). Locations of the stations
are shown in Figure 1.

Figure 1. Yogyakarta in Indonesia and rainfall stations.

3. Material and Methods

From this study, 52.6% of the data are missing, which were then filled using the
random forest approach coupled with the bootstrap algorithm. The filled rainfall data help
to estimate the mean, performing regression analysis, and performing linear interpolation.
Mainly, a random forest was used to impute huge missing values, while bootstrap was
used to lower the RMSE and MAE in order to obtain the best minimal value.

3.1. Random Forest

Random forests (RF) is a supervised machine learning algorithm that has recently be-
gun to gain popularity in applications for water management [23,24]. In statistical analyses,
missing data are common, and imputation methods based on RF have become popular
for handling them, especially in climate research. However, current implementations are
typically confined to the implementation of Breiman’s initial regression and classification
algorithm, although various advances may also help to solve a number of functional
problems in the water field [25]. According to [26], Random Forest-Bootstrap (RF-B) was
the strongest single-imputation approach when calculating an incredibly large number of
missing values.

Random forests (RFs) are very flexible and powerful ensemble classifiers based on the
decision trees which were firstly developed by Breiman [27]. In addition, the framework
gives an insight into the ability of the random forest to predict in terms of strength of the
individual predictors and their correlations. The random forest can be applied for classifica-
tion, regression, and unsupervised learning [25,26]. By assuming that X = (X1, X2, . . . , XP)
as a n × p-dimensional data matrix, where n is the number of observation and p is
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the number of stations and XS as an arbitrary variable with missing values at entries
i(s)mis ⊆ {1, . . . , n}, the rainfall dataset can be separated into two categories: (1) the observed

values of variable XS are denoted by y(s)obs, (2) the missing values of variable XS are denoted by y(s)mis.
An initial guess for the missing value in X can be determined by using mean or other

imputation methods. The variables XS, s = 1, . . . , p, are sorted based on the total missing
values beginning with the smallest amount. For each variable XS, the missing values are
imputed by fitting a Random Forest with response y(s)obs and predictors x(s)obs; and predicting

the missing values of y(s)mis by applying trained Random Forest to x(s)mis. The imputation
procedure is then repeated until a stopping criterion is satisfied.

3.2. Bootstrap Approach

The bootstrap approach was introduced by Kiviet [28] in 1979 and is well known for its
functions in reducing the inherent variance and bias in a sample set of data. Theoretically,
a small variance indicates that the estimate from the specified imputation method is very
close to the true value of the expected value [29].

Assume Xk,i = x1,1, . . . , x24,n is a sample set of variable data with k = 1, . . . , 24 v
variables representing the number of stations and i = 1, . . . , n observations, where n
is a sample size of each variable, i.e., n = 601. The Xki data matrix is used to obtain a
group of bootstrap replication data through sampling with replacement, xB(t)

1,i where B(t)
refers to a number of bootstrap replication. It is common to employ a 1000 replication in
bootstrapping, t = 1, . . . , 1000 [30]. For example, the replication for the first variable can be
written as follows:

xB(1)
1,i =


xB(1)

1,1 . . . xB(1000)
1,1

...
...

xB(1)
1,601 . . . xB(1000)

1, 601

 (1)

A set of bootstrap samples can be obtained by calculating the average of each row of
xB(t)

1,i matrix, as given below:

xB
1,i =

t
∑

i=1
xB(t)

1,i

T
(2)

where T represents the total number of bootstrap replications, i.e., T = 1000. In terms of
matrix notation, the bootstrap sample of the first variable can be rewritten as follows:

xB
1,i = xB

1,1, . . . , xB
1,601 (3)

The bootstrap approach is eventually useful for increasing the accuracy or validity of
the statistical estimation. In order to investigate the validity of the estimate, the RMSE and
MAE estimation is used and is explained in next section.

3.3. Hybrid Random Forest-Bootstrap (RF-Bs)

Monthly precipitation data from 24 stations starting from year 1970 to 2019 have been
used in this study. These data were obtained from the Meteorological, Climatological and
Geophysical Agency of Indonesia. A total of 52.6% of the data were missing, which were
filled by considering the RF-b algorithm, including estimated mean, regression estimation
and linear interpolation. Generally, random forest was applied on the data to impute the
large missing value and the bootstrap is used to reduce the RMSE and MAE to get the
best smallest value. According to Wan Ismail et al. [31] and Chai et al. [32], the lower the
RMSE and MAE, the more accurate the evaluation is. It is common that the performance
of the imputation method is evaluated by using a root mean square root (RMSE) and a
mean absolute error (MAE). According to Shaharudin et al. [26], the hybrid Random Forest
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Bootstrap (RF-Bs) was the best method for single imputation when estimating extremely
large amounts of missing values.

