
robotics

Article

A Time-Efficient Co-Operative Path Planning Model
Combined with Task Assignment for
Multi-Agent Systems

Sumana Biswas * , Sreenatha G. Anavatti and Matthew A. Garratt

Defence Force Academy, University of New South Wales, 2052 Canberra, Australia;
S.Anavatti@adfa.edu.au (S.G.A.); M.Garratt@adfa.edu.au (M.A.G.)
* Correspondence: Sumana.Biswas@student.adfa.edu.au

Received: 15 March 2019; Accepted: 23 April 2019; Published: 26 April 2019
����������
�������

Abstract: Dealing with uncertainties along with high-efficiency planning for task assignment problem
is still challenging, especially for multi-agent systems. In this paper, two frameworks—Compromise
View model and the Nearest-Neighbour Search model—are analyzed and compared for co-operative
path planning combined with task assignment of a multi-agent system in dynamic environments.
Both frameworks are capable of dynamically controlling a number of autonomous agents to accomplish
multiple tasks at different locations. Furthermore, these two models are capable of dealing with
dynamically changing environments. In both approaches, the Particle Swarm Optimization-based
method is applied for path planning. The path planning approach combined with the obstacle
avoidance strategy is integrated with the task assignment problem. In one framework, the Compromise
View model is used for completing the tasks and a combination of clustering method with the
Nearest-Neighbour Search model is used to assign tasks to the other framework. The frameworks
are compared in terms of computational time and the resulting path length. Results indicate that
the Nearest-Neighbour Search model is much faster than the Compromise View model. However,
the Nearest-Neighbour Search model generates longer paths to accomplish the mission. By following
the Nearest-Neighbour Search approach, agents can successfully accomplish their mission, even under
uncertainties such as malfunction of individual agents. The Nearest-Neighbour Search framework is
highly effective due to its reactive structure. As per requirements, to save time, after completing its
own tasks, one agent can complete the remaining tasks of other agents. The simulation results show
that the Nearest-Neighbour Search model is an effective and robust way of solving co-operative path
planning combined with task assignment problems.

Keywords: multi-agent system; task assignment; path planning; dynamically changing environments

1. Introduction

There is an increasing trend towards using autonomous systems cross a wide range of real-world
applications where human presence is deemed unnecessary or dangerous. Nowadays, Unmanned
Vehicles (UVs) are deployed for various missions including accompanying troops in the battlefield,
security enforcement, surveillance, etc. As the mission becomes more complicated, they may need to
accomplish multiple tasks in dynamic environments. Completion of the successful mission depends
not only on the smooth exploration of the workspace but also on the accomplishment of a set of tasks
spread over an extended region [1].

It is always difficult for a single agent system to perform a wide range of missions, due to its
limited adaptation, non-flexibility and low reliability characteristics. On the other hand, multi-agent
systems are very popular for their robustness and self-adaptation capacity [2]. They are getting more

Robotics 2019, 8, 35; doi:10.3390/robotics8020035 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0003-3963-8020
https://orcid.org/0000-0003-0222-430X
http://www.mdpi.com/2218-6581/8/2/35?type=check_update&version=1
http://dx.doi.org/10.3390/robotics8020035
http://www.mdpi.com/journal/robotics

Robotics 2019, 8, 35 2 of 16

and more emphasis and research focus [3,4]. Productivity enhancing and vehicle safety are the two
main factors that should be satisfied in all stages of multi-agent planning [5].

Planning a safe and efficient path for each UV is still one of the challenges for mission planning.
Obstacle avoidance, as well as collision avoidance among agents, plays an important role in the context
of managing multiple agents [6]. On the way to the selected locations, all UVs should be able to avoid
obstacles by replanning their path dynamically.

Sharing the burden among multiple agents can improve the effectiveness of a mission [7]. During
planning, the paths for all UVs in the scenario are determined by assigning certain number of tasks
to each individual UV. In such scenarios, UVs are required to move in the search space through the
designated locations associated with the given task [7]. Complications arise during decision making
like, “who will go to which locations in what order” [7]. Furthermore, when UVs move together,
there is a risk of colliding with each other. Efficient coordination among multiple agents is the key
requirement for successful mission planning [8]. Hence, an effective cooperative path planning with
task assignment should be needed to make the mission successful.

It is not an easy task to measure the performance of mission planning algorithms and compare one
with the other. Moreover, planning approaches are different in structure and their implementations
depends on the representations of the environments [9]. The performance of a framework depends on
several factors that are related to the solution of the tasks for which the framework is being used [9].
In a mission, different types of uncertainty, such as break down of UVs, and task switching (to reduce
the mission competition time) exist. An efficient framework is needed to address these challenges.

This work addresses the comparison between two different frameworks proposed by
Sumana et al. [10,11]. The extension of the work in [10] is also developed in this paper. Both frameworks
are based on the Particle Swarm Optimization (PSO) method and are used for efficient cooperative path
planning for a multi-agent system. PSO offers a high-quality solution and fast computation for solving
different complex problems. In terms of path planning, it leverages the advantages of the heuristic and
random search strategies used in PSO. Both frameworks can efficiently work in complex environments.
Simultaneous replanning is applied to replan a new path by avoiding both static and dynamic obstacles.
Both approaches are capable of avoiding collisions among agents. Here, the co-operative manner of
path-planning with integrated collision avoidance is combined with the task assignment problem.
It is assumed that information collected by sensors is shared among all agents. Thus, each agent has
information about the other agents’ positions. Multiple agents can automatically arrange the total
given task and dynamically adjust their motion. Sumana et al. [11] proposed a Compromise View
(CV) model as the task allocation approach. A Nearest-Neighbour Search (NNS)-based task allocation
model is proposed in [10].

The contribution of this paper is to analyze and make comparative assessment of these two models.
Moreover, this paper addresses whether the NNS approach is capable of dealing with uncertainties
such as break down of any agents. In addition, this paper addresses the complicated situation where
the number of agents is less than the number of tasks. To increase the efficiency of the total planning,
agents also have the capability to a switch few of their assigned tasks to another agent who has already
finished its tasks. Simulation results validate the effectiveness of the NSS model over the CV model.

The rest of the paper is organized as follows: Section 2 describes the literature review related
to this topic. Section 3 states the problem under consideration more precisely. Section 4 defines the
frameworks and describes the methodology of the total planning. Simulation results and discussions
are presented in Section 5. The concluding remarks are given in Section 6.

2. Related Work

Since the 1960s, much research has been conducted on path planning [12–16]. Generally, there are
two approaches of path planning. One is centralized and the other one is decentralized. In a centralized
approach, the planner computes the path in a combined configuration space and treats the agents as
a single combined agent [17]. Clark et al. [18] used dynamic networks that coordinate centralized

Robotics 2019, 8, 35 3 of 16

planning for effective motion planning of multiple mobile agents. On the other hand, the decentralized
approach computes a path for each agent independently [17]. The decentralized approach is a
generalization of behavior-based control of agents and they are faster than the centralized approaches.
Cascone et al. [19] used a decentralized approach in multiple agent planning.

