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Abstract: Understanding how cities evolve through time and how humans interact with their
surroundings is a complex but essential task that is necessary for designing better urban environments.
Recent developments in artificial intelligence can give researchers and city developers powerful
tools, and through their usage, new insights can be gained on this issue. Discovering a high-level
structure in a set of observations within a low-dimensional manifold is a common strategy used
when applying machine learning techniques to tackle several problems while finding a projection
from and onto the underlying data distribution. This so-called latent manifold can be used in many
applications such as clustering, data visualization, sampling, density estimation, and unsupervised
learning. Moreover, data of city patterns has some particularities, such as having superimposed
or natural patterns that correspond to those of the depicted locations. In this research, multiple
manifolds are explored and derived from city pattern images. A set of quantitative and qualitative
tests are proposed to examine the quality of these manifolds. In addition, to demonstrate these tests,
a novel specialized dataset of city patterns of multiple locations is created, with the dataset capturing
a set of recognizable superimposed patterns.

Keywords: city patterns; dimensionality reduction; urban planning; deep learning

1. Introduction

Urban patterns within cities are complex and can have heterogeneous structures, and
because of this, they are very challenging to simulate. Many factors directly or indirectly
affect how a city is shaped and how it develops, and therefore, it can be very challenging
to mimic or capture these factors correctly. These factors can be, for example, historical,
political, economic, geographical, or a mixture [1]. However, finding a minimum number
of parameters that explain the properties of an observed city might help to better tackle
this issue and aid researchers in understanding such complex structures. For example,
Whitehand et al. [2] argue that one can comprehend complex phenomena such as urban
patterns by creating a picture of them using a minimum number of elements (parameters).

These parameters can be viewed as the intrinsic dimensions of an unknown process
that generates a city. Scott and Storper [3] demonstrate a large spectrum of opinions
discussing the previous statement. These opinions range from arguing that the attempts
to define the main characteristics of cities is an impossible proposition since cities are too
complex and large to be modeled in such methods. For example, Saunders has a view of
cities as merely spatial vessels for many socio-economic activities [4]. In her book, “The
Death and Life of Great American Cities”, Jacobs [1] advocates for planning cities that have
buildings with mixed primary uses and various age groups, small blocks, and high density.
Jacobs initiated a discussion in the urban planning community by arguing to solve many
of the cities’ problems by assisting desirable interactions between agents and highlighting
the flaws of a purely top-down approach in planning. These dynamics match the ones
of complex adaptive systems, and by definition, the prediction of the outcome of such a
system with high certainty is not possible. In other words, to successfully plan cities, the
interactions and feedback loops that exist within such a system need to be considered [5].
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Pumain [6] views several concepts that consider a city as a complex system, which self-
organizes and coevolves in a larger system of cities, and theorizes over the factors that
affect and shape cities on a global scale, and demonstrates the nonlinearity of the problem
and the existence of autocorrelation in large city developments. Pumain [6] also argues that
socio-spatial interactions are complex. Some cities are planned and constructed by several
agents’ architectures and developers to follow specific superimposed (artificial) patterns;
for example, grids such as New York City [7], which facilitate vehicle transportation, or
Garden Cities [8], which increase connectivity and create multiple downtown centers
while having the benefit of a countryside feel. On the other hand, spontaneous cities (or
natural cities) develop during a long period to adapt to the needs and interactions between
agents (humans) and the surrounding environment [9]. Many cities are built with strategic
advantages near hills, to leverage commercial connectivity or, as multiple numbers of major
cities around the globe, to have a direct connection to harbors, are next to rivers, or as resting
points on the post track. At the same time, other cities were designed with decoupled
functions such as separated locations for shopping, business, and living. Additionally, to
add to the complexity of the problem at hand, definitions of clusters or groups that depend
on the semantics of phenomena are usually based on a subjective perception of features
and the labels used to categorize them. Clustering, by definition, is simply the grouping
of similar objects together in separate classes and Ackerman et al. [10] discuss a set of
axioms that help to identify the quality of a clustering algorithm, whereas others argue
that the problem of clustering itself is inherently subjective [11]. Kleinberg [11] argues that
it is impossible to satisfy all of the following criteria simultaneously—scale-invariance,
richness, and consistency—in what is called the impossibility theorem of clustering, which
makes identifying city clusters inherently subjective.

Considering the previous opinions and limitations, simulating, generating, or cluster-
ing natural-looking city patterns can nevertheless be a useful tool for decision support and
urban planning, and the mentioned challenges are fortunately not unique to the field of
architecture and urban planning. Many solutions are proven to be very effective in under-
standing massive amounts of heterogeneous data, such as pattern recognition [12], data
generation [13], and visualization [14], and in particular, Convolutional Neural Networks
(CNNs) [15] are very effective in processing topologically structured data such as images.
To leverage the use of these networks, many researchers represent their data in continuous
field format (raster), where each of the raster’s pixel locations is considered a random
variable. Therefore, image data can be viewed as high-dimensional variables. A common
technique used in machine learning is to project such high-dimensional data to a low-
dimensional manifold with a compact representation. Since the information content does
not change when discrete data are represented as a continuous field (vector-to-raster con-
version), there must be an efficient encoding of the high-dimensional representation onto a
low-dimensional representation. This is in accordance with information theory [16] since
the number of bits contained in the data does not change when changing its representation.

In this paper, we explore this possible manifold for encoding city patterns in raster
form with the contribution and research structured in the following way: the State of the
Art section gives a theoretical background of the used algorithms and is coupled with the
Related Work section that mentions similar work and research that use similar data or
encoding methods. A novel dataset is then introduced in the Data Origin and Preparation
section. This dataset includes multiple city patterns and is designed to contain a known
primary semantic variation. This variation is subjectively observed by choosing cities that
have a variety of superimposed patterns. The main methodology of the research examines
this assumption by using a sequence of novel tests and metrics to determine if the encoding
function is able to encode these clusters at separate locations at the manifold and to explore
the quality of such encoding. The approach is introduced in the Methodology section.
As a part of examining these tests, the dataset is encoded on low-dimension spaces by
applying a number of methods that are suitable for linear subspaces and nonlinear manifold
mappings. The original data labels are tracked on the low-dimensional manifold to measure
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performance metrics and are introduced in the Experiments and Evaluation section. The
results are then discussed along with the limitation in the Discussion, Limitation, and
Conclusion sections.

2. State of the Art

There is a large number of dimensionality-reduction techniques, and they can be
divided according to the objective function into convex and non-convex techniques. Convex
techniques are those in which the objective function has no local minima as oppose to non-
convex techniques where such minima exist. Full spectral approaches, such as principal
component analysis (PCA) [17] and sparse spectral functions, such as Locally Linear
Embeddings (LLE) and Laplacian Eigenmaps [18], are examples of convex techniques.
Examples of non-convex approaches are Sammon Mapping and autoencoders. Van der
Maaten et al. [18] give a complete description and comparative review of these techniques.
Dimensionality-reduction techniques are frequently used to understand complex problems
that involve high dimensional data, including phenomena that are within an urban context.
This section gives a theoretical background of techniques that are utilized within the scope
of this research.