3.4. HCA of Rainfall Series

CA is an unsupervised multivariate analysis which classifies the given data into similar
overlapping or non-overlapping groups and helps to group variables into clusters accord-
ing to the high similarity of their features, such as geographical, physical, statistical or
stochastic properties [33,34]. The CA can be separated into two types: hierarchical and
non-hierarchical [18]. The HCA is a common approach where the clusters of variables are
sequentially formed, where each cluster depicts the least variance (or smallest dissimilarity)
of variables [35]. A very general hierarchical cluster method is known as “Ward’s method” or
the “minimum variance method” and was proposed by Ward [36]. Ward’s method calculates
the distance between two clusters as the sum of squares between the two clusters added
up over all the variables. The present study considered Ward’s agglomerative hierarchical
algorithm as a dissimilarity measure using the Euclidean distance, as follows [37]:

de =

[
n

∑
i=1

(
Pp,i−Pq,i

)] 1
2

(4)

where de is Euclidean distance; and Pp,i and Pq,i are quantitative variables i of individuals
p and q, respectively.

The HCA was performed for monthly, seasonal and annual rainfall by using STATIS-
TICA software [38].

3.5. Applying PCA to Identify the Dominating Features/Components of Rainfall Clusters

PCA is a popular change of variables technique used in data compression, predictive
modelling, and visualization [39–41]. These techniques, since their description is lengthy,
have been applied in domains that use regionalization climatic variables with increas-
ing frequency and they are important tools in meteorology/climatology [42]. PCA was
followed by varimax rotation to achieve a simple structure by means of minimizing the
number of time points with high loadings on a factor, thereby enhancing the interpretability
of the extracted factors, and at the same time avoiding the interpretational uncertainties of
correlated components. Therefore, PCA helps extract important information from data and
decreases the dataset volume by maintaining the important information. The use of the
PCA helps to recognize patterns by explaining the variance of a large set of inter-correlated
variables, and it transforms them into a smaller set of independent factors (PCs) [31].
According to Jollife [42], significant PCs were chosen by the criterion (least 70% of cumula-
tive percentage of total variation) which are clarified by Shaharudin et al. [19] and are the
best benchmark for cutting off the eigenvalues in a large dataset for extracting the number
of components of the analysed variables with reasonable interpretation.

Rainfall R(i; j) at the i-th station in the j-th year is expressed as the sum of the products
of the coefficients An(i) varying over space, and are associated with a temporal pattern or
eigenvectors Bn(j), as follows [17]:

R(i; j) =
n

∑
k=1

[An(i)]× [Bn(j)] (5)

where i = 1, . . . , n; j = 1, . . . , n; and Bn(j) i is the eigenvectors of the correlation matrix.
The study applied the PCA to the geographical and statistical parameters of stations

grouped under clusters. The PCA is aimed to find the relative influence of each variable
explaining the variance of the system in each separate cluster for seasonal series. The steps
in Figure 2 involved in the PCA algorithm are as follows [15]:
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Figure 2. Procedure of employed PCA in monthly rainfall Yogyakarta, Indonesia.

When extracting the best number of components in PCA, several rules have to be con-
sidered, such as the scree plot, Kaiser’s rule and the proportion of variance explained [30].
The scree plot can be subjective and arbitrary to interpret when it is dealing with a high
dimensional dataset where the steep curve is followed by a bend that is not clearly visible
to get the cut offs of the number of principal components. The recommended procedure to
determine the best number of components in a high dimensional dataset based on the pro-
portion of variance is therefore explained. Based on the three seasons, the best cumulative
percentage of variation to be obtained is 70% with a different number of components to be
extracted. This result is supported by Shaharudin et al. [19] where the recommended guide-
line to cut off the cumulative percentage of variation is above 70% for high dimensional
data, especially in a hydrological dataset.

3.6. Proposed Approach

Briefly, this paper focuses on the two statistical strategies in identifying rainfall
patterns in the Special Region of Yogyakarta, Indonesia:

(a) Enhanced conventional approaches of the RF for imputing missing values in monthly
rainfall data based on the hybrid Random Forest with Bootstrap (RF-Bs) method in
order to obtain more accurate imputation values.

(b) Identify rainfall patterns in the Special Region of Yogyakarta, Indonesia using multi-
variate approaches, which are PCA combined with HCA.

