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Abstract: The jobs–housing balance concerns the spatial relationship between the number of jobs and
housing units within a given geographical area. Due to the separation of jobs and housing, spatial
dislocations have occurred in large cities, which have resulted in a significant increase in commuting
distance and time. These changes have ultimately led to an increase in pressure on urban traffic, and
the formation of tidal traffic. In this study we introduce a multi-agent approach to examine the jobs–
housing relationship under the maximum location utility of agents. The jobs/housing ratio measures
the balance of the of jobs–housing relationship, as well as comparing and analyzing jobs–housing
separation in Beijing by district, county, and street scales. An agent-based model was proposed to
simulate spatial location selection behavior of agents by considering environmental and economical
influences on residential decisions of individuals. Results show that the jobs–housing relationship
imbalance in Beijing has been mainly aggravated due to rapid population growth in the 6th Ring
Road. An imbalance in the jobs–housing relationship has arisen due to a mismatch with the number
of households available compared to the number of jobs; the surrounding urban areas cannot provide
the required volume of housing to accommodate the increase in workers. Six sets of experiments
were established to examine resident agents and enterprise agents. Differences in resident agents’
income level had a greater impact on residential location decision-making, and housing price was
the primary factor affecting the decision of residents to choose their residential location. The spatial
distribution of jobs and housing in Beijing under the maximization of micro-agent location utility
was obtained in this study. Results indicated that the imbalance in the jobs¬-housing relationship in
central Beijing has improved and, compared with the initial distributions, the number of jobs–housing
balance areas in Beijing has increased.

Keywords: jobs–housing relationship; agent-based modeling; location decision-making; Beijing

1. Introduction

Car dependence, traffic congestion, long commuting distance, and associated air
pollution and Greenhouse Gas (GHG) emissions in metropolises have become a serious
global area of concern [1,2]. At the same time, rapid urbanization and population growth,
rising incomes, increased car ownership, land use changes, and weak traffic management
have resulted in an increase in commuting time in cities [3–6]. In order to deal with these
issues, different counter measures have been proposed. The jobs–housing balance has been
considered by planners, researchers, and policy makers to be the most effective counter
measure [7–14]. This balance reflects the distribution of both residential and employment
opportunities within an urban area, being the “spatial relation between the number of
jobs and housing units within a given area” [15]. The jobs–housing balance can also be
used as a ratio to measure jobs and housing opportunities via spatial units, such as Traffic
Analysis Zones (TAZ) [16,17]. If a spatial unit achieves a certain ratio of jobs and housing
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opportunities, it is in a “quantitative balance”; a “quantitative imbalance” is achieved
when this is not the case [1]. More generally, commuting time can be a proxy for the
jobs–housing balance. An imbalance is suggested whether workers live far (in either space
or time) from opportunities or not. The resulting jobs–housing imbalance (JHI) has been
analyzed theoretically and empirically by urban economists, geographers, and planners,
and three issues have been identified: (i) longer commuting distance—JHI can induce a
longer total commuting, e.g., “wasteful” commuting; (ii) single-occupant commuting—JHI
increases the rate of solo-driving trips; and (iii) social exclusion—JHI influences commuting
of both workers and job-seekers who do not have their own cars. As these issues can be
related to traffic congestion and deteriorating air quality, the jobs–housing imbalance
has been examined as solutions are sought to address these social and environmental
related problems [18].

Empirical studies have quantified the spatial relationship between jobs and housing
using different geographical methods. The ratio of the number of jobs to the number of
working people within a given region is probably one of the most convenient, simple,
and prevalent measurements used. This measurement has previously been defined by
Boussauw et al. [19,20]. Currently, different ratios reflecting a suitable balance of jobs
to housing have been proposed. Margolis [16] used a ratio of 0.75–1.25 for the commu-
nity level; Cervero [21] proposed a reasonable ceiling of 1.5 at the nationwide level; and
Peng [15], based on traffic analysis zones, suggested a range of 1.2–2.8. Other measure-
ments include theoretical minimum/maximum commuting distance, excess commuting,
commuting potential, and observed or reported individual-level or aggregated commut-
ing distance [22–26]. Cervero [9] emphasized that the balance between an ideal job and
housing is an abstract concept that is difficult to measure, and it has long been thought
that people tend to gather in places where there are more jobs; residents therefore believe
that jobs are more likely to be found in neighborhoods where housing is concentrated [27],
constituting an analytic parameter for these measurements. Boussauw et al. [19] found that
that the spatial proximity represents, for example, the jobs–housing balance or the number
of potentially accessible jobs, and it can be used as non-linear predictors for reported com-
muting distances. This finding was confirmed by Horner who thought that the balance of
jobs–housing, excess commuting distance, and job accessibility were interrelated in urban
areas [28,29]. At the same time, a number of investigations were undertaken on spatial
models of the interactions of jobs and housing site selection. For example, Hincks and
Wong [30] empirically examined the spatial process of housing and the interaction with
the labor market using a case study in north west England, and Sener et al. [31] analyzed
housing choices using a generalized spatially correlated logit model based on survey data
from San Francisco, USA. These studies adopted traditional ‘top-down’ methods, which
are limited in reflecting and expounding individual behavior leading to spatial population
dynamics [32–37]. Due to spatial population dynamics based on individuals looking for
work and choosing where to live, it is therefore hard to simulate complicated individual
behavior using these models [38].

