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Abstract: Existing models of spatial relations do not consider that different concepts exist
on different levels in a hierarchy and in turn that the spatial relations in a given scene are
a function of the specific concepts considered. One approach to determining the existence
of a particular spatial relation is to compute the corresponding high level concepts explicitly
using map generalization before inferring the existence of the spatial relation in question.
We explore this idea through the development of a model of the spatial relation “enters” that
may exist between a road and a housing estate.
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1. Introduction

Murphy [1] defines a concept as the mental representation corresponding to a category. A house is a
concept defined by the Merriam-Webster dictionary as a building that serves as living quarters for one
or a few families. A housing estate is a higher level concept defined by the Merriam-Webster dictionary
as a group of individual dwellings or apartment houses typically of similar design that are usually built
and sold or leased by one management. In this work we use the term housing estate to refer to a specific
instance of this concept. That is, a housing estate which consists of only detached, semi-detached and
terraced residential houses. Housing estates are a commonly occurring structure in many European
countries such as Ireland. Most housing estates have one or more corresponding roads which provide
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access to the houses in questions and are called the access roads for the estate in question. For example
consider the scene in Figure 1 which depicts the housing estate Tudor Lawns located in Foxrock Dublin.
The grey road corresponds to the access road for the housing estate in question. For a given scene
containing a housing estate and a set of roads, the access road for the estate in question may not be stored
explicitly but can be derived from implicit information in the scene [2]. For example a visual inspection
of Figure 1 suggests that the grey road is the access for the housing estate in question. Deriving certain
forms of implicit information from spatial data can be considered a problem of determining the existence
of spatial relations. For example the verb enter is commonly used to describe the spatial relation which
exists between a housing estate and its corresponding access road. Therefore we say that the grey road
enters the housing estate in Figure 1.

Figure 1. A set of polygons corresponding to houses in a housing estate and a number of
lines corresponding to roads are represented. The grey line represents the access road for the
housing estate in question. Data taken from OpenStreetMap.

Our cognitive capacity to infer this spatial relation of enters is a consequence of our ability to represent
the spatial information using high level concepts before inferring the existence of the spatial relation in
question. That is, representing the individual houses as a higher level housing estate concept before
inferring the existence of the spatial relation enters. Despite the huge body of work on modeling spatial
relations all existing models do not consider that different concepts may exist on different levels in a
hierarchy. A number of authors have previously considered the effect splitting or merging of objects has
on spatial relations [3–5]. However these works do not consider that different concepts exist on different
levels in a hierarchy and in turn that the spatial relations in a given scene are a function of the specific
concepts considered. In this work we propose that one may determine the existence of a spatial relation
by computing the corresponding high level concepts explicitly using map generalization before inferring
the existence of the spatial relation in question. We explore this idea through the development of a model
of the spatial relation enters which may exist between a road and a housing estate.
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The layout of this paper is as follows. In Section 2 we review related works. In Section 3 we present
a model of the spatial relation enters. Section 4 evaluates this model and demonstrates it to be a useful
tool for classifying housing estate access roads. Finally in Section 5 we draw conclusions and discuss
possible future research directions.

2. Related Work

This section is divided into three parts. In Section 2.1 we briefly review existing methods for deriving
implicit information from maps with a specific focus on information relating to buildings. In Section 2.2
we review existing models of spatial relations. Section 2.3 discusses the topic of map generalization.

2.1. Implicit Spatial Information

Implicit information derived from spatial data can be used to support many applications such as map
generalisation (where this process is known as data enrichment) [6,7], improving the quality of user
generated spatial data [8], matching spatial datasets [9] and updating data [10]. Walter and Luo [2]
provide a classification of the different forms of implicit information that can be derived from spatial
data. These include map type, single objects, complex objects and regions.

As stated by Lüscher et al. [11] building objects are rarely attributed richly in spatial datasets.
Consequently many authors have proposed methods for deriving implicit information relating to
buildings. Regnault [12], Yan et al. [13], Steinhauer et al. [14] and Qi and Li [15] all proposed
methods for the grouping of buildings. Zhang et al. [16] proposed a categorization of building patterns
which includes collinear, curvilinear, align-along-road, grid-like and unstructured. The detection of
collinear building patterns has been extensively studied [17,18]. Zhang et al. [16] proposed algorithms
for detecting align-along-road and unstructured building patterns. Luscher et al. [19] demonstrated
that higher level semantics, such as terraced house, can be derived from building alignments and other
criteria. Haunert [20] proposed a methodology for detecting symmetries in building footprints.