Let X ∈ RD be the city data matrix with the dimension (n, D), where n is the
number of observations and D is the number of the dimensions or the number of random
variables assumed to explain an observation. In this case, D represents the number of
pixels in an image or the width of the image multiplied by its height. These variables
are often correlated due to the fact that many buildings have a repetitive shape and thus
appear on images with similar structures and numbers of pixels. The number of pixels
in a high-resolution image is usually much higher compared to its equivalent boundary
representation, which requires only a few point coordinates at the corners to encode
footprint location and shape. Consequently, it is beneficial to find the smallest set of
uncorrelated variables that describe the observations while preserving the maximum
amount of information contained in X. The count of variables in this set will be referred to
as d, the number of dimensions in the subspace. Or in other words, the objective is to find
a mapping U between X ∈ RD to Y ∈ Rd.

2.1. Linear PCA

PCA is a very common technique that helps find a linear mapping between correlated
variables in space D and a minimum set of uncorrelated variables in space d. The following
subsection is based on the derivation explained in [19], where this reference can be viewed
for a complete rigorous proof of this method. Let Y ∈ Rd, where d << D according to a
transformation U, where:

Y = UX (1)

The objective is to maximize the variance. If the data matrix X is standardized, i.e., has
a mean of zero and a standard deviation of one, the variance–covariance matrix can be
expressed as the result of the cross product between the data matrix and its transpose, as
demonstrated in Formula (2).

maxvariance XXT (2)

In practice, these values can be found by performing single-value decomposition SVD,
resulting in the matrices U, Σ, and W:

X = UΣWT (3)

Additionally, since these matrices are orthonormal and diagonal, they represent
rotation stretching functions:

XTX = UΣ̂2WT (4)

By truncating the transformation, or in other words, keeping a small number of
principal components λi, one can perform dimensionality reduction. Additionally, since
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the first components contain the largest amount of variance, only a small fraction of
these components is included. The ratio of the remaining information can be expressed
as follows:

%In f o =
∑D

i=1 λi

∑N
i=1 λi

(5)

From a geometric point of view, eigenvectors of a transformation matrix represent
a set of vectors that preserve the orientation when a transformation is applied. When
the variance–covariance matrix is viewed as a transformation, the eigenvectors represent
the directions of the maximum variance or the direction where the data are stretched the
most according to this specific transformation. This means that finding these vectors and
projecting data onto the eigenvector space can highlight the main variance in the data.
Visualizing data using Principal Component Analysis (PCA) leverages this observation
to convert the data or observation to a set of linearly uncorrelated variables, where the
main variance of high dimensional data can be explored using only a fraction of the
original dimensions.

2.2. Kernel PCA

Full spectral techniques in general, and PCA in particular, are very practical for many
scientific problems. However, linear PCA has some limitations when dealing with high
dimensional data, and many solutions were developed to counter these problems. For
example, the dimensions of the covariance matrix have the same dimensions as the input
data D, and in the case where D >> n, the algorithm becomes inefficient [20]. Dual PCA
addresses this with the following substitution to make the analysis invariant to the number
of data samples n. The covariance matrix size is proportional to the data points’ dimension.
A second issue with linear PCA is that the analysis considers the similarities between data
points without explicitly factoring in the distribution of neighboring points. Even with
the success of linear methods, many data manifolds are complex and highly nonlinear.
Mapping the data to a high dimensional space before applying PCA can help to make the
data more separable with linear hyperplanes in the high dimensional space.

Kernels represent a measure of similarity between data points, and different kernels
exist for different problems, with the condition that kernels need to be symmetric and
positive semi-definite. Due to the large number of possible kernels to use for each problem,
it becomes challenging to decide which kernel to use. A study that demonstrates the
effect of using each type of kernel on multiple datasets is shown in the work of Alam and
Fukumizu [21]. For example, the sigmoid kernel is useful to compare similarities between
categorical data, and Logistic PCA assumes a Binary or Bernoulli distribution of input data.
Therefore, it is suitable for binary data and is used to conduct the analysis presented in
this paper.

2.3. Graph-Based

Kernel PCA is not the only way to perform nonlinear mapping of data. Many methods
utilize the assumed shape of the hidden manifold. Graph-based methods usually have
an objective to minimize the distances between points that are located in close vicinity
to each other while maximizing the distance to all others. For example, Isomap [22]
uses similar principles to multidimensional scaling with the main difference of utilizing
geodesic distance as a metric instead of Euclidian distance. For finding the geodesic
distance, however, it is challenging to compute this distance practically. Therefore, Isomap
calculates local Euclidian distances on a neighbor graph that preserves the curvature of the
manifold and approximates the geodesic distance.

Isomap theoretically maps the manifold to a low dimensional space with a small
number of distortions. However, practically this method suffers from multiple issues.
Due to its time complexity, the algorithm is impractical when a large number of points is
analyzed. Discontinuities or holes in the manifold, topological instabilities, and erroneous
connections might cause the algorithm to fail or produce undesirable results. Locally
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Linear Embedding (LLE) [23] addresses these issues by similarly constructing a K-Nearest
Neighbor graph. For each local point, LLE only considers the weights of surrounding
points. The objective function of LLE uses these weights to reconstruct the local point in the
original space with a minimum error. Similarly, the spectral clustering algorithm builds an
undirected graph between points based on a metric of similarity and performs clustering
based on graph cuts with the minimum cases calculated based on a Laplacian Eigenmap.
Due to their success and to the fact that the city pattern manifold is multidimensional and
highly nonlinear, LLE is used in this experiment to visualize and explore the data.

2.4. Stochastic Approaches

The Stochastic Neighborhood Embedding method (SNE) proposes a mapping with
an objective function that maintains a similar distribution of points in both original and
projected spaces. This approach assumes that the probability pij of each point i choosing
a certain neighbor j in both original and projected space qij [24]. The probability is based
on a dissimilarity metric d and assumes a normal Gaussian distribution of points that are
centered around each point at the projected space with the value y as follows:

pij =
exp

(
−d2

ij

)
∑k 6=j exp

(
−d2

ik
) (6)

qij =
exp

(
‖yi − yj‖2)

∑k 6=j exp(−‖yi − yk‖2)
(7)

The distribution in the original spaces can be calculated using the dissimilarity mea-
sure “d” while the distribution in the projected space can be calculated using the objective of
reducing Kullback–Leibler divergences KL between the original Pi and projected spaces Qi.

C = ∑
i

∑
j

pij log
pij

qij
= ∑

i
KL(Pi || Qi) (8)

This method has the advantage of penalizing the cost of nearby points being mapped
on locations that are further apart, with a lower cost for more distant points in the original
space being mapped to a nearby location in the projected space. This helps to minimize the
risk of collapsing the manifold on itself when it has the characteristics of nearby folds. The
SNE method is successful in visualizing many datasets. However, the KL-divergence loss is
difficult to optimize, and data viewed in this method sometimes suffer from what is called
the “crowding problem”. T-distributed stochastic neighbor embedding (T-SNE), a variation
of the SNE algorithm, addresses this problem by utilizing Student’s or T-Distribution to
minimize the effect of the issue [14].