The urban ecosystem is complex, involving multiple factors such as population, econ-
omy, transportation, and the environment. There are complex inter-relationships between
internal factors that influence and/or restrict each other. Among many simulation methods
of complex systems, agent-based models (ABMs) are an important tool to simulate complex
systems which have increased in popularity [39–42]. ABMs utilize a ‘bottom-up’ approach
to simulate the complex behaviors of interacting individual agents [43–46]. These models
are advantages by dynamically connecting social and economic factors, and simulating
the process of individual decision making and interactions [47,48]. ABMs can describe the
behavior of individual agents, which can be governments, the environment, individuals
or enterprises, depending on the specific conditions. ABMs also often focus on decision-
making processes, such as which objectives to examine and decision rules. Therefore, ABM
approaches can potentially be used in modeling spatial dynamics evolving from individ-
ual behavior [49–51]. Liu and Ye [49] explored the evolvement of firms’ environmental
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behavior and influencing factors using an adaptive agent-based modeling approach, and
the results revealed that firms’ environmental behavior followed this evolvement path:
defensive behavior, preventive behavior, and enthusiastic behavior using empirical data
from 167 firms in China. Adrestani et al. [50] proposed an agent-based model of residential
segregation, which contributes to the same realistic modelling direction for analyzing the
effect of residential location decision of individual residents on the spatial ethnic mosaic
pattern of the central Auckland region (New Zealand metropolis). Yue et al. [51] built
a simulation model of the energy-saving behavior of urban residents using agent-based
modeling, and analyzed the subsequent effect of behavioral outcomes due to the short- and
long-term influence of energy-saving behavior and intentions under different policy situa-
tions. Therefore, agent-based models (ABMs) are ideally suited for simulating individual
behavior differences in a complex system.

With the large-scale agglomeration of populations in some large cities, and the rapid
expansion of urban space, serious large-scale urban diseases such as unbalanced occupa-
tions, traffic congestion, and environmental pollution have emerged, which have severely
restricted the sustainable development of the region and the construction of ecological
civilization. As a typical single-center layout city in China, Beijing has a large-scale agglom-
eration of urban population and a rapid expansion of urban space. Serious urban issues,
such as jobs–housing separation (JHS), traffic congestion, and environmental pollution,
have significantly restricted the sustainable development of Beijing. Therefore, in order
for Beijing to successfully develop in the post-Olympic era, solutions to solve urban traffic
congestion, to relieve the current situation of JHS, and to shorten commuting time and
distance are urgently needed. In this study, we propose an ABM to simulate spatial location
selection behavior of agents by considering the impact of environment and economy factors
on employment behavior and the residential decisions of individuals. This approach will
also simulate residential decisions made by individuals. The difference of resident agents’
income level has a significant impact on residential location decision-making, and housing
price is the primary factor affecting the decision of residents to choose their residential loca-
tion. Based on the simulation results of location selection of agents, the density simulation
results of resident population and employment population on a street level in Beijing, as
spatial units, will be obtained. Using this approach, the spatial distribution of jobs–housing
in Beijing under the maximization of the micro-agent location utility will also be identified.
The spatial relationship distribution of jobs–housing in Beijing and the imbalance of the
jobs–housing relationship in the central city has improved. Compared with the initial
distribution, the number of jobs–housing balance areas in Beijing has increased. Our aim
is to simulate the adaptive behavior of each agent on the jobs–housing environment by
constructing the location selection method framework of agents. Moreover, we used the
modular and hierarchical modelling characteristics of the Anylogic platform to analyze the
urban jobs–housing location selection and spatial relationship. Our study is an exploration
of a complex multi-agent system model on the jobs–housing relationship, and results
provide suggestions for improving spatial relationships of jobs and housing to achieve a
balance. At the same time, our study has a certain theoretical and practical significance to
scientifically formulate policy measures for improving the jobs–housing relationship and
green low-carbon transportation development strategies.

2. Materials and Methodology
2.1. Study Area

In this study, Beijing was selected as a case-study, and a complex system model
was developed to support intelligent simulation of the region jobs–housing relationship.
Beijing is the capital of China and one of the most developed metropolitan areas. Beijing is
located on the North China Plain, covering an area of 16,411 km2; this city has a gradual
altitude decline from the northwest to the southeast. Beijing administers 16 districts
and two counties, with Tiananmen Square as the city center (Figure 1). The permanent
population of Beijing increased from 15.4 to 21.54 million between 2005 and 2018, of which
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approximately 86.5% are situated in urban areas [52]. GDP in Beijing increased from 714.1
to 3032.0 billion CNY over the same period [53]. Beijing’s serious commuting problems
have been frequently reported in recent years. Data from the Beijing Third (2005) and Fifth
(2014) Travel Surveys showed that in the 10-year period between 2005 and 2014, the average
commuting time by bus and subway increased by 40.9 and 38.3 min, respectively [54,55].
Average one-way commuting time in Beijing has reached 52.9 minutes, ranked as the
highest in China. Jobs–housing separation is considered a main reason to increase the
commuting burden of Beijing’s residents. The phenomenon of jobs–housing separation
and spatial dislocations have occurred in cities, increasing the pressure on urban traffic
and forming tidal traffic.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 4 of 33 
 