2.2. Spatial Relations

A spatial relation is a means of modeling a particular property of the spatial relationship which exists
between two or more objects. Spatial relations may be categorized as topological, metric and order
relations [21]. Topological relations model properties which are invariant under consistent topological
transformations such as rotation, translation and scaling [22]. Metric relations model properties
concerning distance and direction. Order relations model properties concerning the partial and total
order of objects as described by prepositions such as in front of, behind, above, and below [23]. Many
spatial relations cannot be classified as exclusively topological, metric or order. Such relations include
the align-along-road relation existing between a set of buildings and a road. A number of authors have
considered the effect splitting and merging objects has on topological relations [3–5].

Research on the topic of spatial relations is motivated by a broad spectrum of possible application
areas. Spatial relations can be used to describe constraints which specify a subset of spatial objects. For
example, one may specify the subset of objects which fall within a given radius of a point using a metric
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relation [21]. Spatial relations can also be used as a platform for spatial inference and qualitative spatial
reasoning [24]. For example if it is specified using spatial relations that an object A is contained within an
object B which in turn is contained within an object C, it is straight forward to infer that A is contained
within C. Some spatial relations have a corresponding easily interpretable natural language expression
which offers the potential for the linguistic interaction with spatial data [22,25,26]. Other applications
of spatial relations include robotics and high-level computer vision [27]. Many sets of spatial relations
have been proposed but the most predominant are the intersection models of Egenhofer [28,29] and the
Region Connection Calculus (RCC) of Randell et al. [30]. Due to their ubiquitous nature we do not
describe these in detail suffice to say that each consists entirely of binary topological relations and both
sets are in fact equivalent. A detailed description of both these sets can be found in [31].

As stated by Cohn and Hazarika [24] not all sets of spatial relations are equally useful and the actual
set used must be relevant to the task being performed. One of the main goals in the research field of
spatial relations is to determine if a single universal set of relations can be defined which is pragmatic
with respect to many applications. A promising approach towards achieving this goal proposes to model
the aspects of spatial relationships which the human cognition models. This has led to the use of the term
cognitively adequate to describe a set of spatial relations which are believed to be an accurate model of
these aspects [32,33]. Initial studies focused on the role topological relations play in defining cognitively
adequate models. The study of Mark and Egenhofer [34] suggested that topological relations alone, and
in particular the intersection models of Egenhofer [28], are sufficient to achieve cognitive adequacy. This
lead to the famous expression “topology matters, metric refines” by Egenhofer and Mark [35]. This claim
was supported by the works of Clementini et al. [36] and Renz et al. [32] but these authors claimed that
a finer level of granularity than the intersection models was necessary to achieve cognitive adequacy.
However a study by Shariff et al. [22] suggests that topological relations alone may not be sufficient
for cognitive adequacy; the authors propose that a combination of topological and metric relations are
necessary. The recent work of Klippel [33] suggests that semantics must also be considered if one wishes
to define a set of spatial relations which are cognitively adequate.

Spatial relations may also be categorised as qualitative or non-qualitative relations. Qualitative
relations model properties which are of a vague or fuzzy nature and possibly context dependent [37].
Determining the existence of such relations generally requires one to model some aspect of human
cognition. Examples of qualitative relations include a relation which indicates if an object is nearly
completely contained inside another [27,38] or a relation which indicates if an object is between two
others [39,40]. These relations are illustrated in Figure 2(a,b) respectively. The spatial relation indicating
if a road entering a housing estate discussed in Section 1 is also a qualitative relation. On the other
hand, non-qualitative spatial relations model properties which are not of a vague or fuzzy nature and
not context dependent. Such relations have a precise geometrical definition. Examples include binary
relations which indicate if two lines intersect or if an object is completely contained inside another [21].
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Figure 2. In (a) the object R is nearly completely contained inside the object Q; In (b) the
object P is between the objects Q and R.