3. Related Work

The techniques described above can be used to aid in urban planning and decision-
making in numerous complex problems involving high dimensional data. The following
researches demonstrate how dimensionality-reduction techniques can be applied to aid in
solving problems that include spatial patterns. For example, Lu et al. [25] try to understand
a driver’s behavior. The daily activity of a driver can include many events such as stops,
pickups, and deliveries, which means that an activity profile of a driver is of a high dimen-
sional nature. Lu et al. [25] include the behavior profile of 243 drivers during 1099 days in
Singapore and uses PCA and autoencoders to successfully reduce the dimensionality of
the data to a fraction of the original data while keeping most of the original variance [25].
They show that the use of logistic PCA outperforms PCA in modeling events such as stops
and drives. In this study, a variational autoencoder (VAE) is additionally implemented to
generate novel driver profiles, demonstrating that data-reduction techniques can capture
and manipulate a complex phenomenon in a spatial context such as the activity of a driver
within a city. Jiang et al. [26] utilize data mining techniques and specifically PCA to examine
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the activities of more than 30,000 individuals living in the Chicago metropolitan area and
try to model their daily activities and how these activities vary over time. The advantage
of using dimensionality-reduction techniques, in this case, is to identify a small number of
variables compared to the original data dimension and, by performing this process auto-
matically, avoid superimposing any biases or predefined social demographic classification
on the data. Jiang et al. [26] cluster the research individuals into seven groups during the
weekdays and eight groups during the weekends. These observation groups are selected by
taking advantage of the fact that the variance of the coded data is maximized in these direc-
tions. Jiang et al. [26] propose new activity categorization based on the eigenvectors to span
the activity space and cluster the projected data using the k-means clustering algorithm [27].
Shaw and Jebara [28] analyze a massive amount of spatio-temporal data of 250,000 daily
taxi trips in New York City and model traffic flow within the 2000 busiest city blocks as a
high-dimensional data vector. Shaw [28] uses Minimum Volume Embedding (MVE) [29]
to project data on a space with a lower dimension and apply spectral clustering [30]. This
approach can help visualize the similarities between locations and help understand the
traffic flow within the city and derive meaningful conclusions from such data. This is due to
the fact that similar instances or data points will be located in proximity to each other when
data-reduction techniques are applied. Another example is explored by He et al. [31], who
utilize Gaussian Mixture Models and dimensionality-reduction techniques in detecting
anomalies in urban temporal networks.

Many researchers have also used data-reduction techniques to map the similarities
between city patterns using dimensionality-reduction techniques. The following stud-
ies follow a similar approach to the one presented in this research. Therefore, they are
described in detail in the following paragraphs to highlight the main differences in our
contribution. Moosavi [32] argues that the availability of large datasets such as the one
from OpenStreetMaps opens the possibility of using novel methods in analyzing urban
patterns on a global scale. Furthermore, since these methods can be used to examine
similarities between urban forms, they take into account many factors such as orientation,
structural density, and partial deformations. Moosavi [32] additionally explores leveraging
unsupervised machine learning techniques with the objective of creating a search engine
for urban patterns and generating a research dataset by rasterizing road networks that
surround city centers that are similar in scale for all samples regardless of the city’s size.
He implements a convolutional autoencoder to encode road network data and select the
Euclidian distance at the projected space as a metric to measure the similarity between
the samples and the k-nearest neighbors (k-NN) algorithm [33] to search and select the
closest points in the projected space of over one million images of cities and villages all
over the world. Kempinska and Murcio [34] follow similar footsteps and search for a
quantitative method to describe urban patterns using generative deep learning techniques,
namely, Variational Autoencoders (VAE) [35]. They encode 12,479 samples of binary images
that represent road networks around the world using the VAE to project the data onto a
latent space and use the T-SNE algorithm to reduce the data dimensions to only two, and
apply the k-means clustering algorithm [27] to detect unique clusters. They also project
the samples back to the geographical location and identify the extent of similar clusters
around the world. However, the approach does not succeed in producing a high-quality
interpolation between the road networks and generating novel samples.

Dong et al. [36] suggest examining and analyzing the similarity between urban fabrics
using convolutional neural networks, namely, convolutional autoencoders (CAE). Dong
et al. [36] choose to use images of residential neighborhoods in Nanjing, China, which
contain new and old developed areas that are varied according to the urban morphology.
They sample their data according to two criteria: administrative boundaries and scale.
They argue that a data sample can be generated for each “plot” due to the fact that the
administrative boundaries at the “plot” encourage different designs at the plot level.
Therefore, they generate images of each of these plots, and since these plots have large
discrepancies in the area they cover, the resulting images will thus have different scales.
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Hence, they subsample the dataset according to a scale-based criterion where the patterns
are visible. Then, they use a uniform geographical extent, and they center the images
based on the plot’s boundaries. They use the CAE to extract compressed feature vectors
(CFV) that are a dense representation of the information that is available in the original
data—however, with a lower dimension. In addition, they add statistical information to the
CFV, such as the plot size, edge length, ground space index, and floor space index. They
use these features in addition to the compressed vectors to measure the Euclidean distance
at the encoded space and to cluster and explore the geometry and topology of these urban
fabrics using hierarchical clustering to perform the analysis.

Law and Neira [37] leverage the fact that encoding data using the PCA technique
produces latent vectors that are uncorrelated and ordered according to the variance con-
tribution or explained variance. They use convolutional PCA to encode street networks
on (Google Street View) images of the city of London and ortho plans of multiple cities
streets with a unified geographical extent of 1.5 km × 1.5 km grid and rasterize them
into 256 × 256 images from locations around the world with the data origin being from
OpenStreetMap. They also demonstrate the use of main principal components that capture
the street structures and argue that the embedded data at the latent space can be interpreted.
The main components are explored by generating novel data using Convolutional PCA to
infer the value of the new images by changing the values of a specific component while
fixing all others. They also argue that the use of a convolutional PCA matches the accuracy
of an autoencoder while maintaining independent and interpretable components. They
integrate these components by using multiple visualizations of the samples located at
the extreme and statistically interesting values of the principal components, such as the
minimum, maximum, and median. Additionally, they demonstrate two-dimensional plots
of the principal components and argue that they capture the density, global structure, and
local structure of the road network in an independent way.

We set our research apart from previous related work with the following contributions:
we propose and follow a distinct method in generating urban pattern datasets, namely,
density-based clustering, and detect building clusters automatically and not based on
administrative boundaries. Using this method, a novel dataset for all cities of Germany is
generated and derived from the OpenStreetMap dataset, and then multiple data-reduction
techniques such as linear, nonlinear, and graph-based projections are explored. This
research proposes multiple tests to explore the manifold, which can be implemented as
tools to aid researchers or urban planners. Our method is distinct from previous studies in
the fact that it follows the nonlinearity of the latent space to select similar samples, and, to
the best of our knowledge, this approach has not been implemented on building footprint
patterns of urban fabrics. This research further suggests a few processes to query these
patterns similar to a search engine and tests these queries on well-known city patterns.
Additionally, it demonstrates that interpolating between two data samples on a path that is
close to the manifold can create novel data or morph between these samples. In addition,
the performance of these techniques is evaluated using a set of numerical metrics that
indicates the quality and correctness of the predictions.