 

altitude decline from the northwest to the southeast. Beijing administers 16 districts and 

two counties, with Tiananmen Square as the city center (Figure 1). The permanent popu-

lation of Beijing increased from 15.4 to 21.54 million between 2005 and 2018, of which 

approximately 86.5% are situated in urban areas [52]. GDP in Beijing increased from 714.1 

to 3032.0 billion CNY over the same period [53]. Beijing’s serious commuting problems 

have been frequently reported in recent years. Data from the Beijing Third (2005) and Fifth 

(2014) Travel Surveys showed that in the 10-year period between 2005 and 2014, the aver-

age commuting time by bus and subway increased by 40.9 and 38.3 min, respectively 

[54,55]. Average one-way commuting time in Beijing has reached 52.9 minutes, ranked as 

the highest in China. Jobs–housing separation is considered a main reason to increase the 

commuting burden of Beijing’s residents. The phenomenon of jobs–housing separation 

and spatial dislocations have occurred in cities, increasing the pressure on urban traffic 

and forming tidal traffic. 

 

Figure 1. Location of Beijing in China. 

2.2. Methodology 

2.2.1. Analysis Method of the Urban Jobs–Housing Relationship 

A region with a balanced jobs–housing relationship is relatively independent and 

self-sufficient, providing a stable environment where people can undertake a range of ac-

tivities, such as employment, housing, entertainment, and leisure activities. The space 

mismatch hypothesis, proposed in 1968 by Kain [56], expounded the spatial mismatch 

between the number and the quality of jobs and residences, providing clarity on the con-

cept of the job–housing relations balance. Generally, the job–housing relation balance has 

two levels of meaning: (i) the balance of quantity—indicating that the number of jobs in a 

certain area is equal to the number of living units; and (ii) the balance of quality—where 

job skills are matched with employment opportunities. The average income of residents 

is also matched with house price. 

In order to measure the balance of the number of jobs–housing relationships, urban 

jobs–housing relationships are generally measured using the jobs/housing ratio (JHR). 
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2.2. Methodology
2.2.1. Analysis Method of the Urban Jobs–Housing Relationship

A region with a balanced jobs–housing relationship is relatively independent and self-
sufficient, providing a stable environment where people can undertake a range of activities,
such as employment, housing, entertainment, and leisure activities. The space mismatch
hypothesis, proposed in 1968 by Kain [56], expounded the spatial mismatch between the
number and the quality of jobs and residences, providing clarity on the concept of the
job–housing relations balance. Generally, the job–housing relation balance has two levels
of meaning: (i) the balance of quantity—indicating that the number of jobs in a certain area
is equal to the number of living units; and (ii) the balance of quality—where job skills are
matched with employment opportunities. The average income of residents is also matched
with house price.

In order to measure the balance of the number of jobs–housing relationships, urban
jobs–housing relationships are generally measured using the jobs/housing ratio (JHR). This
ratio assumes that in a certain area, one member of one household on average is employed,
and each household has its own residence. When JHR = 1, the job–housing relationship in
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the region is in balance; when JHR > 1, there is not enough housing in the area to satisfy
demand, resulting in people living away from the area; and when JHR < 1, housing supply
is greater than demand. When JHR is both <1 and >1, the region is in an imbalanced state
in relation to jobs and housing. The equation for the jobs–housing ratio is:

JHRi =
Ji
Ri

(1)

where JHRi is the jobs–housing ratio of the ith street, Ji is the number of jobs for the ith
street, and Ri is the total number of residents of the ith street.

Data required for analysis was readily available, it has strong operability, and it can be
calculated and analyzed on the basis of existing data. However, due to the lack of a standard
value range that uses JHR to determine whether the regional jobs–housing relationship is
balanced, our study was partially based on previous analysis by Margolis [16] and Wang
et al. [57]. By considering the current ratio of the number of households and the number
of jobs in Beijing, the JHR value (0.75–1.25) is considered to be in a balanced state, and
the area beyond Beijing is considered to be unbalanced. The jobs–housing imbalance
(JHI) presented in this study is a concept that is relative to the jobs–housing balance,
mainly referring to the jobs–housing relation in the region when the number of housing
provided to employees in the region is seriously mismatched with the number of jobs.
From the perspective of the quantitative balance, the JHR calculation can reflect the degree
of jobs–housing imbalance/balance in the region to a certain extent.