(a) (b)

2.3. Map Generalisation

The International Cartographic Association defined generalisation as “The selection and simplified
representation of detail appropriate to the scale and/or purpose of the map” [41]. Generalisation serves a
variety of purposes including the creation and maintenance of spatial data at multiple scales, cartographic
visualization at variable scales, and data reduction [42]. There exist many conceptual models, or
frameworks, of the generalization process in both the manual and digital domains. An in-depth overview
of these can be found in [41,43].

The goal of map generalization is to produce a suitable map representation subject to a set
of constraints [44]. Weibel [45] identified Gestalt, semantic, metric and topological as four such
constraints. A Gestalt constraint maintains important object shape characteristics. For example many
authors have proposed aggregation techniques for buildings which maintain the shape characteristics
of rectangularity [46,47] and symmetry [20]. Semantic constraints ensure generalization is performed
in a manner which is a function of object semantics. Kieler et al. [48] and Haunert and Wolff [49]
propose aggregation techniques which ensure that objects merged predominantly belong to the same
class. Metric constraints perform generalization in a manner which is a function of an error function.
Finally, a topological constraint attempts to ensure that the generalization process preserves topological
relations between objects [44,50].

Map generalization is performed through the application of one or a number of generalization
operators. Jones [51] identified eight categories of generalization operators. These are elimination,
simplification, typification, exaggeration, enhancement, collapse, aggregation and displacement [50].
In this article we only consider the aggregation operator but a detailed discussion of operators which
can be applied to buildings is contained in [52]. Aggregation may be defined as the replacement of
a set of objects by a single object [53]. Replacing a set of house objects by a single housing estate
object, as described in Section 1, is an example of aggregation. Regnauld [53] proposes that aggregation
may be performed using one of the following four strategies. Aggregation with displacement displaces
the set of objects until they touch or overlap and then subsequently merges these objects [54]. If the
objects in question initially touch no displacement is necessary and they can be simply merged [48,49].
Aggregation by flooding replaces the set of objects in question with a single object of greater spatial
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extent such as the convex hull. Aggregation by sampling replaces the set of objects with a sub-set; this
is also known as typification. Finally aggregation by connecting objects [3,46,55] is by far the most
commonly used methodology and is the focus of the research presented here. We now describe in detail
how this methodology functions.

Aggregation by connecting objects is generally performed in two steps. The first step of object
grouping identifies sets of objects which require merging. The second step of object merging defines
a set of connectors which connect the objects in each set; all objects and connectors in each set are
then merged. For example consider the scene in Figure 3(a) containing the polygons {v1, v2, v3, v4}
and {v5, v6, v7, v8}. In order to merge these objects we define one possible connector to be the polygon
{v3, v6, v5, v4} which is represented by the grey region in Figure 3(b). The merger of the two polygons
is then defined as the union of the polygons and the corresponding connector; the result of which is
represented by the polygon {v3, v6, v5, v4} in Figure 3(c).

Figure 3. The two polygons in (a) are merged using the connected in (b) to give the result
in (c).

(a) (b) (c)

Many authors have proposed methodologies which perform both steps of object grouping and
merging [13,54–56]. Meanwhile some authors propose methodologies which perform a single step.
For example Steinhauer et al. [14] and Qi and Li [15] describe techniques for object grouping alone.
Methodologies which focus on the task of merging have mainly followed two approaches [53]. The
first uses morphological operators (erosion and dilation) and are particularly suited to raster data [57].
The other trend uses the Delaunay triangulation geometrical structure and is suitable for vector
data [13,54–56]. It should be noted that the aggregation of objects has many applications outside the
domain of map generalization such as the generation of a shape, or footprint, from a set of points [58].

3. Proposed Model

As discussed in the introduction existing models of spatial relations do not consider that different
concepts exist on different levels in a hierarchy and in turn that the spatial relations in a given scene are
a function of the specific concepts considered. We propose that there exists two possible approaches to
modeling a particular spatial relation. The first is to model the necessary higher level concepts explicitly
using map generalization before inferring the existence of the spatial relation in question. The second
approach is to model the necessary higher level concepts implicitly using a set of lower level concepts
before inferring the existence of the spatial relation in question. For example, a housing estate may be
modeled implicitly by set containing all houses belonging to the estate in question.
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In this section we explore the former of these approaches by presenting a model of the spatial relation
enters which may exist between a road and a housing estate. The model contains two steps. The first
step performs object merging with the goal of creating an object corresponding to a housing estate.
This facilitates inference with respect to the spatial relation in question. The second step performs
this inference.

