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Abstract: The primary objective of this research is to predict and analyze the future urban 
growth of Dhaka City using the Landsat satellite images of 1989, 1999 and 2009. Dhaka City 
Corporation (DCC) and its surrounding impact areas have been selected as the study area. At 
the beginning, a fisher supervised classification method has been applied to prepare the base 
maps with five land cover classes. In the next stage, three different models have been 
implemented to simulate the land cover map of Dhaka city of 2009. These have been named 
as “Stochastic Markov (St_Markov)” Model, “Cellular Automata Markov (CA_Markov)” 
Model and “Multi Layer Perceptron Markov (MLP_Markov)” Model. Then the best-fitted 
model has been selected by implementing a method to compare land cover categories in 
three maps: a reference map of time 1, a reference map of time 2 and a simulation map of 
time 2. This is how the “Multi Layer Perceptron Markov (MLP_Markov)” Model has been 
qualified as the most appropriate model for this research. Later, using the MLP_Markov 
model, the land cover map of 2019 has been predicted. The MLP_Markov model 
extrapolates that built-up area increases from 46% to 58% of the total study area during 
2009–2019.  

Keywords: remote sensing; land cover; Markov chain; cellular automata; multi layer 
perceptron neural network; change detection; supervised classification; GIS 
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1. Introduction 

1.1. Background of the Research 

Like many other cities in the world, Dhaka, the Capital of Bangladesh is also the outcome of 
spontaneous rapid growth. As the growth of population in Dhaka is taking place at an exceptionally 
rapid rate, it has become one of the most populous Mega Cities in the world. 

Dhaka City has undergone radical changes in its physical form, not only in its vast territorial 
expansion, but also through internal physical transformations over the last decades. These have created 
entirely new kinds of urban fabric. In the process of urbanization, the physical characteristics of Dhaka 
City are gradually changing as plots and open spaces have been transformed into building areas, open 
squares into car parks, low land and water bodies into reclaimed built-up lands, etc. 

Dhaka is now attracting a huge amount of rural-urban migrants from all over the country due to 
well-paid job opportunities, better educational, health and other daily life facilities. This kind of 
increasing and over population pressure is putting adverse impacts on Dhaka City like unplanned 
urbanization, extensive urban poverty, water logging, growth of urban slums and squatters, traffic 
jams, environmental pollution and other socio-economic problems [1]. 

If this situation continues then Dhaka would soon become an urban slum with the least livable 
situation for the city dwellers. Therefore, the primary objective of this paper is to forecast the future 
urban land cover changes of the selected study area within the greater Dhaka City. 

1.2. Existing Works 

With the advancement of technology, reduction in data cost, availability of historic spatio-temporal 
data and high resolution satellite images, Remote Sensing (RS) and Geographic Information System 
(GIS) techniques are now very useful for conducting researches like land cover change detection 
analysis and predicting the future scenario [2]. 

Many researchers have conducted number of researches to detect the land use/land cover change 
pattern over time and predict the future growth of urban areas. They have introduced and applied 
different techniques to achieve the research objectives. Among them, Griffiths et al. have approached 
to map the urban growth of Dhaka megacity region (1990 to 2006) using multi-sensoral data. They 
have used a Support Vector Machine (SVM) classifier and post-classification comparison to reveal 
Spatio-temporal patterns of urban land-use and land-cover changes [3]. 

Dewan and Yamaguchi have tried to evaluate land cover changes and urban expansion in greater 
Dhaka, between 1975 and 2003 using satellite images and socio-economic data. A supervised 
classification algorithm and the post-classification change detection technique in GIS have been 
implemented by them. They have found the accuracy of the Landsat-derived land cover maps ranged 
from 85% to 90% [4]. 

Emch and Peterson have quantified mangrove forest cover change in the Sundarbans of south-west 
Bangladesh from 1989 to 2000 using Landsat Thematic Mapper (TM) satellite imagery. They have 
used three image processing techniques: Normalized Differential Vegetation Index (NDVI), maximum 
likelihood classification and sub-pixel classification [5]. 
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Kashem has implemented SLEUTH urban growth model to simulate the historical growth pattern of 
Dhaka Metropolitan Area. SLEUTH model incorporates Slope, Landuse, Exclusion layer (where growth 
cannot occur), Urban, Transportation and Hill-shade data layers. SLEUTH uses a modified Cellular 
Automata (CA) to model the spread of urbanization [6]. Lahti has predicted the urban growth of Sydney, 
Australia till 2106. The modeling has been performed using the CA model Metronamica, developed by 
the Research Institute for Knowledge Systems (RIKS) in the Netherlands [7]. Cabral and Zamyatin have 
implemented three land change models to forecast the urban dynamics in Sintra-Cascais municipalities 
of Portugal, for the year 2025. The models are CA Markov chain model (CA_Markov), CA_Advanced 
and Geomod. They have used image segmentation and texturing procedures to classify the Landsat 
images of 1989, 1994 and 2001 [8]. 

Wang and Mountrakis have developed a GIS-based modeling framework titled Multi-Network 
Urbanization (MuNU) model, which integrates multiple neural networks, to predict the urban growth 
of Denver Metropolitan Area, CO, USA [9]. Cheng and Masser have used a spatial data analysis 
method that comprises exploratory data analysis and spatial logistic regression technique, to seek and 
model major determinants of urban growth in the period1993–2000 of Wuhan City in PR China [10]. 