2.2.2. Behavior Setting of Agents
Resident Agents

The resident agent examined in this analysis enabled agents to select their own
residence and workplace according to the maximum location benefit. Many factors are
considered to affect the location decision of residents, including some internal factors, such
as economic income [58,59] and family structure [60–63]. Agents with higher incomes
generally have more choices. There are also some external factors that will affect the
decision-making of the agent, such as the natural environment [64], infrastructure [65,66],
and house prices [67–70]. The natural environment and infrastructure conditions around
locations are also an important factor considered by the agent. The agent usually prefers
the location with beautiful surroundings and convenient facilities. However, due to
significant house price differences in the city, economic income can directly affect residents’
decisions on residential location [69]. With consideration of data from the sixth nationwide
population census data, we divided the average income level of urban households into five
equal parts (Table 1). House price and living environment are important factors affecting
the spatial location choice of resident agents, with house price directly determining the
purchase intention of the residents. Resident agents with different income levels have
different sensitivity to house price. In addition, different types of resident agents also
have different preferences for the living environment, including nature, transportation,
education, medical treatment, and commerce. As a result, the spatial location choice
behavior of residents is closely related to the spatial morphological characteristics of
various living infrastructures. By considering the availability and quantification of data,
we selected house price, distance from green space, distance from water bodies, distance
from ring roads, distance from first-class roads, distance from subway stations, distance
from hospitals, density of bus stations, commercial density, density of primary schools and
density of middle schools as the main external factors affecting residents’ spatial choice
behavior. The original vector data of these factors were spatially analyzed using ArcGIS
software (Figure A1). A resident agent chooses an optimal residential location according to
the maximum location efficiency. The behavior rules of the resident agents are shown in
Figure A2. In this study, we chose income and family structure as indicators to reflect the
characteristics of the resident agents’ own attributes.
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Table 1. The division of the resident agents.

Code Income Level Proportion

P1 High income 0.178
P2 Medium and high income 0.202
P3 Medium income 0.147
P4 Medium and low income 0.285
P5 Low income 0.188

In the study, we used an urban job–housing space decision-making model to select res-
ident agents’ residential location. Firstly, 6000 sample points were randomly generated as
the analysis sample of resident agents (Figure A3). The spatial preference probability of each
type of resident agents was then calculated and the results were tested (Figures A4 and A5).

Spatial decision behavior simulation method framework for resident agents is shown
in Figure 2. Firstly, we converted the basic vector data (spatial data) into ASCII format in
ArcGIS based on the framework of the method; Then we input the ASCII format data into
Anylogic platform and based on the behavior rules of Agents (Figures A2 and A8), the
simulation results are obtained by running in Anylogic platform, the results’ data are also
in ASCII format. Finally, the data results of ASCII format are input into ArcGIS platform,
and the simulation results are displayed and analyzed. Assuming that the income level of
resident agents is I, the maximum utility function under income constraints is [71]:

maxU = max u(A, B) = Aa × Bb; a, b > 0
s.t I = WN = pA A + pBB + C

(2)

where pA and pB are different product prices, A and B are quantities of products, and C is
commuting cost.

When C= 0, the optimal consumption decision is:{
pA ∗ A = a

a+b I

pB ∗ B = b
a+b I

(3)

when a1 I = a
a+b , a2 = b

a+b , so a1 + a2 = 1.
Furthermore, the resident agents degree of satisfaction with current location is calcu-

lated. The fixed space location of housing determines its value and use value. The housing
price is divided into two parts (the basic price and the environmental price of housing):

Ph = Ph1 + Ph2 (4)

where Ph is the total housing price, Ph1 is the basic price of housing, and Ph2 is the environ-
mental price of housing.

In general, resident agents are keen to pursue ideal housing prices and live in a
better environment, and their investment depends entirely on the preferences of consumer
portfolio decisions.

When resident agents have Cobb-Douglas preferences for the basic and environmental
prices of housing, the resident agents optimal consumption decision is: a1 I for basic
housing prices, a2 I for environmental housing prices.

Under a certain income level, the residential pressure of resident agents on their
residential location is as follows:

Y(A, T) = βh1|a1 ∗ I(A, T)− Ph1(A, T)|+ βh2|a2 ∗ I(A, T)| − EA ∗ Ph2 (5)

where Y(A, T) is residential pressure of resident agents in location A at T-time, βh1 and βh2
are the weights of residential pressure caused by basic prices and environmental prices of
housing, I(A, T) is the income level of resident agents in location A at T-time, Ph1(A, T)
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is the basic housing price of resident agents, and EA is the habitability index of resident
agent’s current residence location. The expression of the index is as follows:

EA = µ1 ∗ Pta + µ2 ∗ Pcol + µ3 ∗ Pgoe (6)

where µi is the preference coefficient (preference for transportation, life and environment,
respectively), Pta is traffic accessibility, Pcol is convenience of life, and Pgoe is the gracefulness
of the environment.

The formulas for calculating traffic accessibility (Pjt), living convenience (Psh) and
environmental gracefulness (Phj) in Equation (6) are as follows:

Pjt= k1e−α1Dd + k2e−α2Dt + k3e−α3Dh (7)

Psh = ε1e−λ1Dx + ε2e−λ2Dy + ε3e−λ3Ds (8)

Phj = η1e−θ1Dr + η2

n

∑
i=1

N

(2r + 1)2 (9)

where ki is the spatial attenuation coefficient of trunk road, subway, and ring road; εi is the
distance of school, hospital, and business center; αi and θi are weights of each factor; λi is
distance attenuation coefficient of each factor; Dr is distance to water body; N is number of
green space units in adjacent units; and n is neighborhood radius.

Ph2 is the average unit environmental value in residential area, and the formula is:

Ph2 =

m
∑

i=1
a2 I(A, T)

m
∑

i=1
EAi

(10)

where i is the number of agents in the resident agents neighborhood.
Then the probability P(A, T) of selecting candidate residential location at T time is:

P(A, T) = 1−(∂1 + e−∂2Y(A,T)) (11)

where P(A, T) is the probability of resident agents choosing a candidate residential location
at T time, and ∂i is a constant.