3.1. Generalisation Step

The proposed generalisation method performs only the task of object merging and assumes the set
of objects which require merging is known a priori. An aggregation by connecting objects approach to
merging is used which reduces the task of merging to one of defining a suitable set of connectors between
the objects in question. An operator based on the Adapt Merge Operator of Ware et al. [54] is used to
define the connectors in question. This choice of operator was motivated by the fact that Ware et al. [54]
demonstrated that the Adapt Merge Operator achieves good results when applied to sets of polygons
representing buildings. This operator functions as follows.

Figure 4. The three polygon in (a) are merged, through steps (b) to (e), to give the result
in (f).

(a) (b) (c)

(d) (e) (f)

Given a set of polygons a constrained Delaunay triangulation is computed and all edges internal
to polygons are removed. For example a scene containing three polygons and its corresponding
triangulation are displayed in Figure 4(a,b) respectively. Next the shortest edge, denoted e, in this
triangulation which connects two different polygons is determined; these polygons correspond to the
spatially closest in the scene. In Figure 4(b) the edge e is labeled. The two polygons adjacent to e and
the corresponding set of connecting triangles are determined. This set of triangle is entitled S. The set
S corresponding to Figure 4(b) contains three triangles and is represented by the grey region in Figure
4(c). Next a subset of S, entitled Ssub, is obtained by removing those triangles which are not adjacent
to e and contain an edge of length greater than 1.2 times the length of e. Ssub corresponding to S in
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Figure 4(c) contains two polygons and is represented by the grey region in Figure 4(d). Ssub and the
two polygons adjacent to e are then merged to form a single polygon. The result of applying this step to
Figure 4(d) is displayed in Figure 4(e). This process of identifying and merging two polygons is then
iterated until a single polygon remains. The result of merging the three polygons in Figure 4(a) is
displayed in Figure 4(f).

The above merging operator does not prevent the introduction of intersections between the result of
merging and other objects in the scene. For example consider the scene in Figure 5(a) which contains
three polygons and a single line. The result of merging the three polygons using this method is displayed
in Figure 5(b) where an intersection between the merged polygons and line exists.

Figure 5. The merging of the polygons in (a) introduces a geometrical intersection with the
line as illustrated in (b).

(a) (b)

3.2. Inference Step

In this section we describe the function Iline(l, p) which determines the degree to which a line l,
corresponding to a road, enters a polygon p, corresponding to a housing estate. Iline(l, p) is leveraged by
another function Ipoint(v, p) which determines the degree to which a point v, which lies on l, enters p.
Ipoint(v, p) is a product of the functions S(v, p) and C(v, p) which measure the degree to which v is
surrounded by and close to the centroid of p respectively. Having studied the spatial relation of enters in
depth the authors believe both these attributes play a dominant role in its perception.

In order to compute S(v, p) we first generate a set r = {r0, r1, . . . , rn−1} of n rays where ri is a ray
with source v and direction 2πi/n. For example in Figure 6 the set of rays for each corresponding point v
where n = 8 are illustrated. Let I(ri, p) be a function which returns a value of 1 if ri intersects p and
returns a value of 0 otherwise. S(v, p) is computed using Equation (1).

S(v, p) =
1

n

n−1∑
i=0

I(ri, p) (1)

S(v, p) takes values in the interval [0, 1]. If v lies inside p, and is completely surrounded by p, S(v, p)
will evaluate to 1; this is the case for the points v in Figure 6(a,c). If v does not lie inside p, S(v, p) will
evaluate to a number less than or equal to 1 indicating the degree to which v is surrounded by p. This is
the case for the point v in Figure 6(b) where Ipoint(v, p) evaluates to 0.85. In our implementation a value
of 720 was assigned to the variable n which was found to provide a fine enough resolution.
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Figure 6. In each figure the set of 8 rays corresponding to a point v are represented by
arrows. pcentroid represents the centroid of each polygon.