4. Data Origin and Preparation

It is common in machine learning to search for a dataset that represents the canonical
state concerning the studied variables [38]. This approach is followed due to the fact
that the major variation in the data is, in many cases, caused by hidden variables that
are not of interest, as in the face-detection problem, for example. A successful algorithm
aims to detect the face or the variation of expressions, and all other variations that are
not of interest, such as the difference in lighting and face location, are considered to
be problematic. A powerful algorithm would be able to detect the variation of interest
nonetheless. However, at the stage of prototyping or research, it might be beneficial to focus
on the analysis of variables of interest and aim to reduce data to a canonical form in order
to help avoid the detection of secondary hidden variables as the main axes of variation.
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For example, Zivkovic and Verbeek [39] try to capture the movement of a person through a
series of images and suggests using a translation and rotation invariant PCA approach on
binary data by assuming a Bernoulli distribution and adding hidden translation parameters
that are used to rotate and translate the images automatically. Zivkovic and Verbeek [39]
explain that when translation and rotation are present in an image, they can be detected as
the main dominant deformations when applying data-reduction techniques. To focus back
on the problem of city patterns, randomly selected orthoimages of cities usually contain
translations and rotation of the objects of interest, such as buildings and road networks.
Due to the strong discrepancy of pixel values, such effects will represent a major variation.
To avoid this effect and focus our analysis on the semantic differences within city patterns,
the data in this research are moved to a canonical form by using data samples that are
represented as images with a center that matches that of the captured building cluster.

4.1. Study Locations and Data Source

Data are collected from OpenStreetMap [40]. Multiple study locations are selected,
namely, the complete country of Germany and three locations where the superimposed
pattern is prevalent: Paris in France, Barcelona in Spain, and New York City (N.Y.C.) in
the United States of America. Building clusters in Paris have clear centers as squares
with radial streets that pass through this center. Building clusters in Barcelona follow
a block pattern that is almost identical in the complete area of interest (AOI), whereas
the N.Y.C. AOI is built as a superimposed grid with identical street dimensions. Data
samples and preprocessing code can be found under the following Digital Object Identifier
(doi:10.5281/zenodo.5145665), with a collection of some of the statistics about the data
presented in Table 1.

Table 1. Experiment data statistics.

Cluster # Used Building Footprints # Images

Germany 30,823,846 49,069
N.Y.C. 2,231,164 2379
Paris 3,269,579 8555

Barcelona 2,821,748 5226
Training Autoencoders

Data division Training: 70% Validation: 20% Testing: 10%

# images used in cluster and path visualization

Germany: 85 N.Y.C.: 85 Paris: 85 Barcelona: 85

Due to the unified data generation process that is followed in this research, the four
classes of patterns in this experiment have similar statistical characteristics. However, the
variation of the data depends highly on the scale. For example, if data are captured on a
small scale, then many superimposed patterns will not be captured on such a resolution,
and the variation will correspond to the general shape of the city. On the other hand, if
a large scale is used, then the main variation of the data will be affected greatly by the
translation and rotation of individual building footprints. This happens since building
footprints occupy a large portion of the image in this case.

Figure 1 shows the count of buildings in each data sample and the maximum width
of each cluster belonging to the same range. The complete dataset of Germany has a
wider range compared to all other samples because of the large sample count, because
the outliers in count and width are very large compared to the rest of the dataset and,
if included in the images, will cause the remainders of the samples to not be captured
correctly. Therefore, outliers are not displayed, and it is noticeable that for this dataset,
most of the data samples contain less than 400 building footprints, and the data sample’s
geographical span is less than 800 m, while most building footprints’ bounding box width
is less than 24 m. With these statistics in mind, the image resolution of 64 pixels is chosen
to enable the rasterization algorithm to capture individual building footprints when the
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distance between them is more than 16 m, which corresponds to a distance less than the
width of one building for most building footprints in our dataset. The resolution, however,
is adaptive, and changes from sample to sample according to the sample’s extent. The data
are divided into training, validation, and testing in 70, 20, and 10% ratios, respectively,
which is a standard machine learning approach. The results are presented using the testing
dataset throughout the experiment.

Figure 1. (a) A boxplot of average building footprint width in each data sample for each of the experiment classes in the
units of meters. (b) A box plot of the width of data samples for each of the experiment classes in meters. (c) A boxplot of the
building count in each data sample grouped by experiment classes.

4.2. Image Sampling Method

It is natural to think about cities, in a city pattern clustering problem, as individual
instances of multiple classes. However, there are a few challenges that are related to this
approach. The number of cities around the world is comparably small to the number of
images that are required to train models that perform classification tasks when applying
many state-of-the-art machine learning techniques.

Moreover, building patterns within a city’s boundary do not necessarily follow a
specific superimposed pattern in all the cities, and many cities have multiple superimposed
patterns due to, among others, historic or political reasons. Additionally, a city centroid is
not necessarily surrounded by building footprints; many cities are distributed as a crescent,
for example, around a geographical or natural feature such as mountains or rough terrains.
To counter the mentioned problems, a density-based clustering algorithm is used to detect
building clusters in our dataset, namely, Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [41].

The algorithm yields a large number of clusters on a variety of geographical scales,
as shown in Figure 2. The DBSCAN algorithm detects clusters of buildings regardless of
administrative boundaries and, if the cluster is continuous over a large geographical extent,
then this is considered to be a unique variation in the data sample and should be preserved
in the image.
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Figure 2. Image datasets of building patterns. (a) An example of Germany’s dataset in Berlin, (b) Paris’s building pattern,
(c) Barcelona’s building pattern in the area of interest, and (d) the superimposed grid pattern in N.Y.C. in the area of
Brooklyn. The red squares represent the clusters’ extents around building footprints.

4.3. Preparing Data Images

City pattern data are converted to images. First, polygons representing building
footprint features are converted to binary masks, where pixel values that correspond to
geographical locations where buildings exits are given the value of “one”, and all other pixel
values are given the value “zero”. Formulas (9)–(15) are used to calculate the corresponding
coordinates on the local binary masks in the following way:

Pimage = P ∗ T (9)

P = [x, y, 1] (10)

sx =
imgx

(maxx −minx)
(11)

sy =
imgy

(maxy −miny)
(12)

dx = sx∗ minx (13)

dy = sy∗ miny (14)

T =

∣∣∣∣∣∣
sx 0 −dx
0 sy −dy
0 0 1

∣∣∣∣∣∣ (15)

The ratio of the images is consistent regardless of the shape of the cluster, as a square is
calculated around the centroid of the cluster. The coordinates minx, miny, maxx, and maxy
are computed as the maximum extent with respect to x and y, and half of the extent is added
or subtracted from the coordinates of the centroid accordingly. Building footprints are
projected to the image space using a translation matrix T, for which the scaling parameters
sx and sy are calculated using the geographical extent, and the image pixel count imgx and
imgy for the axes’ direction of x and y separately. Figure 3 displays some examples of this
process on the used dataset for the used building pattern classes.

