Next Article in Journal
Exploring Human Activity Patterns Using Taxicab Static Points
Next Article in Special Issue
An Analysis of Geospatial Technologies for Risk and Natural Disaster Management
Previous Article in Journal
Prioritizing Areas for Rehabilitation by Monitoring Change in Barangay-Based Vegetation Cover
Article Menu

Export Article

Open AccessArticle
ISPRS Int. J. Geo-Inf. 2012, 1(1), 69-88; doi:10.3390/ijgi1010069

Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment

Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
Author to whom correspondence should be addressed.
Received: 10 April 2012 / Revised: 11 May 2012 / Accepted: 17 May 2012 / Published: 29 May 2012
(This article belongs to the Special Issue Space-Based Technologies for Disaster Risk Management)
View Full-Text   |   Download PDF [1779 KB, uploaded 29 May 2012]   |  


Given high urbanization rates and increasing spatio-temporal variability in many present-day cities, exposure information is often out-of-date, highly aggregated or spatially fragmented, increasing the uncertainties associated with seismic risk assessments. This work therefore aims at using space-based technologies to estimate, complement and extend exposure data at multiple scales, over large areas and at a comparatively low cost for the case of the city of Bishkek, Kyrgyzstan. At a neighborhood scale, an analysis of urban structures using medium-resolution optical satellite images is performed. Applying image classification and change-detection analysis to a time-series of Landsat images, the urban environment can be delineated into areas of relatively homogeneous urban structure types, which can provide a first estimate of an exposed building stock (e.g., approximate age of structures, composition and distribution of predominant building types). At a building-by-building scale, a more detailed analysis of the exposed building stock is carried out using a high-resolution Quickbird image. Furthermore, the multi-resolution datasets are combined with census data to disaggregate population statistics. The tools used within this study are being developed on a free- and open-source basis and aim at being transparent, usable and transferable.
Keywords: remote sensing; disaster/risk management; exposure estimation; earthquakes remote sensing; disaster/risk management; exposure estimation; earthquakes
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J. Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment. ISPRS Int. J. Geo-Inf. 2012, 1, 69-88.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
ISPRS Int. J. Geo-Inf. EISSN 2220-9964 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top