(a) (b) (c)

In order to compute C(v, p) we first compute the centroid, denoted pcentroid, of p. Next we compute
the maximum distance, denoted M , between pcentroid and a point lying on the boundary of p. This is
computed using Equation (2) where {p0, p1, . . . , pm−1} is the set of vertices representing p.

M = max ‖pcentroid − pi‖ (2)

Let D be the distance between v and pcentroid; that is, D = ‖pcentroid− v‖. C(v, p) is computed using
Equation (3).

C(v, p) = max{0, M −D

M
} (3)

C(v, p) takes values in the interval [0, 1]. Specifically, if v is equal to pcentroid, C(v, p) will evaluate
to 1. If the distance between v and pcentroid is less than M , C(v, p) will evaluate to a number in the
interval [0, 1] decreasing with distance from pcentroid. Otherwise C(v, p) will evaluate to 0. For example,
C(v, p) corresponding to the scene in Figure 6(c) evaluates to a number close to 0 because its distance
from pcentroid is close to M . Meanwhile, due to the closer proximity of each v to the centroid of p,
C(v, p) corresponding to the scenes in Figure 6(a) and (b) evaluates to 0.71 and 0.47 respectively. Having
computed S(v, p) and C(v, p) we finally compute Ipoint(v, p) using Equation (4).

Ipoint(v, p) = S(v, p)C(v, p) (4)

I(v, p) takes values in the interval [0, 1]. I(v, p) approaches the value 1 as both function S(v, p)

and C(v, p) approach the value 1. For example, the Ipoint(v, p) values corresponding to the scenes in
Figure 6(a–c) are 0.71 (1.0× 0.71), 0.40 (0.85× 0.47) and 0.09 (1.0× 0.09) respectively. We now turn
our attention to computing the degree to which a line l enters a polygon p, that is Iline(l, p). Let v ∈ l

specify that the point v lies on the line l. Iline(l, p) is defined by Equation (5).

Iline(l, p) = max
v∈l

Ipoint(v, p) (5)

Computing Iline(l, p) exactly represents a complex optimization problem for which we do not have
a closed form solution. To overcome this difficulty we approximate this function using the following
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approach. We first select a set of points s = {s0, s1, . . . , sm−1} lying on l where the distance between
two consecutive points si−1 and si, measured in terms of distance along the line, is constant. In our
implementation we assigned m equal to the length of l measured in meters to give a distance of one
meter between consecutive points.

4. Evaluation

In this section we evaluate the model of the spatial relation enters which was presented in Section 3.
The remainder of this section is divided into three parts. Section 4.1 describes the data used in the
evaluation. Section 4.2 presents a qualitative evaluation of the model. Section 4.3 demonstrates the
model may be used to accurately classify housing estate access roads.

Figure 7. A set of polygons corresponding to houses in a housing estate and a number of
lines corresponding to roads are represented. The grey lines represent the access roads for
the housing estate in question. Data taken from OpenStreetMap.

4.1. Spatial Data

The data used in this study was taken from OpenStreetMap (OSM) (http://www.openstreetmap.org/).
OSM is a form of volunteered geographic information (VGI) [59] which may be defined as the
widespread engagement of large numbers of private citizens in the creation of geographical or spatial
data. The following set of study areas, each of which is located in Ireland, were selected: Dublin
city, Gorey County Wexford, Wexford town, Robertstown Kildare, Kilmeage Kildare, Carlow town.
These specific areas were chosen because each is an urban area for which the corresponding OSM
representation contains housing estates. A set of sixty scenes containing housing estates were selected.
An effort was made to select a set of scenes which contained varied spatial patterns of houses. For each
housing estate we identified a corresponding set of access roads and a corresponding set of roads in close
proximity to the housing estate. Housing estates and corresponding roads were identified in each scene
by visiting the location in question or, if this was not possible, using OSM semantic information and
examining the location in question using Google Street View. According to the OSM wiki the correct
tag for an access road is highway = residential. Many authors have proposed methods for grouping
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buildings which could potentially be used to automatically detect housing estates in OSM [12]. Figure 7
displays an example scene contained in our data set. The dataset was randomly divided into twenty
scenes which were used for training and forty scenes which were used for testing our model. The result
of applying the object merging methodology described in Section 3.1 to the test scenes in Figure 8(a,b)
are displayed in Figure 8(c,d) respectively.