The research methodology flow is illustrated in Figure 3. In order to achieve these
two statistical strategies, RF and PCA combined with HCA are used in this study. The RF
approach is used to fill in the gap of missing values. In order to counter the issue regarding
a large gap of missing values, this study proposed a hybrid RF-BS that could be applied
in the monthly rainfall data in the Special Region of Yogyakarta, Indonesia. PCA and
HCA are used to identify the representative rainfall patterns. The Multivariate approaches
are introduced using PCA combined with HCA and are employed in the three different
seasons of monthly rainfall data in the area of Yogyakarta, Indonesia.
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Figure 3. Methodological flow of identifying regionalization rainfall regimes using Hybrid RF-Bs
couple with multivariate approaches.

4. Results and Discussion
4.1. Imputation Method of RF and RF-Bs

Table 1 indicates that the classical RF imputation method had higher RMSE and MAE
values compared with the RF-B approach. It is noted that high RMSE and MAE values
obtained in this result are due to a high variance in the model when the amount of rainfall
data is high [43]. Moreover, owing to the high proportion of missing data (> 50%), this also
contributed to the highest RMSE and MAE values.

Table 1. Average RMSE values for Random Forest imputation methods coupled with Bootstrap algorithm.

Method RMSE MAE

RF 150.96 90.26
RF-Bootstrap 8.96 2.29

It can be observed that the RF-Bootstrap method has the lowest RMSE and MAE of
8.96 and 2.29 compared with the classical RF. Thus, the final results suggested that the
RF-Bs was the best statistical method for imputing the missing values of monthly rainfall
data in Special Region of Yogyakarta, Indonesia.

4.2. The Clustering of the Rainfall Station

The HCA delineated four clusters of 24 stations for seasonal series, which were
geographically located over space in Figure 4. It can be seen that the stations exist close to
each other in every cluster. Likewise, clustering resulted in the geographical contiguity
of stations in some of the delineated groups [35]. Moreover, the clusters depict a definite
geographical pattern, justifying clustering. The spatial pattern of clusters slightly varies
over seasons and years, along with variations in the number of stations in every cluster.
This research was carried out using the Inverse Distance Weighting (IDW) interpolation
technique to reveal the intensity of the rainfall in the Special Region Yogyakarta, Indonesia.
Note that the monthly rainfall maxima locations could be clearly identified in a dark blue
scale from the maps. This province has a volcano on the North side, the karst and highland
on the Southeast, and the highland on the West. The lowlands and the beach in on the
middle and in the South of this province [44]. The locations of rainfall stations at different
latitudes were influenced by the rainfall patterns of that region.
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Figure 4. Clustered rainfall stations classified into four groups based on (a) dry season; (b) rainy season;
(c) inter-monsoon season.

4.3. Statistical Properties of Rainfall Clusters

Cluster-wise statistics of the mean rainfall over season are presented in Table 2. The
mean rainfall remains the lowest in cluster III and the highest in cluster IV for each
season. It shows the consistent mean of rainfall by the four clusters. In general, cluster
III has a small variation and cluster IV has a large variation for each season in the rainfall
recognition patterns. The skewness values for all clusters are within the permissible
limits of −0.040 to 0.116 for the distribution of data. The results illustrated that the shape
of rainfall distribution for the rainfall stations in the Special Region of Yogyakarta was
fairly symmetrical due to the values of the skewness being close to zero. The coefficient
of variation was obtained by the closest values between each rainfall patterns for all
seasons. Cluster II in the inter-monsoon season showed the largest variability of monthly
rainfall amounts, at 2.751%. Meanwhile, the lowest coefficient variation was found in the
same season with the variation of 2.285% in cluster IV. Kurtosis represents the tails of the
distribution of the data and usually it measures the presence of outliers in the distribution.
The high values of kurtosis, which is kurtosis >3, shows that the data have heavy tails
and contain outliers, while if the kurtosis <3, the data have light tails and contain a lack of
outliers. From Table 2 it clearly shows that all the data in each cluster for all seasons have a
lack of outliers due to all the kurtosis values being under 3.

Table 2. Statistics for cluster-wise mean rainfall for the seasonal series.

Period Cluster Range (mm) Mean (mm) Standard Deviation (mm) Coefficient of Variation (%) Skewness Kurtosis

Dry Season I 0.750–519.750 115.114 106.239 2.37 −0.01 0.20
II 0.625–524.138 94.015 91.662 2.57 0.06 −0.11
III 0.250–457.104 77.274 77.925 2.67 0.06 −0.05
IV 1.000–622.000 138.031 133.933 2.45 0.03 0.37

Rainy Season I 6.348–1176.000 326.742 151.468 2.41 −0.04 0.17
II 7.954–1048.625 301.972 163.407 2.70 0.05 −0.09
III 6.635–837.625 256.219 136.806 2.72 0.08 0.00
IV 5.940–1190.500 389.521 186.392 2.39 0.04 0.03