Recently, swarm agent systems based on the concept of swarm intelligence have become a very
active research area for multi-agent systems. Particle swarm optimization (PSO) [20] based on the
concepts of swarm intelligence, has become an excellent optimization tool. It generates a high-quality
solution with low computational time [21]. It has few parameters and it can converge in a very fast
manner [22]. Compared with other methods, such as genetic algorithms [23], PSO gets better results in
a faster and cheaper way. Leveraging the qualities of rapid search and easier realization, PSO attempts
to solve the drawbacks of conventional/existing methods [24]. Sumana et al. [25] used PSO based
algorithm to solve path planning problems.

In the context of multi-agent systems, path planning problems become more complicated when
solving for obstacle avoidance and collision avoidance among agents [6]. Zhang and Zhao [26]
proposed an A*-Dijkstra-Integrated algorithm for multiple agents without any collision. Peng et al. [27]
proposed an improved D* Lite algorithm with a fast replanning technique. However, in most of
the research, the agents are considered as point objects and only consider the static environments.
Moreover, most of the planner implies a very limited class of mission execution [28], such as single
start to single goal [29,30].

In many mission planning problems, a group of agents need to execute a series of tasks on their
way to the destination. There has been a considerable amount of work carried out on task assignment
problems. An optimal assignment algorithm is used by Kwok et al. [31] to complete multiple targets
in a multi-agent scenario. Akkiraju et al. [32] proposed an effective agent-based solution approach.
To achieve cooperation between autonomous agents, Noreils [33] proposed an effective planning
method. However, the focus of those algorithms is only on task allocation problems without combining
it with path planning. Path planning combined with task assignment is a NP-complete problem [1].
Berhault el al. [34] utilize the advantage of combinatorial actions to coordinate a team of mobile robots
to visit a number of given targets in partially unknown terrain.

Mission planning combined with task assignment becomes more complicated when it works
in the dynamic environments. Multi-agent path planning in dynamic environments is proposed by
Jan et al. [35]. An evolutionary approach to a cooperative mobile robotic system is implemented by
Yu et al. [2]. Maddula et al. [1] provide an excellent overview of multi-target assignment as well as
path planning for a group of agents. A negotiation-based algorithm is applied by Moon et al. [7,36]
for assigning tasks to agents. To find the shortest path in a dynamic environment, they combined
this algorithm with the A* search algorithm [37]. Zhu and Yang [38] applied a neural-network-based
approach to solve dynamic task assignment of a multirobot system. However, most of the research
work does not consider the size constraint of the agents. Moreover, to optimize the computational cost,
most of the existing approaches do not have an efficient replanning capacity.

Sumana et al. [10,11] proposed two different frameworks of a multi-agent system for cooperative
task assignment combined with path planning. This work is the extension of the previous work,
which compares both frameworks from [10,11]. Furthermore, in this paper, the better framework is
extended to deal with the breakdown problems in addition to switching workload to make the mission
time efficient.

3. Problem Description

Consider a given number of agents, M = {M1, M2, Mi} and a task set, T = {T1, T2, Ti}
that needs to be completed by the agents. The target locations are randomly distributed in the planned
area. The position of the target location is denoted by (XiT, YiT), i = 1, 2, . . . T. The position of agents
‘m’ is given by (XiM, YiM), i = 1, 2, . . . M. Here ‘M’ < ‘T’. Without loss of generality, the task is to visit a
number of target locations. Each agent is required to visit at least one location.

Robotics 2019, 8, 35 4 of 16

The challenge is assigning the number of tasks to multiple vehicles on its way to the destination.
O = {O1, O2, Oi} is the set of static and dynamic obstacles that remain in the scene at a given
time instant. In this problem, let each agent initially be located at some initial point ‘S’, and ‘F’ be
the final goal location. The flexibility of the planning is that it is not necessary that the goal point
of each agent will be the same; they can be different as well. If ‘P’ is the path, the assigned path to
each agent is given by: Pi = {(XiM(s), YiM(s)), (Xi1T, Yi1T), . . . (XiTT, YiTT), (XiM(f), YiM(f))}. On its path,
agents need to avoid any types of obstacles. For this stage, the total solution concept is adopted from
Sumana et al. [10,11]. The sequences of the problem and the rules are given below.

• Divide the total set of tasks into subset of tasks.
• Assign subset of tasks to individual agents.
• Agents must ensure collision free path while following their paths. Therefore, the paths of all

agents solved by the proposed framework should be admissible.
• Agents must find the shortest path.
• Tackle unwanted situations such as break down of any agent.
• If needed task switching can be applied.

Here some assumptions are considered to simplify the representation. In the real world,
autonomous agents and obstacles are of heterogeneous shapes, so a circle is considered around
the agents and obstacles. Here, the agents are modelled as a circle with R1 radius. It is also considered
that the agent moves at a constant speed without any restriction on turning.

A safety gap is considered by extending the radius of the enclosed circle for both agents and
obstacles. One agent considers the other agents as dynamic obstacles and apply the same collision
avoidance strategy.

It is also considered that each agent has information about other agents and about
surrounding environments.

4. Solution Approaches

The frameworks are composed of three layers. They are Path planning, Task allocation and
Collision avoidance. Figures 1 and 2 present the frameworks for the cooperative mission planning.
Figure 1 shows the CV model and Figure 2 describe the NNS model.

Robotics 2019, 8, x FOR PEER REVIEW 4 of 17

planned area. The position of the target location is denoted by (XiT, YiT), i = 1, 2, ….. T. The position of

agents ‘m’ is given by (XiM, YiM), i = 1, 2, …. M. Here ‘M’ < ‘T’. Without loss of generality, the task is

to visit a number of target locations. Each agent is required to visit at least one location.

The challenge is assigning the number of tasks to multiple vehicles on its way to the destination.

O = {O1, O2, ……. Oi} is the set of static and dynamic obstacles that remain in the scene at a given time

instant. In this problem, let each agent initially be located at some initial point ‘S’, and ‘F’ be the final

goal location. The flexibility of the planning is that it is not necessary that the goal point of each agent

will be the same; they can be different as well. If ‘P’ is the path, the assigned path to each agent is

given by: Pi = {(XiM(s), YiM(s)), (Xi1T, Yi1T), …. (XiTT, YiTT), (XiM(f), YiM(f))}. On its path, agents need to

avoid any types of obstacles. For this stage, the total solution concept is adopted from

Sumana et al. [10,11]. The sequences of the problem and the rules are given below.

• Divide the total set of tasks into subset of tasks.

• Assign subset of tasks to individual agents.

• Agents must ensure collision free path while following their paths. Therefore, the paths of all

agents solved by the proposed framework should be admissible.

• Agents must find the shortest path.

• Tackle unwanted situations such as break down of any agent.

• If needed task switching can be applied.

Here some assumptions are considered to simplify the representation. In the real world,

autonomous agents and obstacles are of heterogeneous shapes, so a circle is considered around the

agents and obstacles. Here, the agents are modelled as a circle with R1 radius. It is also considered

that the agent moves at a constant speed without any restriction on turning.