Figure 8. The results of merging the polygons in (a) and (b) are displayed in (c) and
(d) respectively.

(a) (b)

(c) (d)

4.2. Qualitative Evaluation

Figure 9 displays a subset of the OSM test scenes with the corresponding Iline(l, p) value listed under
each sub-figure. This particular subset was chosen to demonstrate the behavior of the model. It is evident
from this figure that, in all those scenes where there is a strong perception that the road enters the housing
estate, a high Iline(l, p) value (≥ 0.79) is assigned. Specifically these are the scenes Figure 9(a,c,e,f,i,k).
On the other hand it is evident that all those scenes where there is a strong perception that the road does
not enter the housing estate a low Iline(l, p) value (≤ 0.24) is assigned. Specifically these are the scenes
Figure 9(b,d,g).
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Figure 9. OSM test scenes with the corresponding Iline(l, p) values.

(a) 0.79 (b) 0.24 (c) 0.80

(d) 0.01 (e) 0.94 (f) 0.79

(g) 0.00 (h) 0.59 (i) 0.86

(j) 0.80 (k) 0.95 (l) 0.95
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Examining Figure 9(h,j,l) we see that the relationship which exists between the housing estate and
road could be described as both collinear and enters. Despite this fact the proposed model assigned a
significantly high value of Iline(l, p) to each of these scenes. We argue that a scene may exhibit more
than a single spatial relation.

Like all qualitative relations, enters may be present with varying degrees. It is unclear whether the
proposed model of enters accurately captures the degree to which this spatial relation is present. For
example consider the scenes in Figure 9(f,l) which have Iline(l, p) values of 0.79 and 0.95 respectively.
Despite a significantly higher value of Iline(l, p) being assigned to Figure 9(l) relative to Figure 9(f), it
is not evident that the relation of enters exists to a greater degree in Figure 9(l). This argument could
also be applied to Figure 9(b,d). Determining how accurately the proposed model captures the degree
to which the relation enters is present in a given scene would require a large scale behavioral study
involving human subjects. As such, it is beyond the scope of this paper.

4.3. Access Road Classification

To demonstrate the usefulness of the proposed model we computed the accuracy with which it could
classify the roads in the test scenes as access or non-access roads. Classification was performed using
a Iline(l, p) threshold of 0.5 which was determined using the training set. That is, a road was classified
as an access road if the corresponding Iline(l, p) value was greater than 0.5; otherwise it was classified
as a non-access road. On the test set 100% classification accuracy was achieved. To demonstrate that
Iline(l, p) divides access and non-access roads into statistical significant groups an unbalanced analysis
of variance (ANOVA) was performed [60]. It was found that the groups are statistical significant with
p < 0.01.

5. Conclusions

This work represents the first attempt to model spatial relations in the presence of concepts which
exist on different levels in a hierarchy. As such we believe it points the direction for future research in
this area. Some possible future research directions include the following. Firstly it would be beneficial to
consider other spatial relations, besides enters, which are a function of concepts which exist on different
levels. As discussed in Section 4.2 modeling the spatial relation of collinear would be useful. The fusion
of multiple relations may also require the application of techniques for recognizing spatial patterns so
that the correct relation may be applied in a given case [61]. For future work it would be interesting to
examine how other generalization operators, besides object merging, can play a role in modeling spatial
relations. It would also be interesting to consider spatial relations between other spatial objects besides
houses and roads. For example railway stations and railway lines.

In this work we proposed to model higher level concepts by explicitly computing the concepts in
question using map generalization. However, as discussed in Section 3, higher level concepts may also
be modeled implicitly as a set of lower level concepts. For example, a housing estate may be modeled
implicitly by a set containing the corresponding set of houses without explicitly computing their merger.
In future work we hope to explore the use of such implicit modeling of higher level concepts. It may be
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possible that some higher level concepts are more effectively modeled explicitly while others are more
effectively modeled implicitly.
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