2. Materials 

2.1. Study Area 

Dhaka is located in central Bangladesh at 23°43′0″N, 90°24′0″E, on the eastern banks of the 
Buriganga River (Figure 1(a)). Dhaka City is located in Dhaka District that is surrounded by rivers. 
The proposed study area for this research is Dhaka City Corporation (DCC) and its surrounding impact 
areas (Figure 1(b)). This area has increased potential to face massive urban growth in near future based 
on the current trend of rapid urbanization. The study area covers the oldest organic core part of Dhaka 
city (old Dhaka), the planned areas and even the unplanned new generation organic areas that are 
called “Informal Settlements”. This selected study area almost covers the biggest urban agglomeration 
and is the central part of Bangladesh in terms of social and economic aspects [11]. 

2.2. Remote Sensing Data 

To prepare the base maps for analysis purpose and applying the different methods to achieve the 
research objectives, the Landsat satellite images (1989, 1999 and 2009) have been collected from the 
official website of US Geological Survey (USGS). Landsat Path 137 Row 44 covers the whole study 
area. Map Projection of the collected satellite images is Universal Transverse Mercator (UTM) within 
Zone 46 N–Datum World Geodetic System (WGS) 84 and the pixel size is 30 m. Five land cover types 
have been identified for this research (Table 1).  
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Figure 1. (a) Location of Dhaka City in Bangladesh, (b) location of the study area within 
greater Dhaka City; Map 1 (a) Source: Banglapedia, National Encyclopedia of Bangladesh, 
2011. 

 

Table 1. Details of the land cover types. 

Land Cover Type Description 

Built-up Area 
All residential, commercial and industrial areas, villages, settlements and 
transportation infrastructure.

Water Body River, permanent open water, lakes, ponds, canals and reservoirs. 

Vegetation 
Trees, shrub lands and semi natural vegetation: deciduous, coniferous, and mixed 
forest, palms, orchard, herbs, climbers, gardens, inner-city recreational areas, parks 
and playgrounds, grassland and vegetable lands.

Low Land 
Permanent and seasonal wetlands, low-lying areas, marshy land, rills and gully, 
swamps, mudflats, all cultivated areas including urban agriculture; crop fields and 
rice-paddies. 

Fallow Land 
Fallow land, earth and sand land in-fillings, construction sites, developed land, 
excavation sites, solid waste landfills, open space, bare and exposed soils.

The Landsat satellite images used for analysis are of different qualities and dates (Table 2). For the 
purpose of ground information, several base maps of Dhaka City (for the year of 1987, 1995 and 2001) 
have been collected from the Survey of Bangladesh (SoB). Google Earth was another option to get 
some ideas about the recent land cover pattern of Dhaka city. The detail land use map (2009) of Dhaka 

(a) 
(b) 
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city has been collected from the Dhaka City Corporation (DCC). These reference data have been used 
for training site selection and accuracy assessment of the final land cover maps. 

Table 2. Details of the Landsat satellite images. (Source: US Geological Survey, 2011). 

Respective Year Date Acquired (Day/Month/Year) Sensor 
1989 13/02/1989 Landsat 4–5 Thematic Mapper (TM) 
1999 24/11/1999 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
2009 26/10/2009 Landsat 4–5 Thematic Mapper (TM) 

2.3. Base Map Preparation 

Supervised classification relies on the a priori knowledge of the study area [12]. Therefore, for this 
research, a supervised classification method has been used.  

2.3.1. Training Site Development 

Training sites are the areas defined for each land cover type within the image. The chosen color 
composite is used for digitizing polygons around each training site for similar land cover. Then a 
unique identifier is assigned to each known land cover type [12]. At the beginning, the training sites 
have been developed based on the collected reference data and ancillary information. 

2.3.2. Signature Development 

This is the stage of creating the spectral signature for each type of land cover. This is done by 
analyzing the pixels of the training sites. When the digitization of training sites is finished, the 
statistical characterizations of each land cover class are needed. These are called signatures [12]. 

2.3.3. Classification 

After developing signature files for all the land cover types the images have been classified using a 
hard classifier called “Fisher Classifier”. Fisher classifier uses the concept of the linear discrimination 
analysis [12]. Fisher Classifier performs well when there are very few areas of unknown classes and 
when the training sites are representative of their informational classes [12]. This is why fisher 
classifier is appropriate for this particular research, because most areas for the classes are known. 

2.3.4. Generalization 

After image classification, sometimes many isolated pixels may be found [12]. These isolated pixels 
may belong to one or more classes that differ from surrounding pixels. Therefore it is necessary to 
generalize the image and remove the isolated pixels. Filtering is the solution for this type of problem. 
Therefore a 3 × 3 mode filter has been applied to generalize the fisher classified land cover images. 
This post-processing operation replaces the isolated pixels to the most common neighboring class. 
Finally the generalized images are reclassified to produce the final version of land cover maps for 
different years (Figure 2). It is important to remember that the supervised classification in every year is 
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independent of the classification of the other years, because this method can lead to substantial 
overestimates of land change in the post-classification change analysis. 

Figure 2. Land cover maps of the study area. 

 

 

2.4. Accuracy Assessment 

The next stage of image classification process is accuracy assessment. It is not typical to ground 
truth each and every pixel of the classified image. Therefore some reference pixels are generated [13]. 
The randomly selected points within the classified image list two sets of class. The first set of class 
values represents the land cover type in the map. The second set of class values are known as reference 
values. These reference values are input by the researcher that is based on ground truth data. Therefore 
250 reference pixels have been generated for each classification image for this research to perform 
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accuracy assessment. Then the collected base maps have been used to find the land cover types of the 
reference points. 