A safety gap is considered by extending the radius of the enclosed circle for both agents and

obstacles. One agent considers the other agents as dynamic obstacles and apply the same collision

avoidance strategy.

It is also considered that each agent has information about other agents and about surrounding

environments.

4. Solution Approaches

The frameworks are composed of three layers. They are Path planning, Task allocation and

Collision avoidance. Figures 1 and 2 present the frameworks for the cooperative mission planning.

Figure 1 shows the CV model and Figure 2 describe the NNS model.

Figure 1. Flow diagram of framework based on the Compromise View (CV) model.
Figure 1. Flow diagram of framework based on the Compromise View (CV) model.

Robotics 2019, 8, 35 5 of 16
Robotics 2019, 8, x FOR PEER REVIEW 5 of 17

Figure 2. Flow diagram of the Nearest-Neighbour Search (NNS) model.

In a multi-agent system, the integration of the task assignment layer with the path planning layer

is the most significant part for architecting a mission planner [7]. In the CV model, the task

assignment layer gets the cost information from the path-planning layer, where the cost is the

selecting criterion for task assignment. On the other hand, in the NNS model, the task assignment

layer collects information about the target locations. Based on this information, a cluster of tasks is

formed. A combination of the clustering method with the Nearest-Neighbour Search model is used

to assign tasks to each agent. Iterations continue within these two layers, until a feasible solution for

task assignment is found.

The objective of the path planning layer and the collision avoidance layer is to do a similar task

of finding a collision-free path. The only difference is that the collision avoidance layer replans a path

to avoid collisions. Hence, these two layers work in a complementary manner to generate a

collision-free path efficiently.

4.1. Path Planning Layer

In 1995, Kennedy and Eberhart introduced PSO [20]. PSO works with a swarm population of

particles that represents a possible solution. It adjusts its exploration and exploitation capacity of

search according to its own and its companion’s flying experience. The personal best position is the

best solution that is found by the particle in the course of flight. The best position of the whole flock

is the global best solution [38]. Particles update their positions by updating their velocities. The

updating process runs until an optimum solution is reached. The particles update their velocities and

positions by the following equations:

vi(t + 1) = ωvi(t) + c1r1(xipbest(t) − xi(t)) + c2r2(xigbest(t) − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where, c1 = cognition parameter, c2 = social parameter, ω = inertia weight factor, and r1, r2 are

independent random numbers uniformly distributed in [0, 1]. xpbest is the personal best position

achieved by the particle and xgbest is the global best position achieved by the entire swarm of particles.

By updating their velocities and positions, a new generation forms and particles move forward

for a better solution. Ultimately, all particles converge onto the optimal solution. Practically, the

fitness function of the optimization problem assesses the solution to which the particle is good or

bad [39].

In this work, the Simultaneous Replanning Vectorized PSO (SRVPSO) algorithm from [29] is

applied. Algorithm 1 describe the SRVPSO algorithm.

Figure 2. Flow diagram of the Nearest-Neighbour Search (NNS) model.

In a multi-agent system, the integration of the task assignment layer with the path planning layer
is the most significant part for architecting a mission planner [7]. In the CV model, the task assignment
layer gets the cost information from the path-planning layer, where the cost is the selecting criterion for
task assignment. On the other hand, in the NNS model, the task assignment layer collects information
about the target locations. Based on this information, a cluster of tasks is formed. A combination of the
clustering method with the Nearest-Neighbour Search model is used to assign tasks to each agent.
Iterations continue within these two layers, until a feasible solution for task assignment is found.

The objective of the path planning layer and the collision avoidance layer is to do a similar task of
finding a collision-free path. The only difference is that the collision avoidance layer replans a path to
avoid collisions. Hence, these two layers work in a complementary manner to generate a collision-free
path efficiently.

4.1. Path Planning Layer

In 1995, Kennedy and Eberhart introduced PSO [20]. PSO works with a swarm population of
particles that represents a possible solution. It adjusts its exploration and exploitation capacity of
search according to its own and its companion’s flying experience. The personal best position is the
best solution that is found by the particle in the course of flight. The best position of the whole flock is
the global best solution [38]. Particles update their positions by updating their velocities. The updating
process runs until an optimum solution is reached. The particles update their velocities and positions
by the following equations:

vi(t + 1) = ωvi(t) + c1r1(xi
pbest(t) − xi(t)) + c2r2(xi

gbest(t) − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where, c1 = cognition parameter, c2 = social parameter, ω = inertia weight factor, and r1, r2 are
independent random numbers uniformly distributed in [0, 1]. xpbest is the personal best position
achieved by the particle and xgbest is the global best position achieved by the entire swarm of particles.

By updating their velocities and positions, a new generation forms and particles move forward
for a better solution. Ultimately, all particles converge onto the optimal solution. Practically, the fitness
function of the optimization problem assesses the solution to which the particle is good or bad [39].

In this work, the Simultaneous Replanning Vectorized PSO (SRVPSO) algorithm from [29] is
applied. Algorithm 1 describe the SRVPSO algorithm.

Robotics 2019, 8, 35 6 of 16

Algorithm 1: Simultaneous Replanning Vectorized
Particle Swarm Optimization for Path Planning

Input: Number of population (swarm_size), maximum
number of iterations (max_it), Initial positions (xs),
Goal position (xF), Initial velocity (v), c1, c2, ω.
Output: Way-points

1. while number of iteration ≤max_it do
2. for each particle
3. evaluate fitness function
4. if fitness (x) > fitness (pbest); pbest = personal best
5. pbest = x
6. if fitness (x) > fitness (gbest); gbest = global best
7. gbest = x
8. update particle’s position and velocity according to Equations (2) and (3)
9. for each particles position check the risk of collisions
10. calculate the distance between obstacles and particles, Dp

obs

11. if Dp
obs > 0; no collision

12. else Dp
obs
≤ 0; collision is likely to place

13. Replan the path to avoid obstacles.
14. end if
15. end for
16. end if
17. end for
18. gbest = parameters of best solution
19. end while

4.2. Task Allocation Layer

Task allocation is the most significant part of the aforementioned frameworks. Algorithm 2 and
Algorithm 3 describe the task assignment layers, used by Sumana et al. [10,11], and their comparisons
are given below.

Algorithm 2: Algorithm for Task Assignment (k-NNS model)

Input: All target locations (Ti,), All agents (Mi)
Output: Assigned target locations Tj ∈ Ti, for jth agent ∈Mi

1. Divide all target locations Ti into M number of clusters C using k-means clustering
2. Calculate the centroid of the clusters
3. for all M ∈ Mi
4. Calculate the nearest cluster Cnearest considering closest distance between the centroid of the clusters and
the position of the agents
5. Assign Tj targets inside the cluster for jth agent
6. end for
7. return Tj

Robotics 2019, 8, 35 7 of 16

Algorithm 3: Algorithm for Task Assignment (CV model)

Input: All target locations (Ti,), All vehicles (Mi)
Output: Assigned target locations Tj ∈ Ti, for jth agent ∈Mi

1. Calculate the associated cost with all the target locations
2. All agent chose its first target with the lowest cost.
3. for all M ∈ Mi
4. Conflict arise, when more agents select the same target location
5. Resolve conflict by applying CV model; conflicting agents compare their costs and the agent with lowest
cost is assigned to cover the target location.
6. Repeat step 1 to 5 until all the agents are assigned a target location
7. end for
8. return Tj

4.2.1. Compromise View (CV) Model

The CV model by Sumana et al. [11] is used to select targets and assign them to agents. This
approach is a heuristic method and it keeps updating until all the target locations are visited by the
agents. The CV model is performed in the following manner.