Each of the locational pixels is a variable in the dimensionality reduction analysis, and
it is a common step to subtract the mean before performing the analysis. Figure 4 shows
the average of each group. The values that are the highest are located at the sample center,
with lower values at the edges. This is expected since the samples were created using
the DBSCAN algorithm with the condition that each of the samples needs to be centered
around a building footprint, and for each of these centers, a minimum of the number of
other building instances within a threshold distance must exist. Due to the small number
of samples in the first three groups, a deviation from a centered average can be noticed. We
argue that this is caused by the particular data selection for each specific pattern and the
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small sample count in each of these groups. The German dataset, on the other hand, shows
that this method of data production produces a high average and non-zero-pixel count at
the center with a decreasing value toward the edges.

Figure 3. Random samples from the four groups (a–d) depict clusters from datasets of N.Y.C., Paris, Barcelona, and Germany,
respectively. Black pixels represent the location of footprints, and white pixels represent background.

Figure 4. The average image pixels over the four classes used in the experiment for each locational pixel. Brighter pixels
indicate higher values.

5. Methodology

The datasets are encoded into latent manifold Y using mapping U following Formula (13).
U is represented as linear (PCA), nonlinear mappings Kernel PCA, T-SNE, or an autoen-
coder neural network. Several quantitative and qualitative tests are conducted to evaluate
the quality and correctness of the resulting clusters. In addition to the amount of informa-
tion that is extracted using reconstruction techniques such as PCA and autoencoders, the
quality of the resulting manifold is examined using the following tests. See Figure 5.

U(X)→ Y (16)

A visual indicator of the projection method quality is examined by visualizing the
projection weights of the PCA and autoencoders. These weights are reshaped into a two-
dimensional array and examined for any superimposed patterns that match that of some of
the data samples. The amount of information encoded using PCA is examined by plotting
the variation captured on each of the principal components in a Cattell–Nelson–Gorsuch
scree test (or CNG scree test) [42]. At the same time, the information captured by the
autoencoder is examined by performing a reconstruction of the samples and observing the
main characteristics of the reconstructed sample compared to the original one.



ISPRS Int. J. Geo-Inf. 2021, 10, 683 12 of 25

Figure 5. Mapping to a hidden manifold. The operation sequences demonstrate multiple operations that can be used to better
understand and analyze the build-up patterns. U represents a function or mapping from a high to a low-dimensional manifold.

To visually examine the quality of the projection, it is expected that similar samples are
located near each other in the latent manifold, with input data X and a projection method
U that projects data to a low dimensional manifold as Y = U(X). The algorithm assumes
that the point y that represents the pattern the most is located at the geometric centroid
of the pattern at the latent space. It is unlikely that any points will be located exactly at
the coordinates of point C. Therefore, point y is computed by selecting a point with the
minimum Euclidian distance from the pattern centroid’s coordinate. Point y is identified
and paired with a registry/spatial database entry that contains the geographical extent of
building clusters as follows:

• Compute pattern centroid C for a subset YI ;
• From YI , compute the nearest point y to C;
• From Y, compute the nearest point ynearest to y;
• From X, get the matching xnearest sample and the cluster’s geographical extent.

This test can be extended to find the n most similar patterns to a given pattern I in
order of similarity. For example, when one would like to inquire about other cities or parts
of cities around the world that have similar designs or structures to a given example. The
algorithm continues by building a K-Nearest-Neighbor Search tree for efficiency and then
querying this tree for points that are closest according to the Euclidean distance as a metric
of closeness. Test 2 is defined as:

• Build a K-D tree
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for KNN search for n neighbors→ Pnearest.

Furthermore, the quality of the manifold is examined by traversing points between
two city patterns YI and YL. However, tracing a direct vector connecting two points on
the manifold can yield points/samples that are not located on the manifold [22]. This is
especially true if the manifold is strongly curved or nonlinear, and this is a characteristic
that is assumed here for city patterns manifolds. To have a smooth transition between
patterns, the algorithm must be able to sample or select points in a transition that follows
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this curvature. The algorithm is inspired by the logic used by Isomap [22] and utilizes the
approximation of the geodesic distance as our metric and builds the shortest path between
the centroids of the patterns that one wants to traverse. The algorithm starts by building a
K-Nearest Neighbors points graph between the mapped points in the encoded data. Then,
it calculates the shortest distance path between these points using Dijkstra’s algorithm [43].
The number of points on this path depends on the distance between the centroids and the
density of the mapped points, and the density of projected sample points at these locations.
Test 3 is defined as:

◦ Build a K-Nearest-Neighbour graph G;
◦ Calculate pattern centroid CI for the subset YI ;
◦ Calculate pattern centroid CL for the subset YL;
◦ Calculate the shortest path P from CI To CL;
◦ For index i in P:;
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Get cluster pi Image;
◦ End.

A further test is added to examine the manifold further outside of the locations where
data samples are encoded. In many cases, the number of samples in the dataset is not
sufficient to cover the manifold without any interruptions or holes. The sampling methods
when collecting the data could have some biases or simply do not cover all possible cases.
To counter this issue, for some projection functions, it is possible to create a novel data
sample using U−1, an inverse of the transformation U. When the parameters of projection
U are calculated in a way that can capture the main characteristics of the sample X, if the
projection U has a mathematical inverse. Two points xi and xj from the original dataset are
selected with the corresponding projection yi and yj, respectively. Additionally, according

to the number of desired subsamples n, calculate the value of step s =
yj−yi

n . According to
this value, calculate the value of the novel sample xl . Test 4 is defined as:

• Project xi according to U(xi)→ yi;
• Project xj according to U

(
xj
)
→ yj;

• Compute direction vector d as d = yj − yi;

• Compute step s as s =
yj−yi

n ;
• Compute intermediate points at the projected space for each step;

l as yl = yi + l ∗ s

• Project intermediate points back to space RD as:

xl = U−1(yl)
Data sampling in the experiment assumes several unique classes based on subjective

observations of superimposed patterns of some cities of interest. This assumption is
evaluated by automatically dividing the projected data Y to a set of clusters with the help
of K-means clustering [27] using the number of suggested clusters as a hyper-parameter
(for example: {2, 3, 4, 5, 6, 7, 8, 9, 10}). The resulting cluster quality is evaluated using the
Fowlkes–Mallows [44], average Silhouette Coefficient [45], Adjusted Rand Index [46], and
Adjusted Mutual Info [47] depending on this hyper-parameter. The Silhouette Coefficient
measure will correspond to a high value if the cluster count is correct, meaning there is a
high similarity between an element and its cluster (cohesion) and dissimilarity between an
element and other clusters (separation). In other words, the clustering results when the
hyperparameter “number of clusters” of the K-means clustering algorithm corresponds
to the correct value, in which case the Silhouette Coefficient will probably yield a higher
silhouette score compared to the resulting clusters with a far-off value.