2.4.1. User’s, Producer’s and Overall Accuracy 

User’s accuracy for category K is the percent of category K in the reference information, given that 
the map shows category K. Producer’s accuracy for category K is the percent of category K in the 
map, given that the reference information shows category K [14]. The producer’s and user’s accuracy 
for all the years are found ranging approximately from 71% to 100% (Table 3–5). 

Table 3. Accuracy totals (1989). 

Class Name Reference Totals Classified Totals Number Correct Producer’s Accuracy User’s Accuracy 
Built-up Area 18 21 18 100.00% 85.71% 
Water Body 46 38 35 76.09% 92.11% 
Vegetation 66 61 54 81.82% 88.52% 
Low Land 43 35 31 72.09% 88.57% 

Fallow Land 77 95 75 97.40% 78.95% 
Totals 250 250 213 

Table 4. Accuracy totals (1999). 

Class Name Reference Totals Classified Totals Number Correct Producer’s Accuracy User’s Accuracy 
Built-up Area 62 72 60 96.77% 83.33% 
Water Body 28 24 20 71.43% 83.33% 
Vegetation 56 53 47 83.93% 88.68% 
Low Land 33 30 29 87.88% 96.67% 

Fallow Land 250 250 217 85.92% 85.92% 
Totals 250 250 217 

Table 5. Accuracy totals (2009). 

Class Name Reference Totals Classified Totals Number Correct Producer’s Accuracy User’s Accuracy 
Built-up Area 112 115 108 96.43% 93.91% 
Water Body 22 19 17 77.27% 89.47% 
Vegetation 43 45 41 95.35% 91.11% 
Low Land 28 28 24 85.71% 85.71% 

Fallow Land 45 43 39 86.67% 90.70% 
Totals 250 250 229 

The overall accuracy represents the percentage of correctly classified pixels [14]. It is achieved by 
dividing the number of correct observations by the number of actual observations. The overall 
accuracies for 1989, 1999 and 2009 are found 85.20%, 86.80% and 91.60% respectively. 

2.4.2. Map Error vs. the Amount of Differences among the Maps 

There is 14.8%, 13.2% and 8.4% reported map error in the maps of 1989, 1999 and 2009 
respectively. These errors in the maps are clearly not negligible. It is a very common problem in land 
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change science that the amount of error in the maps is nearly as large as the amount of change on the 
ground. Thus it is necessary to compare the error in the maps with how much difference there is during 
1989–1999 and 1999–2009. 

The amount of land change ranges from approximately 2% to 20% for 1989–1999, while the figure 
is approximately 1% to 17% for 1999-2009 (Tables 6 and 7). Therefore, on an average, it can be stated 
that the errors in the maps are not much larger than the amount of land change between the two points 
in time (1989–1999 and 1999–2009). 

Table 6. Amount of differences (1989–1999). 

Land Cover Type 
1989 1999 Change in Area (%) 

(1989–1999) Area (km2) % Area (km2) % 
Built-up Area 37.6569 8.447 129.2292 28.991 +20.544 
Water Body 67.3218 15.102 42.5034 9.535 −5.567 
Vegetation 109.5714 24.581 94.3929 21.175 −3.406 
Low Land 62.0640 13.923 53.7264 12.052 −1.871 

Fallow Land 169.1559 37.947 125.9181 28.247 −9.70 
Total 445.770 100 445.770 100 0 

Table 7. Amount of differences (1999–2009). 

Land Cover Type 
1999 2009 Change in Area (%) 

(1999–2009) Area (km2) % Area (km2) % 
Built-up Area 129.2292 28.991 204.4008 45.853 +16.862 
Water Body 42.5034 9.535 33.6645 7.552 −1.983 
Vegetation 94.3929 21.175 79.9578 17.937 −3.238 
Low Land 53.7264 12.052 49.9914 11.215 −0.837 

Fallow Land 125.9181 28.247 77.7555 17.443 −10.804 
Total 445.770 100 445.770 100 0 

2.4.3. Limitations in Base Map Preparation and Accuracy Assessment 

Finally it can be stated that few misclassifications have been observed in the classified land cover 
maps of Dhaka city. The reasons may be as follows: 

i. The same spectral characteristics of some land cover types. For example, in case of 1989 
base map, certain built-up areas were misclassified as fallow land. Again, in most cases it 
was really difficult to separate water bodies and low/cultivable lands categories. The reasons 
may be the seasonal variations of the satellite images for different years and the similar 
spectral properties of land covers in some cases. The images collected for 1999 (November) 
and 2009 (October) are from the same winter season. But the image of 1989 (February) is 
from another season, summer. This kind of variation creates problems while preparing base 
maps for analysis. 

ii. Moreover, less image spectral resolution has directed to spectral mixing of different land 
cover types. This has caused spectral confusions among the cover types. It is also important 
to mention that the images of 1999 and 2009 represent winter season while the image of 
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1989 represents spring season. Therefore other seasonal images can be important evaluating 
the land cover change pattern of this kind of highly dynamic urban environment like Dhaka. 

iii. Again the spatial resolution of the images is important. For this research purpose, Landsat 
satellite images have been chosen that are only commercially available but can be found in 
free public-domain. The main problem of working with Landsat images is low resolution. 
The spatial resolution of Landsat Image is 30 m. IKONOS, QuickBird or other satellite 
images with higher resolution can be better option. 