(I) Until all the Target Locations are Visited by the Agents

• Each agent calculates the cost associated with all the target locations and chooses its first target

with the lowest cost. Let,
(
Current_xim, Current_yim

)
is the current coordinate of ‘M’ agents and

(xiT, yiT) is the coordinate of ‘T’ targets. The cost is defined as follows:

PD =

√
(Current_xiM− xiT)

2 +
(
Current_yiM− yiT

)2
(3)

Here, PD is the path distance from the current position of the agent to the target location. All
agents get information about the choices of other agents. A conflict arises when more agents select the
same target location. The following actions are taken to resolve the conflict:

• This conflict is resolved by the compromising view of the conflicting agents, i.e., conflicting agents
compare their costs and the decision goes in favour of the agent with the lowest cost.

• Iteration is carried over all the agents and targets until all conflicts are resolved or all the agents
are assigned a task in the current cycle.

(II) Repetition of step I

When each agent is assigned with a task, the path planning layer starts to plan a feasible path.

4.2.2. Nearest-Neighbour Search (NNS) Model

This NNS model is used by Sumana et al. [10] for task assignment purposes. Here, k-means
Clustering is used to divide all the target locations into a number of clusters. The number of clusters is
the same as the number of agents. At the next step, the NNS model is applied to assign the cluster of
tasks to individual agents. Each agent calculates the distance between its own position and the centroid
of the cluster, then the cluster of tasks that are near to agents is assigned their target locations. If the
same cluster is assigned to more than one agent, a conflict may arise as to who will cover the assigned
cluster of tasks. A cluster refined technique is applied to resolve the conflict. By the refining process,
once the cluster of target locations assigned to its nearest agent, it will remove from the clustering list.
Thus, this cluster will no longer be assigned to other agents. Finally, when each agent is assigned with
a cluster, the algorithm goes to its next stage of path planning by covering all of its assigned tasks.

Robotics 2019, 8, 35 8 of 16

4.2.3. Comparison between CV Model and NNS Model

In the CV model, tasks are assigned to agents in a sequential manner. That is the main drawback
of this method. At each iteration, the distance between agents’ current position and the entire target
locations are needed to be calculated that is time consuming. Hence, the computational time of this
method is high.

On the other hand, in the NNS model, at the very beginning of the method, all targets are clustered
according to the number of agents. Here a group of targets is assigned at a time to individual agents.
This procedure is less time consuming.

Table 1 shows the comparison between these two models. From the Table 1, it is found that the
computational time of CV model is higher than the NNS model. Hence, the NNS model is more
computationally time-efficient than the CV model. However, it takes a longer path than the CV model.

Table 1. Comparison between CV and NNS Model.

Initial
Position of
2 Agents

Goal
Position of
2 Agents

No. of
Targets

No. of
Static

Obstacles

No. of
Dynamic
Obstacles

Computational
Time (s)

Pathlength (m)
Agent-1

Pathlength (m)
Agent-2

CV NNS CV NNS CV NNS

(0, 0) (100, 100) 10 4 0 5.62 1.75 229.98 309.31 167.41 301.72

(0, 0) (105, 105) 14 3 2 5.54 1.69 250.81 297.61 171.92 283.84

(0, 0) (0, 0) 10 4 0 5.61 2.53 202.82 375.21 162.21 346.47

(0, 0) (80, 77) and
(60, 93) 14 3 2 5.60 1.89 199.68 296.18 136.83 283.15

4.3. Collision Avoidance Layer

In multi agent planning, agents have to work simultaneously on the same work space. To find
the shortest trajectory that avoids collision with obstacles and collision with other agents is still a
significant challenge for the planner [40]. Agents need to take necessary action as soon as they detect
the position and movements of obstacles. In this case, coordination and cooperation among agents are
the key concern of safety planning. Furthermore, they require replanning their path to avoid the risk
of collisions. Here, one agent considers the others as dynamic obstacles and applies the same obstacle
avoidance strategy to avoid collisions among them.

The collision avoidance strategy is integrated with path planning layer. It works as a reactive
planner. A two-stage collision avoidance strategy is followed in this SRVPSO algorithm. The strategy
is explained as follows:

Stage I: each particle calculates the cost (distance) from its current location to the obstacles position.
Let Dp

obs be the distance between each obstacle and the particles, shown in Figure 3.

Robotics 2019, 8, x FOR PEER REVIEW 8 of 17

Table 1. Comparison between CV and NNS Model.

Initial

Position of

2 Agents

Goal

Position of

2 Agents

No. of

Targets

No. of

Static

Obstacles

No. of

Dynamic

Obstacles

Computational

Time (s)

Pathlength (m) -

Agent-1

Pathlength (m) -

Agent-2

CV NNS CV NNS CV NNS

(0, 0) (100, 100) 10 4 0 5.62 1.75 229.98 309.31 167.41 301.72

(0, 0) (105, 105) 14 3 2 5.54 1.69 250.81 297.61 171.92 283.84

(0, 0) (0, 0) 10 4 0 5.61 2.53 202.82 375.21 162.21 346.47

(0, 0)
(80, 77) and

(60, 93)
14 3 2 5.60 1.89 199.68 296.18 136.83 283.15

4.3. Collision Avoidance Layer

In multi agent planning, agents have to work simultaneously on the same work space. To find

the shortest trajectory that avoids collision with obstacles and collision with other agents is still a

significant challenge for the planner [40]. Agents need to take necessary action as soon as they detect

the position and movements of obstacles. In this case, coordination and cooperation among agents

are the key concern of safety planning. Furthermore, they require replanning their path to avoid the

risk of collisions. Here, one agent considers the others as dynamic obstacles and applies the same

obstacle avoidance strategy to avoid collisions among them.

The collision avoidance strategy is integrated with path planning layer. It works as a reactive

planner. A two-stage collision avoidance strategy is followed in this SRVPSO algorithm. The strategy

is explained as follows:

Stage I: each particle calculates the cost (distance) from its current location to the obstacles

position. Let Dpobs be the distance between each obstacle and the particles, shown in Figure 3.

Figure 3. Distance between obstacles and particles.

Rules for collisions occurrence:

• If Dpobs > 0, no collision, move to next step.

• If Dpobs ≤ 0, collision is likely to take place, then agents have to replan their path according.

Here, the negative value of the cost means that the trajectory of the particles is within the

collision zone. The fitness value of the particles within the risk zone is manipulated by a higher

positive value. This optimization problem is a cost minimization problem and the particles with

higher cost are considered to have the worse fitness function. Thus, the trapped particles in the

collision zone are ignored and the path within the zone is infeasible.