Enterprise Agents

Enterprise agents studied in this analysis selected their own production and operation
site according to the maximum location benefit. Many factors are considered to affect
the location decision of enterprises, including some internal factors, such as the nature,
scale, and self-organization structure of the enterprise [71–74]. There are also some external
factors that will affect decision-making of enterprise agents, such as land price [75,76],
infrastructure [77–79], and population concentration [80–83]. After considering enterprise
agents’ data availability and quantification, we chose house price, GDP, population density,
commercial density, distance from industrial areas, and distance from science parks as the
main external factors affecting the spatial choice behavior of enterprises (Figure A6). ArcGIS
was then used to analyze the original vector data of these factors in space. At the same time,
different influence areas were divided according to distance and density, and corresponding
distance and density load raster layers were generated. GDP, population density, the
number of migrants, and the proportion of tertiary industry were social and economic
factors. GDP and population density were rasterized data obtained by spatial interpolation
of ArcGIS based on township point data, while the number of migrants and the tertiary
industry’s weighted data were based on district and county surface data. This data was
spatially rasterized to achieve data spatialization. In this study we divided enterprise
agents into four main types based on the point-based data (Table 2 and Figure A7). In
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order to maximize the utility of enterprise agents, it was necessary to judge the satisfaction
of the enterprise to the location. The behavior rules of the enterprise agents are shown
in Figure A8.
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Table 2. The division of enterprise agents.

Code Agent Type Proportion

q1 Industrial Manufacturing (IM) 0.188
q2 Social Service (SS) 0.627
q3 Financial Services (FS) 0.124
q4 Technological Innovation (TI) 0.061

The logical regression model is a common method used in the simulation of location
selection. In this study, we constructed a general least squares global model to quantify
the enterprise agent’s spatial choice preference. Firstly, the research area was divided into
several grids, and the location selection of agents was expressed using binary variables.
The relationship between Y (dependent variable) and X (independent variable) was also
given. The estimated values of model parameters were calculated and tested using the
receiver operating characteristic (ROC) curve. The spatial preference probability of each
type of enterprise agent was calculated and the results were tested (Figures A9 and A10).

The formula is as follows:

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + e (12)

Q =
n

∑
n=1

e2 =
n

∑
n=1

(Y− β0 − β1X1 − · · · − βnXn)
2 (13)

where Y is the value of binary variables selected by Agents location; Xn is the nth external
factor; β0 is the constant term; βn is the regression coefficient of the nth external factor; e is
the error; and Q is the sum of squares of errors.
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Taking Q as the parameter function to be evaluated, the partial derivative of Q is
obtained. When the partial derivative is 0, the point is the function extreme point. The
formula is as follows:

∂Q
∂β0

= 2
n
∑

n=1
(Y− β0 − β1X1 − · · · − βnXn)(−1) = 0

...
∂Q
∂βn

= 2
n
∑

n=1
(Y− β0 − β1X1 − · · · − βnXn)(−Xn) = 0

(14)

2.3. Data Sources

Data sources used in this study mainly included: (1) Macro statistical data: part of
the economic and demographic data derived from the Beijing Statistical Yearbook [53].
Demographic data was collated from the sixth nationwide population census data and
the street population data (2014), and employment data was collected from the second
and third nationwide economic census data (2008 and 2014). (2) Geospatial data: spatial
distribution data, including housing price, green space, water body, ring roads, first-class
roads, subway stations, bus stations, hospitals, schools, business centers, industrial zones,
and science parks in Beijing were derived from the National Earth System Science Data
Center, Data Center for Resources and Environmental Sciences of Chinese Academy of
Sciences, Geospatial Data Cloud Platform. All spatial data in this study were 500 × 500 m
raster data.

3. Results and Discussion
3.1. Analysis of the Urban Jobs–Housing Relationship

Analysis of the status of the JHS in Beijing (2010 and 2014) on district and county
scales indicated that the jobs–housing relationship was in a balanced state in 2010. The
number of jobs in the whole city was matched with the number of residential buildings.
However, by 2014 the status of the jobs–housing relationship had intensified (Table 3).
Most areas in the 6th Ring Road could not provide the number of residential buildings
required for the number of jobs, leading to an imbalance in the jobs–housing relationship.

Table 3. Jobs/housing ratio (JHR) results in various regions of Beijing.