Fowlkes–Mallows Index, Adjusted Rand Index, and Adjusted Mutual Info determine
the similarity between two sets of clusters, where one of them is being considered as
ground truth. Both Adjusted Mutual Info and Adjusted Rand index takes into account the
fact that some samples will be assigned the correct class by random chance and normalize
the score accordingly. Therefore, the values of these metrics will normally be lower than
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the Rand Index or Mutual Info Score. These tests yield numeric values that can be used to
objectively compare the performance of different encoding algorithms. Higher scores are
interpreted as good performance of these algorithms.

Using K-means clustering on Y will only identify unique clusters that might not
match the labels of the ground truth. To perform this matching, the centroid of each of
the resulting clusters is computed, then matched with the closest ground truth cluster
centroids. All members of this cluster are given the corresponding label. The true positives,
false positives, and false negatives are computed based on this matching. Samples that
are correctly identified are considered true positives, samples that are falsely labeled as a
member of the sample are considered false positives, and samples that are not matched to
a different cluster are considered false negatives.

6. Experiments and Evaluation

To enable the reproducibility of the experiment, the main parameters of the experiment
are listed in Table 2. The experiment is implemented using the Python 3.7 programing
language [48]. The main library that is used to implement the autoencoder deep learning
models in Keras 2.4.0 [46]. The choice of the model parameters is supported by default by
the library. The models are implemented with the help of the scikit-learn 0.24 library [49].
Only the main parameters of the models are highlighted in the table, while the remain-
der are chosen to be kept as the default by the scikit-learn library. A repository of the
experiment, the parameters, and example data can be found by resolving the following
DOI:10.5281/zenodo.5145665. The repository additionally contains the weights of a trained
version of Autoenconder_6 and Autoencoder_200 and a Python Notebook that performs
the tests 1–4.

Table 2. Parameter values that are used with the encodings and tests.

Method Parameters

PCA # of components: 6 Kernel: None

Kernel PCA # of components: 6 Kernel: Sigmoid

LLE # of components: 2 # of neighbors: 5 Regularization
constant: 10−3

Max iteration:
100

Isomap # of components: 2 # of neighbors: 5 Metric:
Minkowski Distance

P (Minkowski
Distance): 2

MDS # of components: 2 Relative tolerance:
10−3

Dissimilarity:
Euclidean

t-SNE
# of components: 2 Perplexity: 30 Early exaggeration: 12 Learning rate: 200

Min grad norm:
10−7

Metric:
Euclidean distance

Angle:
0.5

Early exaggeration:
12

Autoencoder_6

Input shape:
(4096.1)

Bottleneck layer’s
shape: (6.1)

Activation:
Relu

Output layer’s shape:
(4096.1)

Output activation:
Sigmoid

Loss function: Binary
Cross-Entropy

Optimizer:
Adam

Autoencoder_200

Input layer’s shape:
(4096.1)

Bottleneck layer’s
shape: (200.1)

Activation:
Relu

Output layer’s shape:
(4096.1)

Output activation:
Sigmoid

Loss function: Binary
Cross-Entropy

Optimizer:
Adam
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6.1. Data Encoding Using PCA vs. an Autoencoder

Only a small percentage of variation is captured using techniques such as PCA in
the first components on this dataset, as seen in Figure 6. It is difficult to estimate the
minimum number of components that are required in ordered to capture the variation
between building patterns classes. Usually, a Cattell–Nelson–Gorsuch scree test or CNG
scree test [42] is performed with the objective of selecting the number of parameters. This
number specifies a cutting point where adding more principle components will not have
a significant contribution to the overall variation. However, in this experiment, the first
component has the highest contribution to the variation, which only represents 10% of
the variation, and the contribution drops to only 2% for the second component and less
for all of the others. This means that each of the samples is adding a small amount of
variation, and the technique fails to capture the most amount of variation by only using a
small subset of dimensions. The experiment, however, focuses on designing an exploratory
technique that captures the difference between building patterns and does not focus on
the reconstruction of detailed city images. Therefore, the desired variation for exploration
purposes may exist in the first components, as the rest of this experiment confirms.

Figure 6. The amount of variation captured by the first six components using a PCA decomposition.

Figure 7 shows that when running PCA on the experiment dataset, the first com-
ponents capture some features of the dataset, such as a block in the center of the image
as in PC3, or a repetitive pattern such as in PC2, PC4, PC5, and PC6, while PC1, which
captures 10% of the data is not easily interruptible. These components are multiplied in
a dot product with the data to produce the projected data. Therefore, these values might
indicate a combination of the main characteristics of the depicted images by PCA. For
example, multiplying PC3 with the image might have a very low activation for Barcelona
patterns at the center, whereas PC6 might have a strong activation for patterns that have a
building density at the center of the image.

Similarly, an autoencoder network is trained on the dataset, and the encoder weights
are displayed in Figure 8. These weights are taken from the encoder branch. The autoen-
coder has a simple structure of an input and output layer that matches the number of
pixels in the city pattern image and a bottleneck of a fully connected layer that is composed
of six neurons. This choice is based on the experiment conducted using PCA analysis to
determine the minimum number of components needed to encode the data efficiently. The
connections of the input layer carry the encoder weights. These weights are reshaped
into a 2D image, as shown in Figure 8. The autoencoder uses the compensation of these
weights to encode building pattern images into a tensor of six values, which is a very low
number of dimensions compared to the original dimensions of the images, which are 4096.
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A binary cross-entropy loss function is used to guide the optimization during training
the autoencoder, and this means that a low loss corresponds to the number of correct
pixels reconstructed by the decoder using only the six values that are passed through the
bottleneck. The results shown in the figure are predictions based on the test dataset.

Figure 7. PCA components. This figure shows each of the first six principal components from the
PCA analysis. This analysis is trained in the experiment dataset with a reconstruction loss function.
Brighter pixels indicate higher numeric values in contrast to dimmer values that indicate low numeric
values at that location.

Figure 8. The weights of trained Autoencoder_6 neurons. Bright values indicate high numeric values,
while dim values indicate a low numeric value.

The extreme compression of information into only six dimensions forces the weights
to correspond to the main visual characteristics of the images. This conclusion is based
on the reconstruction results displayed in Figure 9, where the constructed images depict
a rough estimate of the main direction of the original pattern and the distribution of its
density. Subfigure b in Figure 9 demonstrates that the usage of a large number of neurons
enables Autoencoder_200, which has 200 neurons at the bottleneck layer, to reconstruct
higher-quality images with a higher number of details retained compared to using only
six neurons.
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Figure 9. City images and their corresponding reconstructions. (a,b) An alternation of columns from the left-hand side to
the right-hand side show original and reconstructed images. Each row is selected randomly from a pattern class, and they
are from top to bottom New York City, Paris, Barcelona, and Germany, respectively. The figure images are reconstructed
using Autoencoder_6 with six neurons at the bottleneck section, whereas figure b shows images that are reconstructed using
Autoencoder_200 with 200 neurons in the bottleneck section.