Inter-monsoon I 4.770–602.750 193.492 123.764 2.30 0.12 −0.30
II 7.864–567.204 159.002 115.514 2.75 0.11 −0.08
III 3.895–578.090 127.921 104.500 2.68 −0.03 0.05
IV 6.783–607.250 217.980 139.707 2.29 0.03 0.00

The main features of the clustering results are discussed to verify the distinction
between the clusters with respect to their significant locations and the period of monsoon
occurrence for the torrential rainfall patterns based on the recommended settings in the
previous methodology section. Description of the rainfall patterns refer to range based on
Regulation of Head of Meteorology, Climatology, and Geophysics Agency (BMKG), No.
KEP.009 of 2010 on Standard Operating Procedures for Implementation of Early Warning,
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Reporting and Dissemination of Extreme Weather Information [45]. The distributions of
seasonal rainfall data are shown in Table 3.

Table 3. The seasonal rainfall amount within four clusters in a region.

Cluster Region Cluster Location Highest Average Monthly Rainfall Amount (mm) Rainfall
Pattern

Dry Season

Cluster 1 Station 1

98–168 MildCluster 2 Station 24

Cluster 3 Station 23

Cluster 4 Station 22

Rainy Season

Cluster 1 Station 1

284–424 HeavyCluster 2 Station 11

Cluster 3 Station 16

Cluster 4 Station 22

Inter-monsoon

Cluster 1 Station 20

170–275 ModerateCluster 2 Station 21

Cluster 3 Station 23

Cluster 4 Station 22

There are four clusters based on careful examination which reveal that the stations in
cluster 1 are marked with a red marking, cluster 2 with an orange marking, cluster 3 with a
green marking and in cluster 4 with a blue marking, as shown in Figure 5.

Figure 5. Results of HCA for rainfall stations classified into 4 group based on (a) dry season (b) rainy season
(c) Inter-monsoon in Special Region Yogyakarta, Indonesia.

From Table 3, the rainy season produces the highest average monthly rainfall amount,
with a range of rainfall from 284 mm to 424 mm, exhibiting heavy monthly rainfall patterns.
For the inter-monsoon season, the value of the highest average monthly rainfall amount
in the range of rainfall from 170 mm to 275 mm, classifies this season as having moderate
monthly rainfall patterns. The dry season has the least rainfall compared to the rainy
season and inter-monsoon season, with the range of rainfall being from 98 mm to 168 mm,
classifying the season as having mild monthly rainfall patterns.

Cluster 1, which is located in the North of Yogyakarta city, shows that the most
significant station that produced the highest average monthly rainfall amount is Station 1
for the dry season and the rainy season, while for the inter-monsoon, Station 20 dominates
in Cluster 1 for the highest average monthly rainfall amount (Figure 4). Cluster 2, which
extends to the southern parts of Yogyakarta city, shows that the most significant station
that produces the highest average monthly rainfall amount is Station 24 for the dry season,
and Station 11 for rainy season and Station 21 for the inter-monsoon season.
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In Cluster 3, the most significant station, which produces the highest average monthly
rainfall amount, is Station 23 for the dry season and the inter-monsoon season, while for
the rainy season, Station 16 has the highest average monthly rainfall amount. Lastly, in
Cluster 4, the most significant station that produces the highest average monthly rainfall
amount is Station 22 in every season.

4.4. Cumulative Percentage of Principal Component Analysis (PCA)

In this section, we will discuss the choice of cumulative percentage to cut off the num-
ber of principal components based on the three different seasons. The principal component
in this study refers to the new variables that are constructed as linear combinations or
mixtures of the initial variables. These combinations are done in such a way that the new
variables (i.e., principal components) are uncorrelated and most of the information within
the initial variables is squeezed or compressed into the first components.

The monthly average is composed of 12 factors that were analyzed at 75 locations around
Thessaly. These variables were found to be linked to each other. Their explanations of the
data in terms of a smaller number of uncorrelated variables simplified and structured it in a
way that made it easier to comprehend [46]. This is accomplished through the use of Principal
Component Analysis. This was accomplished by identifying 12 linear combinations of the
original variables, dubbed principal components, that are mutually uncorrelated, and by
calculating the proportion of total variance that each of them could account for.

From Table 4, we can see clearly that the choice of cumulative percentage of variance
will reflect the number of components to retain. It appears that all seasons obtained the
same number of components at different levels of cumulative percentages of variations. The
selection of a higher cumulative percentage of variation has extracted a greater number of
components for each monthly rainfall season in the Special Region of Yogyakarta, Indonesia.