Region
2010 2014

JHR Status JHR Status

The whole city 1.20 Balance 1.30 Imbalance
Dongcheng 2.09 Imbalance 2.52 Imbalance

Xicheng 2.22 Imbalance 2.32 Imbalance
Chaoyang 2.11 Imbalance 1.37 Imbalance

Fengtai 1.00 Balance 0.97 Balance
Shijingshan 0.89 Balance 1.24 Balance

Haidian 1.89 Imbalance 1.94 Imbalance
Fangshan 0.62 Imbalance 0.72 Imbalance
Tongzhou 0.70 Imbalance 0.73 Imbalance

Shunyi 1.37 Imbalance 1.54 Imbalance
Changping 0.59 Imbalance 0.67 Imbalance

Daxing 0.71 Imbalance 0.74 Imbalance
Mentougou 0.80 Balance 0.86 Balance

Huairou 0.83 Balance 1.04 Balance
Pinggu 0.74 Imbalance 0.88 Balance
Miyun 0.68 Imbalance 0.83 Balance

Yanqing 0.56 Imbalance 0.81 Balance

At the same time, within the urban area of Beijing (within the 5th Ring Road), a
serious imbalance in the jobs–housing relationship was caused by the over-concentration
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of industry and a lack of housing supply. Results indicated that suburban urbanization
affected the area situated between the 5th and 6th Ring Road (termed the suburbs). There-
fore, due to the increase in industrial development and a lack of housing construction, or
the construction of large-scale residential areas, a serious imbalance in the jobs–housing
relationship was formed in this region.

Results from district and county scales (Figure 3) indicate that the jobs–housing
relationship of the central urban area (Dongcheng and Xicheng) was still in an obvious
state of imbalance. This area greatly exceeds the limit, indicating that it was impossible to
provide accommodation for employed people in the area. This lack of housing resulted in
workers having to live in other external areas. Results for Chaoyang district and Haidian
district in 2014, compared with results in 2010, recorded contrary findings for the imbalance
of the jobs–housing relationship. Although the imbalance in the jobs–housing relationship
eased by 2014 in the Chaoyang district, the imbalance in the relationship was still poor.
Results for Haidian district recorded the imbalance to have intensified over the same time
period. The five districts and counties of the urban development new district are in an
unbalanced state of jobs–housing relationship and, compared to 2010, the status of the
imbalances have intensified. The five districts and counties in the ecological conservation
development zone are in a balanced state of jobs–housing relationship. Compared with
2010, the jobs–housing relationship between the three regions of Yanqing County, Miyun
County, and Pinggu District has eased.

In order to further analyze the jobs–housing relationship on street and township
scales in each district and county, the jobs–housing ratio for streets and townships in
each district and county were calculated using relevant population and economic data
in Beijing in 2010 and 2014 (Figure 4). Results for the top ten balanced and unbalanced
streets in Beijing (Table 4) indicated that parks and historical and traditional cultural areas
of Nanyuan, Beiyuan, Tiantan, Tsinghua Park, and Yushu Street in the 6th Ring Road of
Beijing were all in a relatively balanced state for the jobs–housing relationship. Due to a
lack of sufficient jobs and some residents having to choose employment in other external
areas, some larger residential areas in Beijing (for example Tiantongyuan, Huilongguan,
and Huoying) recorded an obvious imbalance in the jobs–housing relationship [57]. Streets
in Haidian, Dongzhimen, and Jianwai were also found to be in an unbalanced state, mainly
due to these areas not being able to provide enough housing for workers, with some people
having to live outside the area. Due to the close proximity to the central city, most of
the districts (streets) such as Chaoyang, Haidian, and Fengtai formed regional industrial-
intensive areas, which have subsequently become the main employment areas. As these
areas cannot provide enough living space for employees, they are in an unbalanced position.
As these areas, combined with the central urban area, constitute the current main urban
area of Beijing, they indicate a state of imbalance for the main urban areas of Beijing for the
jobs–housing relationship. Although these areas have become the core area of the urban
economy due to their good industrial development advantage, the limited size of this
area has resulted in predominantly economic development. As the limited land resources
are used more for economic development, land available for new housing is insufficient,
resulting in the inability to provide sufficient housing in the region, therefore resulting in a
mismatch between the number of housing and the number of jobs in the region.
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3.2. Simulation Results of Location Selection for Various Agents
3.2.1. Results of Location Selection for Resident Agents

In this study, six groups of simulation experiments were established, and it was
assumed that agents could obtain the same information resources. Location selection simu-
lation results of residents’ agents (Figure 5) indicated that ‘1’ represents the selected area
and ‘0’ represents the unselected area. During the operation of the model (Figures 5 and 6),
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resident agents gradually moved for the maximum location efficiency and locate the
optimal location.

Table 4. The top of ten streets with a JHR balance and imbalance in Beijing.

Code
Jobs–Housing Balance Jobs–Housing Imbalance

Streets JHR Streets JHR

1 Nanyuan 0.93 Dongxiaokou 0.15
2 Guangning 0.96 Huoying 0.15
3 Beiyuan 0.97 Tiantongyuan 0.15
4 Sanjianfang 0.98 Beiqijia 0.27
5 Qinghe 0.99 Huilongguan 0.32
6 Chunshu 1.03 Haidian 4.54
7 Tiantan 1.06 Dongzhimen 4.67
8 Qinghuayuan 1.08 Zhanlanlu 7.37
9 Wenquan 1.10 Maizidian 8.41
10 Dongfeng 1.12 Jianwai 9.19