Stage II: To overcome the unbalanced scenario in the swarm population, the trapped particles

are recovered. The parameters of PSO algorithm recovering procedure is carried out by increasing

the values of the PSO parameters that increase the velocity of these particles. Thus, they can be

recovered from the collision zone.

By applying this strategy, multi-agents can easily avoid any type of collision and replan the path

that is admissible.

Figure 3. Distance between obstacles and particles.

Rules for collisions occurrence:

• If Dp
obs > 0, no collision, move to next step.

• If Dp
obs
≤ 0, collision is likely to take place, then agents have to replan their path according.

Robotics 2019, 8, 35 9 of 16

Here, the negative value of the cost means that the trajectory of the particles is within the collision
zone. The fitness value of the particles within the risk zone is manipulated by a higher positive value.
This optimization problem is a cost minimization problem and the particles with higher cost are
considered to have the worse fitness function. Thus, the trapped particles in the collision zone are
ignored and the path within the zone is infeasible.

Stage II: To overcome the unbalanced scenario in the swarm population, the trapped particles are
recovered. The parameters of PSO algorithm recovering procedure is carried out by increasing the
values of the PSO parameters that increase the velocity of these particles. Thus, they can be recovered
from the collision zone.

By applying this strategy, multi-agents can easily avoid any type of collision and replan the path
that is admissible.

5. Simulation Results and Discussions

The SRVPSO algorithm is coded in MATLAB R2016b and tested on a Windows computer with
Intel(R) Core(TM) i7-4770 CPU @3.40 GHz and 16.0 GB of RAM.

The parameters of PSO used in the tests have been chosen by running several tests with different
combinations. The preferred combinations of parameters are as follows:

• ω = 1.0, c1 = 0.5, c2 = 2.0
• Population size of swarms (agents) = 25 and
• Maximum iterations = 50

Parameters considered for collision avoidance strategy are as follows:

• ω = 1.0 and c1 =3.0, c2 = 4.0

These increased parameter values help the trapped particles to recover.
To evaluate the performance of the total framework, several tests on different cases are simulated.

A two dimensional 120 × 120, 100 × 110, and 300 × 300 square unit environment is considered as
the search space. Different types of working environments with different types of obstacles with
several numbers of task assignments are considered. For each configuration, all the simulations run
several times.

The solid circles represent the static obstacles and the hollow circles represent the dynamic
obstacles (Figures 4–14). The hollow circles’ sequence represents the trajectory of dynamic obstacles.
In Figures 4–7, the agents are represented as small circles. The rest of the figures show the tracked path
of the agents during path planning covering the target locations.

The dynamic obstacles can have the constant speed, or they can be randomly moving objects.
The diamond shapes represent the target locations that the agents need to visit. Different types of
scenarios for mission planning are considered below.

5.1. Static and Dynamic Environments with Various Number of Agents and Targets

Figures 4 and 5 show the path planning and task assignment problem for two agents in the
dynamic environments.

In Figure 3, the number of assigned targets is fifteen whereas in Figure 4 the number of assigned
targets is sixteen. In Figure 3 both agents come in the same goal position, and in Figure 4 agents reached
in different goal locations. Here, the task assignment problem is solved by using the CV model.

Figure 6 shows the path planning and task assignment problem of three agents in the static
environment. Here, the number of target locations is eight. Figure 7 shows the path planning of three
agents combined with task assignment problem in a complex environment. In Figure 7, the workspace
is surrounded by three static and two dynamic obstacles. From both figures, it is found that the NNS
model is capable of planning efficient paths for each agent by covering all the given target locations.

Robotics 2019, 8, 35 10 of 16

Robotics 2019, 8, x FOR PEER REVIEW 9 of 17

5. Simulation Results and Discussions

The SRVPSO algorithm is coded in MATLAB R2016b and tested on a Windows computer with

Intel(R) Core(TM) i7-4770 CPU @3.40 GHz and 16.0 GB of RAM.

The parameters of PSO used in the tests have been chosen by running several tests with different

combinations. The preferred combinations of parameters are as follows:

• ω = 1.0, c1 = 0.5, c2 = 2.0,

• Population size of swarms (agents) = 25 and

• Maximum iterations = 50

Parameters considered for collision avoidance strategy are as follows:

• ω = 1.0 and c1 =3.0, c2 = 4.0

These increased parameter values help the trapped particles to recover.

To evaluate the performance of the total framework, several tests on different cases are

simulated. A two dimensional 120 × 120, 100 × 110, and 300 × 300 square unit environment is

considered as the search space. Different types of working environments with different types of

obstacles with several numbers of task assignments are considered. For each configuration, all the

simulations run several times.

The solid circles represent the static obstacles and the hollow circles represent the dynamic

obstacles (Figures 4–14). The hollow circles’ sequence represents the trajectory of dynamic obstacles.

In Figure 4 to Figure 7, the agents are represented as small circles. The rest of the figures show the

tracked path of the agents during path planning covering the target locations.

The dynamic obstacles can have the constant speed, or they can be randomly moving objects.

The diamond shapes represent the target locations that the agents need to visit. Different types of

scenarios for mission planning are considered below.

5.1. Static and Dynamic Environments with Various Number of Agents and Targets

Figure 4 and Figure 5 show the path planning and task assignment problem for two agents in

the dynamic environments.

Figure 4. Path planning for two agent system with fifteen target locations. Figure 4. Path planning for two agent system with fifteen target locations.Robotics 2019, 8, x FOR PEER REVIEW 10 of 17

Figure 5. Path planning in dynamic environment with sixteen assigned target locations.

In Figure 3, the number of assigned targets is fifteen whereas in Figure 4 the number of assigned

targets is sixteen. In Figure 3 both agents come in the same goal position, and in Figure 4 agents reached

in different goal locations. Here, the task assignment problem is solved by using the CV model.

Figure 6 shows the path planning and task assignment problem of three agents in the static

environment. Here, the number of target locations is eight. Figure 7 shows the path planning of three

agents combined with task assignment problem in a complex environment. In Figure 7, the

workspace is surrounded by three static and two dynamic obstacles. From both figures, it is found

that the NNS model is capable of planning efficient paths for each agent by covering all the given

target locations.

Figure 6. Three agents path planning and task assignment in static environment.

Figure 5. Path planning in dynamic environment with sixteen assigned target locations.

Robotics 2019, 8, x FOR PEER REVIEW 10 of 17

Figure 5. Path planning in dynamic environment with sixteen assigned target locations.

In Figure 3, the number of assigned targets is fifteen whereas in Figure 4 the number of assigned

targets is sixteen. In Figure 3 both agents come in the same goal position, and in Figure 4 agents reached

in different goal locations. Here, the task assignment problem is solved by using the CV model.

Figure 6 shows the path planning and task assignment problem of three agents in the static

environment. Here, the number of target locations is eight. Figure 7 shows the path planning of three

agents combined with task assignment problem in a complex environment. In Figure 7, the

workspace is surrounded by three static and two dynamic obstacles. From both figures, it is found

that the NNS model is capable of planning efficient paths for each agent by covering all the given

target locations.