6.2. Visual Tests

Test 1 is executed to answer the following query: select from the patterns of Ger-
many the most similar pattern to the following target clusters: New York City, Paris, and
Barcelona. Both images of the New York City centroid and its paired image from the
Germany dataset according to Autoencoder_200 are depicted in Figure 10. This paired
image shows the same orientation of patterns and large streets that are in New York City.
Both images of the Paris pattern and its paired image from the Germany dataset show a
similar block sectioning with an empty square at the lower right side of the image, whereas
both Barcelona centroid and its paired images contain a large square on the right-hand side
with similarly curved streets.

Figure 10. Results of Test 1. The top row shows the centroid of each of the clusters, which are (a) New York City, (b) Paris,
and (c) Barcelona. The top row depicts the image that is most similar to the centroid. The last column (d) is a repetition of
the Barcelona cluster; however, it is shown in the geographical context.
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Figure 11 shows the results of Test 2 execution. It depicts a query image and the five
most similar cities according to the Euclidean distance in the space that is encoded using
Autoencoder_200. It is noticeable that the selected patterns have the same orientation of
streets in the query image; the density of the building footprints and street curvature has a
similar visual distribution to that of the query image.
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and (c) Barcelona. The top row depicts the image that is most similar to the centroid. The last column (d) is a repetition of 
the Barcelona cluster; however, it is shown in the geographical context. 

 

 

Figure 11. Results of Test 2. The data sample surrounded with a red square is the query image. The remaining 5 images are
images that have the shortest Euclidean distance at the manifold from the image encoded by Autoencoder_200.

Test 3 is performed to traverse points between each of the four centroids on the shortest
path connecting these centroid points, and results are shown in Figure 12. The desired
results are samples whose characteristics change gradually from the start sample depicted
in Figure 12 at the top left to the end sample of the centroid of the US dataset depicted
on the bottom right. However, the algorithm is limited to the data samples that are given
as input. Notably, for both examples, there is a gradual increase in the density with the
selected images moving toward the US centroid. The superimposed pattern direction of
the traversed sample alternates suddenly at some steps, as shown in subfigures (b,d). It is
worth mentioning that Figure 12 shows the shortest path between samples in only three
dimensions. However, the cost distances are calculated over 200 dimensions, and due
to this fact, it is noticeable that the complex and not the straight-forward path is shown
in yellow.
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Figure 12. Results of Test 3. Traversing the graph between two data samples. The starting and ending data samples are
marked in red in both subfigures (b,d). The data samples show the data points that match the ones on the graph traversal
shown in (a,b). The subfigures (a,c) show the shortest path depicted in yellow in a three-dimensional scene.

Arguably, the number of samples for each class in the experiment is not sufficient to
cover the completed and nonlinear manifold without any gaps. To test this assumption,
an interpolation between samples on the graph was performed, and the parameters of a
high dimensional vector v were calculated with the step toward the next sample on the
graph, as explained in Test 4. The results are shown in Figure 13 using the decoder branch
U−1 as an approximation of the inverse transformation of the encoder branch U. Note
that the orientation and density of each location on the image change gradually between
subsamples. These images are out of the sample and predicted by the decoder. The results
are based on the values of the 200-dimensional vector that are incremented according to a
small threshold starting from the first and ending at the second image. It indicates that the
autoencoder was able to encode some of the main characteristics of city patterns, such as
orientation and density.

Figure 13. Results of Test 4. Interpolation between two data samples using decoder_200. The most left and right samples
belong to the original dataset X. The rest of the images are out of the sample calculated based on the decoder prediction
with an increment left to right, top to bottom.
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6.3. Clustering Performance and Model Evaluation

Following the steps of testing presented in the Methodology section, the data samples
are projected on a low dimension space using the following methods: PCA, Kernel PCA,
LLE, Isomap, MDS, t-SNE, and Autoencoder_6 with six neurons and Autoencoder_200
with 200 neurons at the bottleneck. The experiments and metrics were collected using these
methods, and tests were performed on a subset of the data (85 samples per class). These
results are shown in Figure 14 and Table 3.

The visualization in subfigure (a) in Figure 14 keeps track of the original classes for
each projected image of the building pattern classes and is shown as ground truth data with
the label GT. Additionally, the prediction of these methods is indicated with the label P. The
predicted data are clustered using the K-means clustering algorithm with a hyperparameter
of cluster count set to four. The predicted clusters are compared visually with the ground
truth, and it is observed that Linear PCA, referred to as PCA and Kernel PCA, projected the
clusters and of Barcelona and Germany to be near the ground-truth clusters, while Paris
and N.Y.C. were located in proximity to each other. Other methods such as Autoencoder_6
located a large density of the data samples on one of the axes of variation, while samples
encoded using LLE followed a linear pattern with the sample cluster of ground truth and
predictions following the same sequence. MDS and t-SNE produced what looks like a
uniform distribution of samples over the manifold. At the same time, both Isomap and
Autoencoder_200 predicted all clusters with locations that resample the ground-truth data
with Autoencoder_200, giving nearly identical locations for the corresponding centroids.
The visualization in subfigure (b) in Figure 14 depicts a plot of the Silhouette Coefficient
for each of the methods. It is noticeable that the value of cluster count of “two” produced a
high Silhouette Coefficient average score for PCA, Kernel PCA, LLE, MDS, Autoenocder_6,
and Autoencoder_200. Moreover, a high spike of value was noted at the value of 8 for the
PCA, Kernel PCA, t-SNE, and Autoenconder_200 methods. On the other hand, a maximum
value was observed when setting this number to three for the Isomap method, compared
to a local maximum setting of four for the methods of PCA, Kernel PCA, and MDS.

Furthermore, the experiment continued to explore setting the value of cluster count to
four and examine the assumption enforced by the data design. Results are shown in Table 3.
The LLE method had the highest score of the Silhouette Coefficient for the N.Y.C. cluster
of 0.58, while the Isomap method performed the best for the clusters of Paris, Germany,
Barcelona, and the average Silhouette Coefficient Score, with values of 0.49, 0.69, 0.5, and
0.57, respectively. On the other hand, Kernel PCA had the heights score for the metrics of
Adjusted Rand Index, Adjusted Mutual Info, homogeneity, completeness, and Fowlkes–
Mallows Index score, with values of 0.33, 0.39, 0.37, 0.42, and 0.52, respectively. Other
methods had overall high scores for both the cluster quality and prediction correctness
compared to the ground truth, such as linear PCA and LLE. Autoencoder_200 had low-
value cluster quality compared to high correctness values. T-SNE had consistently lower
performance when compared to other methods regarding the quality of the resulting
clusters and the correctness of the resulting labels.
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Figure 14. Clustering performance. In (a), each colored dot represents a data sample projected using the corresponding
method. Ground-truth data are labeled with GT and prediction P. Each unique color indicates distinct clusters. Subfigure
(b) demonstrates plots of Silhouette Coefficient value for each method when changing the number of clusters, which is
depicted on the x-axis.
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Table 3. Resulting metrics of used methods when fixing the cluster count value to four.