Table 4. Summary of the PCA results for eigenvalues, percentage of variation and number of
components obtained for each season in Yogyakarta, Indonesia.

Season

Eigenvalues Cumulative Percentage (%) Number of Principal Component

Dry 1.07 54.55 10
1.02 58.90 11
0.97 62.99 12
0.96 66.83 13
0.92 70.50 14

Rainy 1.07 54.55 10
1.05 58.90 11
0.98 62.99 12
0.92 66.83 13
0.88 70.50 14

Inter monsoon 1.14 61.01 10
1.05 65.37 11
1.01 69.57 12
0.93 73.45 13
0.81 76.81 14

For instance, 10 components and 14 components were retained with PCA at more than
50% and 70% cumulative percentage of variation respectively. However, in identifying rain-
fall patterns, extracting the correct number of components is crucial because it dictates the
rainfall days belonging to the correct grouping patterns. The results showed a significant
correlation between principal components and stations such as PCA at Bronggang, Beran
and Ledoknongko station, which was high due to the higher elevation near Mount Merapi,
Nglipar, Playen and Ponjong, which was also at a high elevation and was borderd by a
reservoir area. The eastern and western boarders are highland areas, while in the southern
part of the station at Panggang, Paliyan, Kokap and Panjatan, there is a low land area
near the Indian Ocean. This result is supported by Dai et al. [18], who stated that a lesser
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number of components would be insufficient to identify rainfall patterns when dealing
with analysing considerable new patterns of rainfall in a selected region. Meanwhile, the
inclusion of too many principal components inflates the importance of noise and results in
poorly identified new cluster patterns [10]. There is no rough guidance for determining the
optimal cumulative percentage of variance; however, Jollife [42] proposed that the optimal
cumulative percentage for climatic data can be greater than 70%. This was proved from the
previous literature [19]. Based on the results in Table 4, the 70% cumulative of variations
were obtained by the sufficient components of 14 components for all seasons.

4.5. Principal Component Analysis (PCA)

Every component item and its loadings with a load component over 0.50 was retained
in the PCA [19]. Based on Table 5, one component was retained in PC1 with a load
component higher than 0.50: the Station of Bronggang, with a value of 0.972, situated
near the hill and on the top of Special Region of Yogyakarta, is the dominant station in
PC1. In PC2, the maximum factor loading value of Beran is the dominant station, with a
value similar to the BPP.Kalibawang of 0.906. Ledoknongko, PC3, has the maximum load
factor with a value of 0.866 near station 20, which is next to two hills. For PC 4, the core of
Yogyakarta is Stage of Yogyakarta with the maximum factor loading value of 0.910.

The next PC5 with a dominant station is Station 1, which is situated in the north of the
Kulon Progo regency in Cluster 1, with a value of 0.924. Nglipar is superior in PC6, with a
factor loading value of 0.879 in the region of Gunung Kidul regency. The highest loading
factor rating is PC7, BPP. Kalibawang, with a value of 0.906, is located north of Kulon Progo
regency and is close to the hill. The dominant station for PC8 is Paliyan, with a value of
0.919. Ngentak is at 0.981 and its nearest position to Yogyakarta city is the dominant station
PC9. The dominant station PC10 is PSDA. Kalibawang, with a value of 0.972, is similar to
Bronggang and is located north of the Kulon Progo regency. The dominant station at PC11
is Dlingo, with a value of 0.964, situated close to four hills east of the Bantul regency. The
maximum factor loading value of PC12 is 0.931 at Ngetal, which is located in the region of
the Bantul regency, south of Yogyakarta city. The dominant station of PC 13 is Brosot, with
a value of 0.880, situated near the Indian Ocean. The dominant station of PC14 is Piyungan,
with a value of 0.978, situated near the hill east of the Bantul regency.

The largest PC values are found in the north, in the centre of Special Region of
Yogyakarta, in the south and east of the Special Region of Yogyakarta, suggesting the
highest dry season contribution to overall rainfall. In the northern part of the Special
Region of Yogyakarta, strong precipitation in the dry season is attributed to the convective
process due to its position close to the hills and the availability of air humidity in the
atmosphere, as shown in Figure 6.
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Table 5. Loadings for the first 14 PCs of the Dry Season in Yogyakarta, Indonesia.