According to the location selection simulation results of agents (Figures 5 and 6),
the location distribution of resident agents gradually changed from dispersion type to
aggregation type (T1–T6), gradually forming a relatively concentrated population spatial
pattern. When T = 5, the surrounding area of the central city for agents tended to be
stable state. At the same time, we simulated the resident agent’s location selection utility
of different experiments [71]. The results showed that the location utility was optimal
under T5.
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Furthermore, in this study we also simulated and analyzed the impact of income
level differences on the location choice of resident agents. Simulation results indicated that
resident agents with middle and high incomes were mainly concentrated in the urban area
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and areas with a better environment; low-income residents were mainly concentrated in the
new city area and the urban development new area (Figure 7). This finding indicates that
the difference of resident agents’ income level has a greater impact on residential location
decision-making, and house price is the primary factor affecting the decision of residents
to choose their residential location. Although the model simulation results are constantly
evolving in each grid unit, the results are generally stable, and the simulation results are
similar to the real residential spatial location distribution pattern that reflects reality.
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3.2.2. Results of Location Selection for Enterprise Agents

In this study, we established six sets of experiments (Q1–Q6). It was assumed that
agents could obtain the same information resources in a certain area and make location de-
cisions according to their own attributes. Location selection simulation results of enterprise
agents (Figure 8) recorded values of ‘1’ for selected areas of enterprise agents and a ‘0’ for
unselected areas. Probability results for selection of the spatial location were also calculated
(Figure 9). During model operation (Figures 8 and 9), enterprise agents gradually moved
towards the maximum location efficiency, being located in optimal locations.

According to the location selection simulation results of enterprise agents (Figures 8
and 9), the location distribution of enterprise agents gradually changed from a dispersion
type to an aggregation type (Q1–Q6); a relatively concentrated employment space pattern
was gradually formed. When Q = 5, the surrounding area of the central urban area for
enterprise agents tended to be stable state. When Q = 6, the process of location selection
for enterprise agents was slow, and the change of agents’ behavior was small. After
comprehensive consideration, the optimal simulation result was identified as Q = 5.
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Furthermore, in this study we also simulated and analyzed the location selection
results of different types of enterprise agents. Simulation results suggested that financial
and technological innovation service enterprises were mainly concentrated in urban areas
and key science park areas; although social service enterprises were more geographically
dispersed, they were mainly concentrated in the 6th Ring Road. The location of industrial
manufacturing enterprises was mainly distributed outside the 6th Ring Road, concentrated
in the urban development new zone (Figure 10). Our results showed that although the
model simulation results are constantly evolving in each grid unit, results were gener-
ally stable. The simulation results were also similar to actual enterprise spatial location
distribution patterns, thereby generally reflecting the law of reality.

3.3. Simulation Results of Urban Jobs–Housing Spatial Relationship

Separation or jobs–housing balance are two key issues that reflect the spatial rela-
tionship of urban jobs–housing, an area that has increased in importance recently [84].
Jobs–housing separation (JHS) is based on the assumption of spatial dislocation theory
to propose the basic problem of dislocation of jobs–housing space [84,85], and its essence
reflects the imbalance of urban jobs–housing space. The balance of jobs–housing reflects a
balanced relationship between residence and employment in a geographical space. The
area of jobs–housing balance refers to urban residents who can attend their place of em-
ployment from their place of residence within a given commuting distance or time. In
the area of jobs–housing balance, residents can be employed near to their place of work,
conforming to an ideal state of the spatial relationship of jobs–housing [86]. Based on the
simulation results of location selection of resident agents and enterprise agents, the density
simulation results of resident population and employment population with the streets of
Beijing as spatial units were obtained using ArcGIS (Figures 11 and 12). By using this data,
the spatial distribution of jobs–housing in Beijing under the maximization of micro-agent
location utility was obtained (Figure 13).
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With the acceleration of urbanization processes, Beijing’s urban space has continued
to expand to the periphery, and large-scale residential areas have emerged in the suburbs of
the city. These changes have intensified the high-density concentration of the resident popu-
lation in urban suburbs. At the same time, due to the strong dependence of residential areas
on urban commercial centers and employment centers, corresponding economic services
and employment supply in these areas have not achieved coordinated development. The
construction of large-capacity travel tools and facilities connecting urban areas have also
not yet synchronized development. As the commuting time/distance of suburban residents
has continued to increase, this has resulted in an intensification of the JHS, thereby forcing
residents who commute to use the road network between residential and employment
areas, resulting in serious traffic congestion during peak hours. Compared with the initial
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distribution, simulated employment, and resident population in the central urban area of
Beijing have been alleviated and, based on the results of the simulated population density
distribution (Figure 11), the employment center and surrounding areas have a relatively
high population density and residents can consider choosing local employment.

At the same time, spatial distribution results for the employed population (Figure 12)
indicated that employment in Beijing is mainly concentrated in the central urban area, and
the population density in the commercial center areas of the four districts of Dongcheng,
Xicheng, Haidian, and Chaoyang (the employment aggregation center of Beijing) is more
than 20,000 people/km2. Employment density of industrial enterprises in the central city
is relatively small, and the region mainly comprises service-oriented and technology-based
enterprises. From the simulation results of the spatial relationship distribution of jobs–
housing in Beijing (Figure 13), the imbalance of the jobs–housing relationship in the central
city has improved. Compared with the initial distribution, the number of jobs–housing
balance areas in Beijing has also increased.