iv. The next limitation regarding this research is the collection of reference data or maps. The 
reference data are necessary for ground truthing purpose of the base maps (1989, 1999 and 
2009) that have been prepared from the Landsat satellite images. But reference maps of the 
respective years (1989, 1999 and 2009) are not available. Therefore the base maps of Dhaka 
city of the years 1987, 1995 and 2001, collected from Survey of Bangladesh (SoB), have 
been used for referencing purpose. Google Earth images (2010) are used as reference data 
for ground truthing the base map of 2009. 

v. This kind of research needs extensive field visit for image classification and assessing the 
accuracies of the satellite images. Another point is the verification of the older images. For 
older images it is not possible to visit the field to find out the actual land cover types. These 
things can be improved by recent field visit to collect Global Positioning System (GPS) data 
for land cover verification/ground truthing purpose. To solve the problems with older 
satellite images, the historical base maps of similar years should be collected. 

The overall accuracies of the base maps can be achieved better if the above mentioned limitations 
can be reduced. 

3. Methods, Results and Discussion 

3.1. Land Cover Change Detection Analysis 

In remote sensing, “Change Detection” is defined as the process of determining and monitoring the 
changes in the land cover types in different time periods. It provides the quantitative analysis of the 
spatial distribution in the area of interest [15]. To perform change detection analysis, class-level metrics 
have been used. Class-level metrics are integrated over all the patches of a given type (class) [16]. For 
this research purpose, 8-cell patch neighborhood rule has been applied. The 8-cell rule considers all 8 
adjacent cells, including the 4 orthogonal and 4 diagonal neighbors. 

3.1.1. Number of Patches (NP) 

NP equals the number of patches of the corresponding patch type (class). Number of patches of a 
particular class or land cover type is a simple measure of the extent of subdivision or fragmentation of 
the class [16]. The numbers of patches (urban blocks in this case) of built-up area and fallow land types 
have increased over time. Again the decrease of water body and vegetation is prominent (Figure 3). 
This reveals the gradual development of urban infrastructures converting water bodies, vegetation and 
low lands. 
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Figure 3. Number of patches over the years. 

 

3.1.2. Gains and Losses in Land Cover Types 

In case of built-up area, the core southern part of Dhaka city has remained the same. While the 
north-east and south-west parts have converted to built-up areas. The northern part of Dhaka city has 
gained water body followed by a massive decrease in the south-east and south-west parts (Figure 4). 

Figure 4. Gains and losses in land cover types (1989–2009). 
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Figure 4. Cont. 

 

No particular pattern on gains or losses is found for vegetation. In cases of low land the changes are 
evident in eastern and western parts. Fallow land has decreased markedly and the losses are clear in 
north-western and mid parts (Figure 4). 

3.2. Stochastic Markov Model 

The first model that has been implemented is given the name as “Stochastic Markov Model 
(St_Markov)”, because this model combines both the stochastic processes as well Markov chain 
analysis techniques [17]. This kind of predictive land cover change modeling is appropriate when the 
past trend of land cover changing pattern is known [12]. 

A Markov chain is a stochastic process (based on probabilities) with discrete state space and 
discrete or continuous parameter space [18]. In this random process, the state of a system s at time 
(t+1) depends only on the state of the system at time t, not on the previous states.  

3.2.1. Markov Property 

In a Markov chain the probability of the next state is only dependent upon the current state. This is 
called Markov property and stated as [19]: ࡼ ൫࢚ࣈା૚ ൌ ૚ࣈశ૚ห࢚࢏ࢄ  ൌ , ૚࢏ࢄ  … . . , ࢚ࣈ ൌ ൯࢚࢏ࢄ  ൌ ା૚࢚ࣈ൫ ࡼ  ൌ ࢚ࣈశ૚ห࢚࢏ࢄ  ൌ  ൯   (1)࢚࢏ࢄ 

The probability of a Markov chain ξ1, ξ2,........can be calculated as [19]: ࡼ ൫ࣈ૚ ൌ ,૚࢏ࢄ  … . , ࢚ࣈ ൌ ൯ൌ ࢚࢏ࢄ ૚ࣈ൫ ࡼ  ൌ ૚൯࢏ࢄ  כ ૛ࣈ൫ ࡼ ൌ ૚ࣈ|૛࢏ࢄ ൌ ૚࢏ࢄ ൯ כ ࡼ ൫࢚ࣈ ൌ ૚ି࢚ࣈ|࢚࢏ࢄ ൌ ష૚࢚࢏ࢄ  ൯ (2)

The conditional probabilities: ࡼ ൫࢚ࣈା૚ ൌ ࢚ࣈ|శ૚࢚࢏ࢄ ൌ  ൯      (3)࢚࢏ࢄ

These are called the “Transition Probabilities” of the Markov chain [19]. 
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3.2.2. Transition Matrix for a Markov Chain 

Let’s consider a Markov chain with n states s1, s2,.......,sn. Let pij denote the transition probability 
from state si to state sj, i.e., 

ା૚࢚ࣈ൫ ࡼ  ൌ ࢚ࣈ|࢐࢙ ൌ  ൯        (4)࢐࢙

The transition matrix (n × n) of this Markov process is then defined as [19]: ࡼ ൌ  ൥࢖૚૚ … … …࢔૚࢖ … … … … ૚࢔࢖… … … ൩࢔࢔࢖ , ൒ ࢐࢏࢖  ૙, ∑ ୀ૚࢐࢔࢐࢏࢖ ൌ ૚, ࢏ ൌ ૚, … … ,  (5)    ࢔

Predictions of the future state probabilities can be calculated by solving the matrix equation [19]: 

p(t) = p(t − 1)·P      (6) 

With increasing time steps, a Markov chain may approach to a constant state probability vector, which 
is called limiting distribution [19]: 

p(∞) = lim௧՜ஶ ሻ = lim௧՜ஶݐሺ݌  ሺ0ሻ·Pt    (7)݌

3.2.3. Analysis with Stochastic Markov Model 

At the beginning, Markov chain produces a transition matrix (Table 8), a transition areas matrix 
(Table 9) and a set of conditional probability images by analyzing two qualitative land cover images 
(Figure 5) from two different dates 1989 and 1999 [12]. 