Rainfall Loading

Station PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14

NGLIPAR 0.027 0.000 −0.006 −0.033 0.924 * 0.044 0.004 0.067 −0.066 0.038 0.049 0.095 0.081 −0.029
PALIYAN 0.023 0.028 0.034 0.023 0.081 −0.129 0.008 0.919 * −0.034 0.042 0.001 −0.083 0.015 0.009
PLAYEN 0.107 0.027 0.055 −0.012 0.052 0.879 * −0.087 −0.135 −0.033 −0.015 0.068 0.003 0.049 −0.035
DLINGO 0.006 −0.027 −0.013 0.014 0.044 0.052 0.070 0.002 −0.017 −0.001 0.964 * 0.011 −0.073 −0.011
NGETAL 0.023 −0.030 −0.051 0.031 0.098 0.017 0.086 −0.066 −0.049 −0.001 0.004 0.931 * −0.086 −0.054

PIYUNGAN −0.019 −0.035 0.004 −0.084 −0.024 −0.026 −0.018 0.002 0.009 0.068 −0.010 −0.044 0.003 0.978 *
BPP. KALIBAWANG 0.067 −0.027 0.056 0.042 −0.016 −0.089 0.906 * 0.012 0.026 −0.013 0.104 0.107 0.076 −0.017

BROSOT −0.031 0.111 −0.082 0.087 0.097 0.066 0.069 0.033 −0.003 −0.057 −0.102 −0.091 0.880 * 0.012
PSDA KALIBAWANG −0.013 0.047 −0.055 0.043 0.034 −0.013 −0.001 0.035 −0.002 0.972 * −0.004 −0.006 −0.037 0.071

BERAN 0.062 0.906 * 0.105 −0.007 0.004 0.017 −0.041 0.016 0.006 0.062 −0.031 −0.027 0.095 −0.052
BRONGGANG 0.972 * 0.047 0.018 0.055 0.024 0.077 0.044 0.018 0.020 −0.014 0.007 0.027 −0.014 −0.019

LEDOKNONGKO −0.006 0.157 0.866 * −0.050 0.006 0.084 0.085 0.030 −0.017 −0.109 −0.026 −0.062 −0.113 0.034
NGENTAK 0.018 0.005 −0.021 −0.029 −0.056 −0.019 0.013 −0.024 0.981 * −0.003 −0.014 −0.038 −0.006 0.010
STAGE OF

YOGYAKARTA 0.065 −0.002 −0.062 0.910 * −0.037 −0.018 0.034 0.004 −0.040 0.053 0.023 0.039 0.078 −0.102

* Indicate high loading in PCs.
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Figure 6. Spatial distribution of monthly rainfall that resulted from principal component analysis
in the dry season with (a) PC1; (b) PC2; (c) PC3; (d) PC4; (e) PC5; (f) PC6; (g) PC7; (h) PC8; (i) PC9;
(j) PC 10; (k) PC11; (l) PC12; (m) PC13; (n) PC14 respectively.

Based on Table 6, the dominant station in PC1 is Gembongan, with a value of 0.861,
which is situated next to Indian Ocean and is also located on the southwest of the Special
Region of Yogyakarta. The dominant station of PC2 is Ngentak, with a value of 0.926,
which is situated in the lower part of the Bantul regency and close to the Indian Ocean. The
dominant station for PC3 is Paliyan, with a factor loading value of 0.934. The dominant
station of PC4 is Brongang, near the hill and on the top of the Yogyakarta city, with a value
of 0.950. For PC5, the dominant station is Ledoknongko, with a factor loading value of
0.853 and its position is next to Bronggang, which is close to two hills. The dominant
station of PC6 is BPP. Kalibawang is situated on the north side of the Kulon Progo regency
and is close to the hill, with a value of 0.914.

The dominant station in PC7 is Piyungan, located to the east of the Kulon Progo
regency and close to the hill, with a factor loading value of 0.978. The dominant station for
PC8 is Dlingo, with a factor loading value of 0.871, situated near four hills east of the Bantul
regency. The dominant station in PC9 is Gedongan, with a value of 0.871, positioned close
to the city of Yogyakarta. PC10, Singkung, with a value of 0.941, is the dominant station.
The dominant station PC11 is Kolombo, which is situated near to Yogyakarta city in the
south of the Sleman regency. The dominant station of PC12 is Samigaluh, with a factor
loading value of 0.924 on the north side of Kulon Progo regency and close to two hills.

The dominant station of PC13 is Panggang, with a value of 0.937, and is situated south
of the Gunung Kidul regency near the Indian Ocean. The dominant station in PC14 is
Ngetal, with a factor loading value of 0.954, situated south of the Bantul regency, close
to station 23 and near the Indian Ocean. The spatial view of the PC score represented
by the Special Region of Yogyakarta region stations reveals that the eastern part of the
Special Region of Yogyakarta indicates low rainfall precipitation due to no stations serving
in that area. The positive meaning of the PC is in the north, south, and southwest, and
in the centre of Yogyakarta as shown in Figure 7. It indicates that the southern portion is
closed to the Indian Ocean during rainy seasons, to the north side of the Special Region of
Yogyakarta, and to the center of the Special Region of Yogyakarta, which is closed to the
city of Yogyakarta and has the maximum rainfall precipitate.
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Table 6. Loadings for the first 14 PCs of the rainy season in Yogyakarta, Indonesia.