Score PCA Kernel PCA Sigmoid LLE Isomap MDS t-SNE Autoencoder_6 Autoencoder_200

N.Y.C. Silhouette Average 0.49 0.35 0.58 0.42 0.09 0.22 0.37 0.06

Paris Silhouette Average 0.19 0.15 0.12 0.49 0.08 0.22 0.37 0.07

Germany Silhouette Average 0.53 0.46 0.52 0.69 0.27 0.21 0.36 0.43

Barcelona Silhouette Average 0.16 0.18 0.37 0.50 0.09 0.26 0.27 0.10

Average Silhouette Coefficient 0.29 0.25 0.35 0.57 0.15 0.23 0.34 0.16

Adjusted Rand Score 0.31 0.33 0.20 0.20 0.23 0.07 0.10 0.28

Adjusted Mutual Info 0.36 0.39 0.28 0.24 0.22 0.08 0.14 0.31

Homogeneity 0.34 0.37 0.26 0.24 0.23 0.09 0.15 0.32

Completeness 0.40 0.42 0.33 0.27 0.23 0.09 0.16 0.32

Fowlkes–Mallows Index 0.51 0.52 0.45 0.43 0.42 0.30 0.35 0.46

7. Discussion, Limitations, and Conclusions
7.1. Conclusions

In this paper, a few algorithms are presented to explore city patterns with the help
of machine learning techniques. To test these algorithms, a specialized dataset that has a
variety of city patterns was created. In addition, the complete dataset of OSM of Germany’s
over 30,823,846 million building footprints was processed. The paper also demonstrates
that using encoding techniques is an effective way of exploring these patterns and presented
several example algorithms or tests that can be used in exploring and understanding
urban patterns.

Initially, the visual comparison was performed on a trained linear PCA of six compo-
nents and an equivalent autoencoder of six neurons. The visual demonstration showed
that the first six components of PCA captured a large amount of variation and information
about the city patterns (see Figure 6). Additionally, superimposed patterns were observed
on the visualized weights, including values that corresponded to central or repetitive
linear patterns activation in a variety of directions (see Figure 7). This is an indicator that
these weights will produce significantly different values for samples that belong to distinct
clusters that themselves have certain superimposed patterns. Similar behavior is observed
when using Autoeoncder_6 to force data to be encoded and reconstructed using only six
neurons (see Figure 9). The weights of Autoencoder_6 reflected noisy images without any
detectable superimposed patterns. However, the model was able to reconstruct images
that arguably contain the main superimposed visual characteristics of the original images,
such as density and orientation. Not surprisingly, increasing the number of neurons at
the bottleneck of the autoencoder to 200 produced highly detailed images. We argue
that the reason for visually detectable patterns on the weights of a trained PCA is due
to the fact that PCA enforces uncorrelated components by design. This means that the
variance encoded on one of the component axes should not correlate with the following
axis, causing the model to learn to correspond to the main visual characteristics of the
image dataset independently.

The experiment focuses on the model Autoencoder_200’s ability to perform test
sequences 1–4 introduced in the Methodology section. Test 1 returns city patterns that are
most similar to a certain cluster centroid. The result of the test is not decisive due to the
fact that the similarity between the images is not prominent (see Figure 10). However, the
similarity between the samples was noticeable when performing Test 2 that returns an n
number of similar samples (see Figure 11). Likewise, traversing between two clusters in
Test 3 is expected to yield images that have a visual appearance that transitions between
the cluster centroids. However, this transition was not easily detectable (see Figure 12).
This is due to the fact that the amount of samples used in the experiment does not cover the
complete manifold. Test 4 proves the previous assumption in addition to demonstrating the
generalization capabilities of the autoencoder. “Out of sample” images were generated by
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interpolating between two points on the manifold. The resulting successful interpolation
images form a smooth transition between the data samples concerning the direction and
density of the sample and are an indicator of a high-quality manifold (see Figure 13).

The previous tests are subjective due to the fact that they depend on a human annotator
to determine the quality of the results. However, they are a strong indicator of the successful
encoding of the main visual characteristics of the city patterns. To support this conclusion
from these tests further, a number of metrics are computed by clustering the data at each of
the encoded manifolds, and results are presented in Figure 14 and Table 3. The metrics can
be considered to be representative of two categories: the quality of clusters measured by the
Silhouette Coefficient, and the correctness of the labeling measured by the Adjusted Rand
Score, Adjusted Mutual Info, homogeneity, completeness, and the Fowlkes–Mallows Index.
Isomap had the best performance regarding the quality of the separated clusters, while
PCA with a Sigmoid kernel performed the best in matching the clusters to the ground-truth
labels. The high scores on these metrics for Autoencoder_200 match the observations that
were collected in the previous tests and confirm that a simple encoder with a low number of
neurons can perform very well on a complicated task such as the unsupervised clustering
of city patterns.

7.2. Limitation and Future Work

Many decisions and thresholds hat to be taken and selected to execute this experiment,
including the images’ spatial resolution, size, and the way samples were selected. For
example, the DBSCAN algorithm is used to select the data sample centers. Choosing a
different clustering algorithm can produce a dataset that has dissimilar statistical character-
istics to the one used in the experiment. Additionally, multiple thresholds are used in the
data-encoding algorithms, such as the number of components and the number of neighbors
allowed in the graph (see Test 3: Methodology). Similarly, changing the threshold of the
K-mean clustering will yield a different set of clusters for each method. Changing these
thresholds might impact the path traversed by the algorithm.

The main hypothesis of this research is that similar patterns are located in the near
vicinity of each other in the projection space. However, this assumption has two main
caveats. First of all, one has to choose the metric of distance in the projected space. The
Euclidian distance is chosen to test the algorithms. However, a different measure of
proximity or distance might have a better correlation to the similarity between patterns
in that space. The second caveat is that the dataset clusters used in this research were
selected based on a subjective observation that New York, Paris, and Barcelona have
visually different city patterns. The encoding algorithms used in this research were able
to differentiate between these patterns and confirmed this assumption. Future work can
include an independent assessment of these similarities, evaluate the results objectively,
and give more rigorous proof. In addition, a benchmark database of different city patterns
can be created and annotated by professional city developers and researchers in order to
have an objective ground truth of the cluster labels.

From a statistical point of view, it is assumed in this research that the observed images
are capturing an equilibrium of the same statistical process that governs the development
of cities (ergodicity and stationarity). This assumption allows the sampling of different data
samples in multiple locations. Without this assumption, one needs to observe a repeated
development of each city a large number of times, and unfortunately, such a dataset is not
realistic, and therefore each image is considered as an independent observation. These
aspects could be further investigated by projecting cities that are created using a variety of
processes onto the subspace and examining the results.

From a practical point of view, Test 3 has a high time complexity due to the fact of
building a nearest neighbor graph between all projected points. Future research could
investigate alternatives to build this graph and navigate the shortest path between points
with low time complexity. Additionally, only a fully connected neural network is considered
in the tests. However, Convolutional Neural Networks are suitable for topologically
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structured data. Convolutional autoencoders might have the advantage of detecting
additional features on multiple scales. Further research needs to be conducted to test if this
observation is also true for city pattern data.

Projecting city patterns onto a lower-dimensional space can help better understand
cities, and tools that are implemented to explore this pattern can be a powerful aid to
support urban designers and city planners. This fits the direction of current research where
more and more technologies are used in cities with the goal of improving the lives of people
around the world in future cities [50–52].
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