Table 8. Markov probability of changing among land cover types (1989–1999). 

 Built-up Area Water Body Vegetation Low Land Fallow Land 
Built-up Area 0.6649 0.0268 0.0533 0.0298 0.2252 
Water Body 0.2125 0.1074 0.1030 0.1969 0.3802 
Vegetation 0.1675 0.0853 0.3304 0.1173 0.2995 
Low Land 0.0766 0.4006 0.0514 0.3446 0.1267 
Fallow Land 0.4126 0.0144 0.2603 0.0199 0.2928 

Table 9. Cells expected to transition to different classes (1989–1999). 

 Built-up Area Water Body Vegetation Low Land Fallow Land 
Built-up Area 95,476 3,845 7,658 4,278 32,332 
Water Body 10,034 5,074 4,865 9,300 17,953 
Vegetation 17,569 8,945 34,655 12,302 31,409 
Low Land 4,574 23,914 3,070 20,572 7,566 
Fallow Land 57,732 2,009 36,415 2,789 40,964 

The matrix of transition probabilities (Table 8) shows the probability that each land cover category 
will change to other categories in 2009. Table 9 represents the number of cells/pixels (30 m × 30 m) 
that will be transformed over time from one land cover type to other types. Markov Chain Analysis 
also produces related conditional probability images (Figure 5) with the help of transition probability 



ISPRS Int. J. Geo-Inf. 2012, 1           
 

 

15

matrices. Each conditional probability image shows the possibility of transitioning to another land 
cover class. 

After analyzing Figure 5, it is clear that most areas will convert into built-up areas. The Markovian 
conditional probability of being built-up area ranges up to 0.66 which is the highest among all other 
land cover types. This probabilistic prediction is dependent upon the past trend of the last ten years 
(1989–1999). 

Figure 5. Markovian conditional probability images. 
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Figure 5. Cont. 

 

3.2.4. Future Prediction Using Stochastic Markov Model 

The next step is to make one single land cover map for future prediction aggregating all the 
Markovian conditional probability images. This prediction is performed by a stochastic choice decision 
model. Stochastic choice creates a stochastic land cover map by evaluating and aggregating the 
conditional probabilities in which each land cover can exist at each pixel location against a rectilinear 
random distribution of probabilities [12]. 

Stochastic Choice creates a stochastic land cover map by evaluating and aggregating the conditional 
probabilities in which each land cover can exist at each pixel location against a rectilinear random 
distribution of probabilities [12]. The Stochastic Markov (St_Markov) predicted land cover map of 
2009 is shown in Figure 6. 

3.3. Cellular Automata Markov Model 

The second model that has been implemented is named as “Cellular Automata Markov Model 
(CA_Markov). CA_Markov combines the concepts of Markov Chain, Cellular Automata (CA) [20], 
Multi-Criteria Evaluation [21] and Multi-Objective Land Allocation [12]. 

Stephen Wolfram defined CA as follows: “Cellular automata are simple mathematical idealizations 
of physical systems in which space and time is discrete, and physical quantities take on finite set of 
discrete values” [22]. 
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Figure 6. Final St_Markov predicted land cover map (2009). 

 

3.3.1. The Elements of Cellular Automata 

The components that comprise an elementary cellular automaton are as follows [23]: 

(a) The physical environment or the space represented by an array of cells, on which the automaton 
exists (its lattice). 

(b) The cell in which the automaton resides that contains its state(s). 
(c) The neighborhood around the automaton. 
(d) Transition rules that describe the behavior of the automaton. 
(e) The temporal space in which the automaton exists. 

3.3.2. Mathematical Notation of Cellular Automata 

A CA model represents discrete dynamic system consisting of four elements [20]: ࡭࡯ ൌ ሺ ख, ઱, घ,  ሻ      (8) ࢾ

where, L = the discrete lattice or the physical environment; ∑ = the set of possible states, where each ith 
cell of the lattice at time step t has a state σi(t) א ∑; घ = the neighborhood of a cell automaton, which 
is defined as all cells that fall within a radius r א घ around the actual cell. It denotes the idea of 
neighborhood template [24]: घ࢙ሺ࢘ሻ ൌ ൜ ૛ሻ൯࢏,૚࢏൫ሺ࢚࢙࢏ࢊ૛࢏,૚࢏ ൏ ,૚࢏൫ሺ࢚࢙࢏ࢊ ൠ, whereݎ ૛ሻ൯࢏ ൌ  ටሺ࢏૚૛ ൅  ሻ = the relative index of all࢘ሺ࢙૛૛ሻ; घ࢏

neighbors of a particular cell; δ = the local transition rule, which is denoted as follows [20]: ࢳ :ࢾ|घ| ื ڂ :ࢳ  ሻ࢚ሺ࢐࣌ ฽ ࢚ሺ࢏࣌  ൅ ૚ሻא࢐घ࢏ሺ࢚ሻ     (9) 
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It shows that the state of the ith cell at the next time step t+1 is computed by δ based on the states of 
all the cells in its neighborhood at the current time step t. 