Figure 6. Three agents path planning and task assignment in static environment. Figure 6. Three agents path planning and task assignment in static environment.

Robotics 2019, 8, 35 11 of 16

Robotics 2019, 8, x FOR PEER REVIEW 11 of 17

Figure 7. Three agents path planning and task assignment in complex environment.

Figure 8 shows the path planning of five agents in static environment. Figure 9 shows the path

planning for three agents in complex environments. In both figures, agents complete their mission

by visiting 20 target locations.

From Figures 6–9, it is clear that the framework with the NNS model is applicable to the case

where the number of agents and targets can be given randomly. Moreover, by using this framework

agents can efficiently complete their mission in any types of environment.

Figure 8. Five agents path planning and task assignment in static environment.

Figure 7. Three agents path planning and task assignment in complex environment.

Figure 8 shows the path planning of five agents in static environment. Figure 9 shows the path
planning for three agents in complex environments. In both figures, agents complete their mission by
visiting 20 target locations.

Robotics 2019, 8, x FOR PEER REVIEW 11 of 17

Figure 7. Three agents path planning and task assignment in complex environment.

Figure 8 shows the path planning of five agents in static environment. Figure 9 shows the path

planning for three agents in complex environments. In both figures, agents complete their mission

by visiting 20 target locations.

From Figures 6–9, it is clear that the framework with the NNS model is applicable to the case

where the number of agents and targets can be given randomly. Moreover, by using this framework

agents can efficiently complete their mission in any types of environment.

Figure 8. Five agents path planning and task assignment in static environment. Figure 8. Five agents path planning and task assignment in static environment.Robotics 2019, 8, x FOR PEER REVIEW 12 of 17

Figure 9. Three agents path planning and task assignment in complex environment.

5.2. Breakdown of some Agents

The NNS-based framework can efficiently tackle some uncertainties such as the breakdown of

any agents on its way. Figures 10 and 11 show the path planning of 3 agents while visiting 20 target

locations in static environments. Both figures show the situation where agent-1, agent-2 and agent-3

are assigned with 20 tasks. Number of tasks for agent-1, agent-2 and agent-3 are seven, seven and

six, respectively.

Figure 10. Three agents path planning and task assignment without any break down in static environment.

Figure 9. Three agents path planning and task assignment in complex environment.

Robotics 2019, 8, 35 12 of 16

From Figures 6–9, it is clear that the framework with the NNS model is applicable to the case
where the number of agents and targets can be given randomly. Moreover, by using this framework
agents can efficiently complete their mission in any types of environment.

5.2. Breakdown of some Agents

The NNS-based framework can efficiently tackle some uncertainties such as the breakdown of
any agents on its way. Figures 10 and 11 show the path planning of 3 agents while visiting 20 target
locations in static environments. Both figures show the situation where agent-1, agent-2 and agent-3
are assigned with 20 tasks. Number of tasks for agent-1, agent-2 and agent-3 are seven, seven and
six, respectively.

In Figure 10 it is found that all three agents can successfully complete their assigned tasks, whereas
in Figure 11 it is found that agent-3 is unable to continue its journey after visiting three target locations.
However, the remaining two agents mutually complete the remaining tasks of agent-3. Finally, all the
assigned tasks are completed by the agents.

Figure 12 shows a sudden change of situation, where two of four agents are broken down at
some period of time. It describes the planning in a complex environment where the workspace is
surrounded by two static and four dynamic obstacles. From Figure 12 it is found that agent-3 and
agent-4 are not capable of doing their tasks after visiting one and four target locations, respectively.
However, the other agents complete the rest of the tasks efficiently.

Robotics 2019, 8, x FOR PEER REVIEW 12 of 17

Figure 9. Three agents path planning and task assignment in complex environment.

5.2. Breakdown of some Agents

The NNS-based framework can efficiently tackle some uncertainties such as the breakdown of

any agents on its way. Figures 10 and 11 show the path planning of 3 agents while visiting 20 target

locations in static environments. Both figures show the situation where agent-1, agent-2 and agent-3

are assigned with 20 tasks. Number of tasks for agent-1, agent-2 and agent-3 are seven, seven and

six, respectively.

Figure 10. Three agents path planning and task assignment without any break down in static environment. Figure 10. Three agents path planning and task assignment without any break down in static environment.Robotics 2019, 8, x FOR PEER REVIEW 13 of 17

Figure 11. Three agents path planning and task assignment where one agent broken down on the way

towards its targets.

In Figure 10 it is found that all three agents can successfully complete their assigned tasks,

whereas in Figure 11 it is found that agent-3 is unable to continue its journey after visiting three target

locations. However, the remaining two agents mutually complete the remaining tasks of agent-3.

Finally, all the assigned tasks are completed by the agents.

Figure 12. Four agents path planning and task assignment in dynamic environment where two agents

broke down on their way to the targets.

Figure 12 shows a sudden change of situation, where two of four agents are broken down at

some period of time. It describes the planning in a complex environment where the workspace is

surrounded by two static and four dynamic obstacles. From Figure 12 it is found that agent-3 and

agent-4 are not capable of doing their tasks after visiting one and four target locations, respectively.

However, the other agents complete the rest of the tasks efficiently.

5.3. Task Switching

The robustness of the NNS-based approach is that the agents are capable of switching their tasks.

One agent can switch some of its tasks to another agent that has already finished its own assigned task.

Figure 11. Three agents path planning and task assignment where one agent broken down on the way
towards its targets.

Robotics 2019, 8, 35 13 of 16

Robotics 2019, 8, x FOR PEER REVIEW 13 of 17

Figure 11. Three agents path planning and task assignment where one agent broken down on the way

towards its targets.

In Figure 10 it is found that all three agents can successfully complete their assigned tasks,

whereas in Figure 11 it is found that agent-3 is unable to continue its journey after visiting three target

locations. However, the remaining two agents mutually complete the remaining tasks of agent-3.

Finally, all the assigned tasks are completed by the agents.

Figure 12. Four agents path planning and task assignment in dynamic environment where two agents

broke down on their way to the targets.

Figure 12 shows a sudden change of situation, where two of four agents are broken down at

some period of time. It describes the planning in a complex environment where the workspace is

surrounded by two static and four dynamic obstacles. From Figure 12 it is found that agent-3 and

agent-4 are not capable of doing their tasks after visiting one and four target locations, respectively.

However, the other agents complete the rest of the tasks efficiently.

5.3. Task Switching

The robustness of the NNS-based approach is that the agents are capable of switching their tasks.

One agent can switch some of its tasks to another agent that has already finished its own assigned task.

Figure 12. Four agents path planning and task assignment in dynamic environment where two agents
broke down on their way to the targets.

5.3. Task Switching

The robustness of the NNS-based approach is that the agents are capable of switching their tasks.
One agent can switch some of its tasks to another agent that has already finished its own assigned task.