Rainfall Loading

Station PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14

PALIYAN −0.031 0.029 0.934 * −0.069 −0.003 0.005 −0.030 0.001 0.065 −0.013 −0.008 −0.056 0.081 −0.027
PANGGANG 0.102 0.037 0.081 0.019 −0.025 −0.079 −0.048 0.037 −0.046 −0.011 0.019 0.059 0.937 * −0.035

DLINGO −0.067 −0.091 −0.007 0.067 0.112 0.164 0.066 0.871 * −0.032 −0.085 0.009 0.031 0.056 0.117
GEDONGAN 0.051 0.022 0.098 0.121 0.053 0.085 −0.006 −0.061 0.867 * 0.029 −0.066 0.142 −0.057 0.009

NGETAL 0.018 0.020 −0.025 −0.054 −0.108 −0.058 −0.048 0.081 0.002 0.046 0.026 −0.026 −0.034 0.954 *
PIYUNGAN 0.006 −0.036 −0.027 −0.023 −0.013 −0.023 0.978 * 0.039 −0.006 −0.003 −0.045 −0.004 −0.042 −0.044

BPP. KALIBAWANG 0.046 0.001 0.001 −0.043 −0.004 0.914 * −0.035 0.137 0.069 0.005 0.018 −0.019 −0.088 −0.065
SAMIGALUH −0.027 −0.034 −0.064 −0.041 −0.100 −0.029 −0.008 0.043 0.110 −0.023 0.047 0.924 * 0.058 −0.035

GEMBONGAN 0.861 * −0.025 −0.064 −0.026 0.066 0.005 −0.027 −0.025 0.118 −0.108 −0.068 −0.049 0.120 0.042
SINGKUNG −0.065 −0.059 −0.018 0.012 0.066 0.013 0.000 −0.060 0.030 0.941 * 0.020 −0.029 −0.005 0.051

BRONGGANG −0.008 −0.008 −0.077 0.950 * −0.052 −0.048 −0.027 0.060 0.094 0.015 0.028 −0.043 0.016 −0.061
KOLOMBO −0.029 0.051 −0.006 0.017 −0.020 0.018 −0.045 0.004 −0.038 0.016 0.974 * 0.034 0.016 0.025

LEDOKNONGKO 0.078 0.096 −0.022 −0.060 0.853 * 0.010 −0.018 0.104 0.037 0.102 −0.036 −0.130 −0.020 −0.166
NGENTAK −0.012 0.926 * 0.027 0.003 0.076 0.006 −0.036 −0.070 0.020 −0.072 0.067 −0.030 0.043 0.030

* Indicates high loading in PCs.



ISPRS Int. J. Geo-Inf. 2021, 10, 689 16 of 20

Figure 7. Spatial distribution of monthly rainfall that resulted from principal component analysis in the rainy season with (a) PC1;
(b) PC2; (c) PC3; (d) PC4; (e) PC5; (f) PC6; (g) PC7; (h) PC8; (i) PC9; (j) PC 10; (k) PC11; (l) PC12; (m) PC13; (n) PC14 respectively.

Based on Table 7 for PC1, the dominant station is Bronggang, with a load factor value
of 0.838. It is located on the north side of the city of Yogyakarta and the Sleman regency.
The dominant station of PC2 is Brosot, with a value of 0.897, situated near to the Indian
Ocean. For PC3, the dominant station is Ledoknongko, situated near Bronggang, which is
next to two hills. The dominant station for PC4 is Gandok with a load factor value of 0.943.
Station 7 is located in the centre of Bantul regency. The dominant station for PC5 is BPP.
Kalibawang, positioned north of the Kulon Progo regency and close to the hill, with the
factor loading of 0.811.

The dominant station, PC6, is Gedongan, with a value of 0.856, near to the city of
Yogyakarta. Piyungan, with a factor loading value of 0.987, is the dominant station for
PC7 and is situated east of the Kulon Progo regency and close to the hill. For PC8, the
prevailing station is Paliyan, with a load factor of 0.766. On the west side of the Gunung
Kidul regency, PC9, the dominant station is Playen with a factor loading of 0.970. PC10,
the dominant station, with a value of 0.755, is in Nglipar, situated north of the Kulon Progo
regency. The dominant station of PC11 is Beran, with a factor loading value of 0.932, and
its position is near to the city of Yogyakarta. The dominant station PC12 is Dlingo, with a
load factor of 0.947 and its position is near four hills east of the Bantul regency.