Here, घi(t) = the associated neighborhood with ith cell at time t; |घ| = the number of cells in the 
neighborhood. 

The local transition rule is given by a rule table where given the sizes of ∑ and घ, the total number 
of possible rules equals [20]:  |઱઱घ|        (10) 
where each of the |∑N| possible configurations of a cell’s neighborhood is mapped to the number of 
possible states a cell can be in. Now considering the ordered set of all the states of all cells collectively 
at time step t, a CA’s global configuration can be denoted as follows [20]: ࣝ ሺݐሻ ൌ ڂ  ࣦאሻ௝ݐ௝ሺߪ        (11) 

Now applying the local transition rule to all the cells in the CA’s lattice, the next configuration of 
the CA can be computed by its induced global map [20]: ऑ ׷  ઱ख ื  ઱ख ׷ ሻ࢚ሺ ׋  ฽ ࢚ሺ ׋  ൅ ૚ሻ    (12) 

In brief, the standard CA can be generalized as follows [24]: ࢚ࡿା૚ ൌ ,࢚ࡿሺ ࢌ  ሻ       (13)ࡺ

where, S = the set of all possible states of the cellular automata; N = a neighborhood of all cells 
providing input values for the function f and f = a transition function that defines the change of the 
state from t to t+1. 

3.3.3. Simulation with Cellular Automata Markov Model 

CA_Markov is useful for modeling the state of several categories of a cell based on a matrix of 
Markov transition areas; transitional suitability images and a user defined contiguity filter. A Markov 
model applies contiguity rule like a pixel near to an urban area is most likely to be changed into urban 
area [12]. In this research, a 3 × 3 mean contiguity filter has been used (Figure 7) for modeling 
purpose. This kind of filtering is applied on suitability images for each land cover class. This is a 
defined neighborhood. The suitability of a pixel is determined by the pixel values within this defined 
filtering kernel. The more pixels of the same category of land cover exist in the neighborhood, the 
more the suitability value for that particular land cover type increases. Otherwise the pixel value 
remains the same [12]. 

Figure 7. The 3 × 3 mean contiguity filter for CA_Markov modelling. 
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3.3.4. Suitability Maps for Land Cover Classes 

The suitability maps determine which pixels will change as per the highest suitability of each land 
cover type. The higher the suitability of a pixel, the possibility of the neighboring pixels to change into 
that particular class is higher. 

Preparing a suitability map for each land cover type is difficult in terms of data and information 
availability. It is not possible to incorporate all types of factors or constraints that exist within the study 
area. Therefore a simple assumption has been assumed for fuzzy factor standardization. 

The basic assumption for preparing suitability images is the pixel closer to an existing land cover 
type has the higher suitability. It means a pixel that is completely within vegetation has the highest 
suitability value (255) and pixels far from existing vegetation pixels will have less suitability values. 
The farthest pixels from vegetation will show the lowest suitability values. Here the suitability 
decreases with distance. Though this idea is not perfect always, like in case of water body and 
vegetation the scenario can be different. In reality, a pixel near to forest is more likely to convert into 
built-up area rather in forest. But this can be considered to be the research limitation. 

Therefore a simple linear distance decay function is appropriate for this basic assumption. It serves 
the basic idea of contiguity. The land cover maps have been standardized (Figure 8) to the same 
continuous suitability scale (0–255) using fuzzy set membership analysis process [12]. 

Figure 8. Suitability images of each land cover type (1999). 
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Figure 8. Cont. 

 

 

3.3.5. Future Prediction Using Cellular Automata Markov Model  

At the end, the Markov transition area matrix (Table 9), all the suitability images (Figure 8), the 3 × 3 
CA contiguity filter (Figure 7) and the base map of Dhaka city (1999) have been used to predict the 
land cover map of 2009. The CA_Markov predicted final land cover image (2009) of Dhaka city is 
illustrated in Figure 9. 
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Figure 9. CA_Markov projected land cover map of Dhaka city (2009). 

 

3.4. Multi Layer Perceptron Markov Model 

The term “Artificial Neural Network (ANN)” has been inspired by human biological nervous 
system [25]. In a typical ANN model, simple nodes are connected together to form a network of nodes. 
Some of these nodes are called input nodes; some are output nodes and in between there are hidden 
nodes [26]. Multi Layer Perceptron (MLP) is a feed-forward Neural Network with one or more layers 
between input and output layers. The great advantage of using MLP perceptron neural network is that 
it gives the opportunity to model several or even all the transitions at once [12]. 

3.4.1. The Feed-Forward Concept of Multi Layer Perceptron Neural Network 

MLP neural network uses the back propagation (BP) algorithm. The calculation is based on 
information from training sites [12]. Back propagation involves two major steps, forward and 
backward propagation. The input that a single node receives is weighted as: ݊݁ݐ௝ ൌ  ∑ ௝߱௜ ௜ܱ       (14) 

where, wij = the weights between node i and node j; Oi = the output from the node i 
The output from a given node j is computed as [26]: 

௜ܱ ൌ ݂ ሺ݊݁ݐ௝ሻ        (15) 

f = a non-linear sigmoid function that is applied to the weighted sum of inputs before the signal passes 
to the next layer 
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This is known as “Forward Propagation”. Once it is finished, the activities of the output nodes are 
compared with their expected activities. In normal circumstances, the network output differs from the 
desired output (a set of training data, e.g., known classes). The difference is termed as the error in the 
network [26]. The error is then back-propagated through the network. Now the weights of the 
connections are corrected as follows [12]: ∆ ௝߱௜ሺ݊ ൅ 1ሻ ൌ ௝ߜ൫ߟ ௜ܱ൯ ൅ ∆ߙ ௝߱௜ሺ݊ሻ     (16) 

η = the learning rate parameter; δj = an index of the rate of change of the error; α = the momentum 
parameter. 