Figures 13 and 14 show the situation where two agents plan their paths by completing their
individual assigned tasks in a dynamic environment. The number of assigned tasks to agent-1 and
agent-2 is 16 and 9, respectively. The number of assigned target locations to agent-1 is more than
the number of assigned target locations to agent-2. Hence, agent-2 is able to finish all tasks before
agent-1 finishes its given tasks. In this case, agent-1 switch some of its remaining tasks to agent-2. This
will increase the effectiveness of the total framework. From Figure 14 it is found that task switching
occurred between two agents.
Robotics 2019, 8, x FOR PEER REVIEW 14 of 17

Figure 13. Two agents planning without any switching task.

Figure 14. Two agents planning with task switching.

Figures 13 and 14 show the situation where two agents plan their paths by completing their

individual assigned tasks in a dynamic environment. The number of assigned tasks to agent-1 and

agent-2 is 16 and 9, respectively. The number of assigned target locations to agent-1 is more than

the number of assigned target locations to agent-2. Hence, agent-2 is able to finish all tasks before

agent-1 finishes its given tasks. In this case, agent-1 switch some of its remaining tasks to agent-2.

This will increase the effectiveness of the total framework. From Figure 14 it is found that task

switching occurred between two agents.

6. Conclusion

This paper focuses on the investigation and comparison of the NNS and CV model frameworks,

for combining the task assignment with the path planning problem. These two frameworks are

capable of cooperatively controlling a multi-agent system without any collisions. From the results, it

is found that the NNS model shows better performance than CV model. Furthermore, NNS model is

more time efficient than the CV model. However, it is only possible at the expense of path length.

The NNS framework is robust. By using this model, agents are able to accomplish the given tasks by

visiting all the target locations even in complex environments. This approach can tackle

unpredictable situations such as the sudden breakdown of some agents. Furthermore, it can deal with

Figure 13. Two agents planning without any switching task.

Robotics 2019, 8, 35 14 of 16

Robotics 2019, 8, x FOR PEER REVIEW 14 of 17

Figure 13. Two agents planning without any switching task.

Figure 14. Two agents planning with task switching.

Figures 13 and 14 show the situation where two agents plan their paths by completing their

individual assigned tasks in a dynamic environment. The number of assigned tasks to agent-1 and

agent-2 is 16 and 9, respectively. The number of assigned target locations to agent-1 is more than

the number of assigned target locations to agent-2. Hence, agent-2 is able to finish all tasks before

agent-1 finishes its given tasks. In this case, agent-1 switch some of its remaining tasks to agent-2.

This will increase the effectiveness of the total framework. From Figure 14 it is found that task

switching occurred between two agents.

6. Conclusion

This paper focuses on the investigation and comparison of the NNS and CV model frameworks,

for combining the task assignment with the path planning problem. These two frameworks are

capable of cooperatively controlling a multi-agent system without any collisions. From the results, it

is found that the NNS model shows better performance than CV model. Furthermore, NNS model is

more time efficient than the CV model. However, it is only possible at the expense of path length.

The NNS framework is robust. By using this model, agents are able to accomplish the given tasks by

visiting all the target locations even in complex environments. This approach can tackle

unpredictable situations such as the sudden breakdown of some agents. Furthermore, it can deal with

Figure 14. Two agents planning with task switching.

6. Conclusions

This paper focuses on the investigation and comparison of the NNS and CV model frameworks,
for combining the task assignment with the path planning problem. These two frameworks are capable
of cooperatively controlling a multi-agent system without any collisions. From the results, it is found
that the NNS model shows better performance than CV model. Furthermore, NNS model is more
time efficient than the CV model. However, it is only possible at the expense of path length. The NNS
framework is robust. By using this model, agents are able to accomplish the given tasks by visiting all
the target locations even in complex environments. This approach can tackle unpredictable situations
such as the sudden breakdown of some agents. Furthermore, it can deal with the complicated situation
where the number of agents is less than the number of targets. In addition, if required, the NNS model
can increase the effectiveness of the total system by applying task switching phenomenon. That makes
the NNS framework highly time-efficient. The analysis shows that it is very easy to implement and
can be applied to any real-time environments.

Author Contributions: Conceptualization, S.B.; formal analysis, S.B.; investigation, S.B.; methodology, S.B.;
supervision, S.G.A.; validation, S.B.; writing, original draft, S.B.; writing, review and editing, S.B., S.G.A.
and M.A.G.

Funding: This research received no external funding.

Acknowledgments: The Research is supported by the Australian Government Training Program Scholarship.
Our heartfelt thanks to The University of New South Wales at the Australian Defence Force academy, Canberra, Australia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Maddula, T.; Minai, A.A.; Polycarpou, M.M. Multi-Target assignment and path planning for groups of UAVs.
In Recent Developments in Cooperative Control and Optimization; Springer: Boston, MA, USA, 2004; pp. 261–272.

2. Yu, Z.; Jinhai, L.; Guochang, G.; Rubo, Z.; Haiyan, Y. An implementation of evolutionary computation for
path planning of cooperative mobile robots. In Proceedings of the 4th World Congress on Intelligent Control
and Automation (Cat. No.02EX527), Shanghai, China, 10–14 June 2002.

3. Habib, D.; Jamal, H.; Khan, S.A. Employing multiple unmanned aerial vehicles for co-operative path planning.
Int. J. Adv. Rob. Syst. 2013, 10, 235. [CrossRef]

4. Wang, D.; Wang, H.; Liu, L. Unknown environment exploration of multirobot system with the FORDPSO.
Swarm Evol. Comput. 2016, 26, 157–174. [CrossRef]

http://dx.doi.org/10.5772/56286
http://dx.doi.org/10.1016/j.swevo.2015.09.004

Robotics 2019, 8, 35 15 of 16

5. Zadeh, S.M.; MW Powers, D.; Sammut, K.; Yazdani, A. Toward efficient task assignment and motion planning
for large-scale underwater missions. Int. J. Adv. Rob. Syst. 2016, 13. [CrossRef]

6. Francis, S.L.X.; Anavatti, S.G.; Garratt, M. Real time cooperative path planning for multi autonomous
vehicles. In Proceedings of the International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Mysore, India, 22–25 August 2013; pp. 1053–1057.

7. Moon, S.; Shim, D.H.; Oh, E. Cooperative Task Assignment and Path Planning for Multiple UAVs. In Handbook
of Unmanned Aerial Vehicles; Springer: Houten, The Netherlands, 2015; pp. 1547–1576.

8. Sung, C.; Ayanian, N.; Rus, D. Improving the performance of multi-robot systems by task switching.
In Proceedings of the Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 2999–3006.

9. Ansuategui, A.; Arruti, A.; Susperregi, L.; Yurramendi, Y.; Jauregi, E.; Lazkano, E.; Sierra, B. Robot trajectories
comparison: A statistical approach. Sci. World J. 2014, 2014, 298462. [CrossRef] [PubMed]

10. Biswas, S.; Anavatti, S.G.; Garratt, M.A. Nearest-neighbour based task allocation with multi-agent path
planning in dynamic environments. In Proceedings of the International Conference on Advance Mechatronics,
Intelligent Manufacture and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 12–14 October 2017.

11. Biswas, S.; Anavatti, S.G.; Garratt, M.A. Particle swarm optimization based co-operative task assignment
and path planning for multi-agent system. In Proceedings of the IEEE Symposium Series on Computational
Intelligence (IEEE SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 45–50.