There is greater rainfall during the season on the north side of Yogyakarta city. The
station has represented the positive PC score during the inter-monsoon season, indicating
that the region with heavy precipitate rainfall is in the north, the center of the Special
Region of Yogyakarta and on the east side, as shown in Figure 8. The southern region that
is closed to the Indian Ocean represents just two stations.
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Table 7. Loadings for the first 12 PCs of the inter-monsoon season in Yogyakarta, Indonesia.

Rainfall Loading

Station PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

NGLIPAR 0.127 −0.036 0.009 −0.041 0.020 0.133 0.117 −0.085 −0.058 0.755 * 0.016 0.055
PALIYAN −0.010 0.138 0.172 −0.045 −0.018 0.057 −0.077 0.766 * −0.102 −0.053 0.152 0.068
PLAYEN −0.062 0.085 0.092 0.016 0.003 0.082 −0.023 −0.092 0.970 * −0.023 0.045 −0.008
DLINGO 0.001 0.115 0.086 −0.003 −0.160 0.005 −0.040 −0.022 −0.053 0.050 0.109 0.793 *

GANDOK 0.086 −0.040 −0.077 0.943 * 0.024 0.031 0.110 −0.009 0.016 0.017 0.077 −0.001
GEDONGAN 0.136 0.109 −0.057 −0.001 −0.024 0.856 * 0.070 0.016 0.070 0.121 0.030 −0.079
PIYUNGAN −0.068 −0.077 −0.037 0.104 0.012 0.050 0.987 * −0.024 0.000 0.094 −0.092 −0.022

BPP. KALIBAWANG −0.071 0.083 −0.026 0.015 0.811 * −0.003 −0.003 −0.033 −0.021 0.037 0.055 −0.139
BROSOT 0.080 0.897 * −0.071 −0.034 0.022 0.054 −0.003 0.064 0.058 −0.045 −0.111 0.005
BERAN −0.043 −0.108 0.004 0.102 0.014 0.027 −0.066 0.054 0.027 −0.033 0.932 * 0.047

BRONGGANG 0.838 * 0.045 0.125 0.099 −0.056 0.103 −0.090 −0.017 −0.038 0.061 −0.028 0.047
LEDOKNONGKO 0.131 −0.079 0.890 * −0.024 0.041 −0.032 0.013 0.108 0.101 −0.038 −0.072 0.117

* Indicates high loading in PCs.
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Figure 8. Spatial distribution of monthly rainfall that resulted from principal component analysis in inter-monsoon season
with (a) PC1; (b) PC2; (c) PC3; (d) PC4; (e) PC5; (f) PC6; (g) PC7; (h) PC8; (i) PC9; (j) PC 10; (k) PC11; (l) PC12; respectively.

5. Conclusions

This study proposed a hybrid imputation approach using RF-Bs combined with
multivariate analysis to identify patterns of spatial rainfall across Yogyakarta, Indonesia.
Enhancements in imputing methods of RF-Bs in filling the long gap for monthly rainfall
datasets potentially could be used for regionalization of rainfall regimes in the Special
Region of Yogyakarta, Indonesia. Rainfall regimes were regionalized for the Special Region
of Yogyakarta, Indonesia, by using Principal Component Analysis with varimax rotation
based on three sets of seasonal monthly rainfall data during the years 1970 to 2019. Fourteen
and twelve principal component analyses for dry, rainy and inter-monsoon seasons were
extracted based on a cumulative percentage of variation data. All the significant rotated
components, which explain more than 70% of the total variance in the data, were used to
calculate the PC loading. According to the results, the main rainfall is in the dry season. In
some parts of northern and southern of Yogyakarta, more than half of the total precipitation
occurs in the dry season. Moving away from the mentioned regions to the Indian Ocean,
the contribution of the rainy season to the rainfall total becomes higher than the rainfall
in the dry and inter-monsoon seasons. The rainfall in the north-west and south-east
parts of the Special Region of Yogyakarta is classified as being from the dry season. The
contribution of inter-monsoon season rainfall to the total rainfall amount is noticeable in
the city of Yogyakarta and in the eastern parts of the Special Region of Yogyakarta and in
northern areas. By applying hierarchical cluster analysis on monthly rainfall data, about
four homogenous rainfall regimes were identified for each season. According to the results,
the use of the dataset in order to group rainfall regimes is recommended for the tropical
region, especially for the whole region in Indonesia, while its utilization in the wet and dry
regions needs to be further studied in the future.
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