The process of the forward and backward propagation is repeated iteratively, until the errors of the 
network minimized or reaches an acceptable magnitude [26]. The purpose of training the network is to 
get proper weights both for the connection between the input and hidden layer, and between the hidden 
and the output layer for the classification of unknown pixels [12]. Several factors affect the capabilities 
of the neural network to generalize [26]. These include: 

3.4.2. Number of Nodes 

In general, the larger the number of nodes in the hidden layer, the better the neural network 
represents the training data [26]. The number of hidden layer nodes is estimated by the following 
equation [12]: 

௛ܰ ൌ ሺඥ ܶܰܫ ௜ܰ כ ௢ܰሻ      (17) 

where, Nh = the number of hidden nodes; Ni = the number of input nodes; No = the number of output 
nodes 

3.4.3. Number of Training Samples and Iterations 

The number of training sample also affects the training accuracy. Too few samples may not 
represent the pattern of each category while too many samples may cause overlap. Again too many 
iterations can cause over training that may cause poor generalization of the network [12]. Over training 
can be prevented by early stopping of training [25]. The acceptable error rate is evaluated based on the 
Root Mean Square (RMS) Error [25]: ܴܵܯ ൌ ∑ሺ݁௜ሻଶ ܰൗ ൌ  ∑ሺݐ௜ െ ܽ௜ሻଶ ܰൗ      (18) 

where, N = the number of elements; i = the index for elements; ei = the error of the ith element; ti = the 
target value (measured) for ith element; ai = the calculated value for the ith element. 

3.4.4. Multi Layer Perceptron Markov Modeling 

The basic concept of modeling with MLP neural network adopted in this research is to consider the 
change in built-up area over the years. In general, it means other land cover types are primarily 
contributing to increase the built-up area. At this stage, the issue of which variables affect the change 
to built-up area (1989–1999) has been considered. Therefore, only the transitions from “water body to 
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built-up area”, “vegetation to built-up area”, “low land to built-up area” and “fallow land to built-up 
area” have been considered for model simulation. These four transitions have been termed as “All” 
here. Figure 10 exhibits the transition from all to built-up area. 

Figure 10. Transition from all to built-up area (1989–1999). 

 

It is logical that new areas will be converted to built-up area where there are existing built-up areas. 
Therefore six driver variables have been selected for MLP_Markov modeling. These are (1989–1999): 
Distance from all to built-up area, distance from water body, distance from vegetation, distance from 
low land, distance from fallow land and empirical likelihood image). 

The empirical likelihood transformation is an effective means of incorporating categorical variables 
into the analysis (Figure 11). It has been produced by determining the relative frequency of different 
land cover types occurred within areas of transition (1989 to 1999). The numbers (legend) indicate the 
likelihood of changing into built-up area. The higher the value the likeliness of the pixel to change into 
the built-up cover type is more. 

Now it is important to test the potential explanatory power of each variable. The quantitative 
measures of the variables have been tested through Cramer’s V [27]. It is suggested that the variables 
that have a Cramer’s V of about 0.15 or higher are useful while those with values of 0.4 or higher are 
good [12]. 

After getting satisfactory Cramer’s V values for all the driving variables, now the turn is to run 
MLP neural network model. For this purpose, 10,000 iterations have been chosen. The minimum 
number of cells that transitioned from 1989 to 1999 is 4,794. Therefore, the maximum sample size has 
been chosen as 4,794. For each principal transition particular weights have to be obtained. The RMS 
error curve has been found smooth and descent after running MLP neural network. After all these 
combinations, the MLP running statistics gives a very high accuracy rate of 91.36% (this accuracy is a 
measure of calibration, not validation). Based on these running statistics the transition potential maps 
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have been produced (Figure 12). These maps depict, for each location, the potential it has for each of 
the modeled transitions [12]. These are not the probability maps where the sum of values for a 
particular pixel location will not be 1. The reason behind this is because the MLP neural network 
outputs are obtained by applying fuzzy set to the signals into values from 0 to 1 with activation 
function (sigmoid). Here the higher values represent a higher degree of membership for that 
corresponding land cover type [12]. 

Figure 11. Empirical likelihood image of changing into built-up areas (1989–1999). 

 

Figure 12. Transition potential maps from all to built-up area (1989 to 1999). 
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Figure 12. Cont. 

 

3.4.5. Future Prediction Using Multi Layer Perceptron Markov Model 

Using this kind of MLP neural network analysis it is possible to determine the weights of the 
transitions that will be included in the matrix of probabilities of Markov Chain for future prediction. 
The transition probabilities are shown in Table 10. Based on all these information from MLP neural 
network, the final land cover map of 2009 (Figure 13) has been simulated through Markov chain 
analysis. The whole procedure, for predicting the land cover map by this way, has been termed as 
“MLP_Markov” model. 