4. Conclusions

In this study we introduced a multi-agent approach to examine the jobs–housing rela-
tionship under the maximum location utility of residents and enterprises. The jobs/housing
ratio was initially used to measure the balance of the number of jobs–housing relationships.
JHS of Beijing in 2010 and 2014 was then compared and analyzed using district, county,
and street scales. Results from this analysis identified that rapid population growth in
the 6th Ring Road, a mismatch between housing and jobs, and the surrounding urban
areas not being able to provide sufficient housing has resulted in an imbalance in the
jobs–housing relationship in Beijing. The jobs–housing relationship of the central urban
areas (Dongcheng and Xicheng) is still in an obvious imbalance, and it greatly exceeds the
limit, indicating that it is impossible to provide corresponding accommodation for people
in the area. From street and township scales, parks, historical, and traditional cultural
areas of Nanyuan, Beiyuan, Tiantan, Tsinghua Park, and Yushu Street in the 6th Ring Road
are all in a relatively balanced state. For some large residential areas in Beijing (such as
Tiantongyuan, Huilongguan, and Huoying), an obvious imbalance in the jobs–housing
relationship exists due to a lack of jobs; some residents living in these areas have to work
in other external areas. Due to a lack of housing, forcing people to live in other areas, the
streets of Haidian, Dongzhimen, and Jianwai are also in an unbalanced state.

An agent-based model was proposed to simulate spatial location selection behavior
of agents by considering the influence of environment and economy on the residential
decisions of individuals. Simulation results for six resident agents and enterprise agents
experiments examining the spatial location selection process of residents in Beijing were
analyzed. Resident agents with a middle and high income were mainly concentrated in
the urban area, and areas with better environmental characteristics. Low-income residents,
however, are mainly concentrated in the new city area and the urban development new
area. This result indicated that the difference of resident agents’ income level has a sig-
nificant impact on residential location decision-making, and housing price is the primary
factor affecting the decision of residents to choose their residential location. At the same
time, financial and technological innovation service enterprises are mainly concentrated
in urban areas and the key science park areas; although social service enterprises are
more geographically dispersed, they are mainly concentrated in the 6th Ring Road. The
location of industrial manufacturing enterprises are mainly distributed outside the 6th
Ring Road, concentrated in the urban development new zone. The spatial distribution of
jobs–housing in Beijing under the maximization of micro-agent location utility was also
obtained. The spatial relationship distribution of jobs–housing in Beijing and the imbalance
of the jobs–housing relationship in the central city has improved. Compared with the initial
distribution, the number of jobs–housing balance areas in Beijing has increased.

The current situation of serious urban issues, such as jobs–housing separation (JHS),
traffic congestion, and environmental pollution, have significantly restricted the sustainable
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development. The reasonable urban jobs–housing adjustment policy not only improves
traffic congestion, but also improves urban residents’ commuting efficiency and reduces
commuting time. Local governments can accelerate the implementation of policy com-
binations to encourage the closest residence or employment, thereby achieving a real
sense of a jobs–housing relationship balance. These include the establishment of urban
sub-centers, the orderly promotion of the transfer of all or part of municipal administrative
institutions to sub-centers, minimization of traffic congestion caused by commuting, and
promotion of job–housing balance. Meanwhile, the construction of new surrounding areas
should be accelerated, focusing on creating a non-capital function decentralized centralized
load-bearing area, effectively alleviating diseases in large cities, and focusing on allevi-
ating the pressure on urban populations. At the same time, it is necessary to speed up
the implementation of the means and programs that focus on adjusting the jobs–housing
relationship, reduce the travel demand of residents from the source, shorten the commute
time and distance of commuters, alleviate the pressure of tidal traffic, and achieve the
purpose of controlling the demand for urban travel, and achieve jobs–housing balance
from urban transport.

There are some potential limitations of this study. We used ABM models to simulate
the local jobs–housing relationship based on different scenarios. In order to facilitate the
construction of the model we simplified the behavior rules and decision-making of agents.
In real life, behavior rules and decisions of micro-agents are affected by urban spatial
planning, land use control, financial regulation, etc. Future research based on our findings
can continue to improve this model, thereby improving the accuracy and the reference of
simulation results. In addition, due to government control and supervision of people, the
behavior of enterprises can be affected by many factors. Future studies need to combine the
situation of the local jobs–housing relationship adjustment policy and government control
to analyze its impact on the behavior of enterprise agents.
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Nomenclature
C commuting cost
D distance to water body
e the error
E the habitability index
I income level
J the number of jobs
N number of green space units in adjacent units
P product prices
P the average unit environmental value in residential area
Q the sum of squares of errors
R the total number of residents
U utility
X external factor
Y the value of binary variables selected by Agents location
Subscripts
i the ith street
h the total housing price
h1 the basic price of housing
h2 the environmental price of housing
ta traffic accessibility
col convenience of life
goe the gracefulness of the environment
n the nth external factor
Abbreviations
ABMs agent-based models
CNY Chinese Yuan
FS financial services
GDP gross domestic product
GHGs greenhouse gases
IM industrial manufacturing
JHI jobs–housing imbalance
JHR jobs–housing ratio
JHS jobs–housing separation
ROC receiver operating characteristic
SS social service
TAZ traffic analysis zones
TI technological innovation

Appendix A
Supplementary material to: Simulation of the urban jobs–housing location selection and spatial

relationship using a multi-agent approach.
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