Figure 13. MLP_Markov projected land cover map of Dhaka City (2009). 
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Table 10. Transition probabilities grid for Markov chain (1989 to 1999) in MLP modeling. 

 Built-up Area Water Body Vegetation Low Land Fallow Land 
Built-up Area 0.7823 0.0174 0.0347 0.0194 0.1463 
Water Body 0.2079 0.1264 0.1008 0.1927 0.3721 
Vegetation 0.1529 0.0779 0.3887 0.1071 0.2734 
Low Land 0.0695 0.3634 0.0467 0.4054 0.1150 

Fallow Land 0.3825 0.0133 0.2413 0.0185 0.3445 

3.5. Model Validation and Selection 

Now the task is to select the most appropriate model. In general sense, model validation refers to 
comparing the simulated and reference maps. But the traditional way of validating a model or 
comparing two maps, using Kappa statistics, is now out-of-date [28,29]. 

Therefore, a method of comparing three maps (a reference map of time 1, a reference map of time 2 
and a simulation map of time 2) has been implemented for model validation [30]. In this case; the base 
map of 1999, the base map of 2009 and the simulated maps of time 2009 (St_Markov, CA_Markov 
and MLP_Markov) have been used. 

3.5.1. Components of Agreement and Disagreement 

The three maps comparison method consists of two components of agreement and three 
components of disagreement. The components of agreement are persistence simulated correctly and 
change simulated correctly [30]. The components of disagreement are change simulated as persistence 
(the entries where reference t1 matches simulation t2 but does not match reference t2), persistence 
simulated as change (the entries where reference t1 matches reference t2 but does not match simulation 
t2) and change simulated as change to wrong category (the entries where all three maps disagree) [30]. 

3.5.2. Validation Results 

Among the three models, the percentages of disagreement components are lowest (28.066%) while 
the percentages of agreement components (71.934%) are found highest for MLP_Markov (Table 11). 

Table 11. Components of agreement and disagreement for model validation. 

Name of Component 
St_Markov 

(%) 
CA_Markov 

(%) 
MLP_Markov 

(%) 
Persistence Simulated Correctly 44.424 48.459 50.578 
Change Simulated Correctly 18.003 19.196 21.356 

Total Agreement 62.427 67.655 71.934 
Change Simulated As Persistence 11.369 10.39 9.788 
Persistence Simulated As Change 16.736 13.54 10.751 
Change Simulated As Change to Wrong Category 9.468 8.415 7.527 

Total Disagreement 37.573 32.345 28.066 

This is how, implementing the three maps comparison method, it is found that the simulated map of 
“MLP_Markov 2009” is showing the best results in terms of the percentages of disagreement and 
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agreement components. This is why; MLP_Markov is giving the best outputs among the three 
modeling techniques. 

Figure 14 shows the results from an overlay of the three maps (the base map of 1999, the base map 
of 2009 and the St_Markov/CA_Markov/MLP_Markov simulated maps of time 2009). From this 
figure it is possible to get a clear idea about the components of agreement and disagreement. 

Moreover, if we look at Table 12, then it is clear that MLP_Markov model comprises with all the 
basic elements of modeling. But St_Markov model lacks most of the elements, while CA_Markov is in 
a moderately better position. 

Therefore, at the end, the MLP_Markov model has been selected for predicting the land cover map 
of Dhaka City for the year of 2019. 

Table 12. Comparison of the three models based on basic modeling elements. 

Name of Component St_Markov CA_Markov MLP_Markov 
Temporal Dependency √ √ √ 
Spatial Dependency × √ √ 
Spatial Distribution × √ √ 
Spatial Proximity × √ √ 
Suitability Analysis × √ √ 
Transfer Function × × √ 
Weights of the Connections × × √ 
Training/ Testing Accuracy Assessment × × √ 
Transition Potential Maps × × √ 

Figure 14. Maps of the components of agreement and disagreement. 
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Figure 14. Cont. 

 

3.6. Simulating the Land Cover Map of 2019 

The base maps of 1999 and 2009 have been used to predict the land cover map of 2019 (Figure 15). 
The procedure followed here is the same as stated in the MLP_Markov modeling section. 
 

Figure 15. MLP_Markov projected land cover map of Dhaka City (2019). 
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3.7. Analysis of the Final Predicted Map (2019) 

The predicted map of 2019 reveals that 58% of the total area will be occupied by the “built-up area” 
cover type (Figure 16). On the other hand, water body (6%) and fallow land (11%) types are going to 
decrease in a notable way. 

Figure 16. Percentages of presence of land cover types over the years (1989–2019). 

 

4. Conclusions 

This research has revealed that the increase in built-up area is prominent in Dhaka City over the 
years (1989–2009). Later this paper has presented three different methods to simulate the land cover 
map of 2009 being persistent with the inherent changing characteristics. The methods have been 
named as “Stochastic Markov (St_Markov)”, “Cellular Automata Markov (CA_Markov)” and “Multi 
Layer Perceptron Markov (MLP_Markov)” model. Then the MLP_Markov model has been found 
most appropriate, based on the three map comparison method, for future prediction (the land cover 
map of 2019). 

Our hope might be realized if the error in the base maps is reduced to the point where the error 
becomes smaller than apparent change in land. We hope the interpretation of depicting the future 
scenario in quantitative accounts, as demonstrated in this research, will be of great value to the urban 
planners and decision makers, for the future planning of a modern and habitable Dhaka City. 
Moreover, it is our belief that this kind of research has a high potential to contribute towards the 
sustainable urban growth both at any local and regional level in the world. 
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