12. Latombe, J. Robot Motion Planning; Kluwer Academic Publishers: Norwell, MA, USA, 1991.
13. Lavalle, S. Planning Algorithms; Cambridge University Press: New York, NY, USA, 2006.
14. Hart, P.E.; Nilson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.

IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [CrossRef]
15. Redding, J.; Amin, J.; Boskovic, J.; Kang, Y.; Hedrick, K. A real-time obstacle detection and reactive path

planning system for autonomous small-scale helicopters. In Proceedings of the AIAA Guidance, Navigation
and Control Conference and Exhibit, Hilton Head, SC, USA, 2007.

16. Yang, K.; Gan, S.; Sukkarieh, S. An efficient path planning and control algorithm for RUAV’s in unknown
and cluttered environments. In Proceedings of the 2nd International Symposium on UAVs, Reno, NV, USA,
8–10 June 2009; pp. 101–122.

17. Van Den Berg, J.; Snoeyink, J.; Lin, M.C.; Manocha, D. Centralized path planning for multiple robots: Optimal
decoupling into sequential plans. In Robotics: Science and Systems; MIT Press: London, UK, 2010.

18. Clark, C.M.; Rock, S.M.; Latombe, J.-C. Motion planning for multiple mobile robot systems using
dynamic networks. In Proceedings of the IEEE International Conference on Robotics and Automation
(Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; pp. 4222–4227.

19. Cascone, A.; D’Apice, C.; Piccoli, B.; Rarità, L. Circulation of car traffic in congested urban areas.
Commun. Math. Sci. 2008, 6, 765–784. [CrossRef]

20. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

21. Wang, Y.; Chen, P.; Jin, Y. Trajectory planning for an Unmanned ground vehicle group using augmented
particle swarm optimization in a dynamic environment. In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 4341–4346.

22. Qiaorong, Z.; Guochang, G. Path planning based on improved binary particle swarm optimization algorithm.
In Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China,
21–24 September 2008; pp. 462–466.

23. Eberhart, R.C.; Shi, Y. Comparison between genetic algorithm and particle swarm optimization.
In Proceedings of the International Conference on Evolutionary Programming, San Diego, CA, USA,
25–27 March 1998.

24. Ma, Q.; Lei, X.; Zhang, Q. Mobile robot path planning with complex constraints based on the second order
oscillating particle swarm optimization algorithm. In Proceedings of the WRI World Congress on Computer
Science and Information Engineering, Los Angeles, CA, USA, 31 March–2 April 2009; pp. 244–248.

25. Biswas, S.; Anavatti, S.G.; Garratt, M.A. Obstacle avoidance for multi-agent path planning based on vectorized
particle swarm optimization. In Intelligent and Evolutionary Systems; Springer: Cham, Switzerland, 2016;
pp. 61–74.

26. Zhang, Z.; Zhao, Z. A multiple mobile robots path planning algorithm based on A-star and Dijkstra algorithm.
Int. J. Smart Home 2014, 8, 75–86. [CrossRef]

http://dx.doi.org/10.1177/1729881416657974
http://dx.doi.org/10.1155/2014/298462
http://www.ncbi.nlm.nih.gov/pubmed/25525618
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.4310/CMS.2008.v6.n3.a12
http://dx.doi.org/10.14257/ijsh.2014.8.3.07

Robotics 2019, 8, 35 16 of 16

27. Peng, J.H.; Li, I.H.; Chien, Y.H.; Hsu, C.C.; Wang, W.Y. Multi-robot path planning based on improved D* Lite
Algorithm. In Proceedings of the IEEE 12th International Conference on Networking, Sensing and Control,
Taipei, Taiwan, 9–11 April 2015; pp. 350–353.

28. Brumitt, B.L.; Stentz, A. GRAMMPS: A generalized mission planner for multiple mobile robots in
unstructured environments. In Proceedings of the IEEE International Conference on Robotics and Automation
(Cat. No.98CH36146), Leuven, Belgium, 20–20 May 1998; pp. 1564–1571.

29. Biswas, S.; Anavatti, S.G.; Garratt, M.A.; Pratama, M. Simultaneous replanning with vectorized particle
swarm optimization algorithm. In Proceedings of the 14th International Conference on Control, Automation,
Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016.

30. Parsons, D.; Canny, J. A Motion Planner for Multiple Mobile Robots. In Proceedings of the IEEE International
Conference on Robotics and Automation, Cincinnati, OH, USA, 13–18 May 1990.

31. Kwok, K.S.; Driessen, B.J.; Phillips, C.A.; Tovey, C.A. Analyzing the multiple-target-multiple-agent scenario
using optimal assignment algorithms. J. Intell. Rob. Syst. 2002, 35, 111–122. [CrossRef]

32. Akkiraju, R.; Keskinocak, P.; Murthy, S.; Wu, F. An agent-based approach for scheduling multiple machines.
Appl. Intell. 2001, 14, 135–144. [CrossRef]

33. Noreils, F.R. Toward a robot architecture integrating cooperation between mobile robots: Application to
indoor environment. Int. J. Rob. Res. 1993, 12, 79–98. [CrossRef]

34. Berhault, M.; Huang, H.; Keskinocak, P.; Koenig, S.; Elmaghraby, W.; Griffin, P.; Kleywegt, A. Robot
exploration with combinatorial auctions. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA, 27–31 October 2003.

35. Jan, M.; Anavatti, S.; Biswas, S. Path planning for multi vehicle autonomous swarms in dynamic environment.
In Proceedings of the Ninth International Conference on Advanced Computational Intelligence (ICACI),
Doha, Qatar, 4–6 February 2017.

36. Moon, S.; Oh, E.; Shim, D.H. An integral framework of task assignment and path planning for multiple
unmanned aerial vehicles in dynamic environments. J. Intell. Rob. Syst. 2013, 70, 303–313. [CrossRef]

37. Nosrati, M.; Karim, R.; Hasanvand, H.A. Investigation of the *(star) search algorithms: Characteristics,
methods and approaches. World Appl. Program. 2012, 2, 251–256.

38. Zhu, A.; Yang, S.X. A neural network approach to dynamic task assignment of multirobots. IEEE Trans.
Neural Networks 2006, 17, 1278–1287. [PubMed]

39. Omkar, S.N.; Mudigere, D.; Naik, G.N.; Gopalakrishnan, S. Vector evaluated particle swarm optimization
(VEPSO) for multi-objective design optimization of composite structures. Comput. Struct. 2008, 86, 1–14.
[CrossRef]

40. Landry, C.; Gerdts, M.; Henrion, R.; Hömberg, D. Path-planning with collision avoidance in automotive
industry. In Proceedings of the IFIP Conference on System Modeling and Optimization, Sophia Antipolis,
France, 29 June–3 July 2011.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1020238115592
http://dx.doi.org/10.1023/A:1008363208898
http://dx.doi.org/10.1177/027836499301200106
http://dx.doi.org/10.1007/s10846-012-9740-3
http://www.ncbi.nlm.nih.gov/pubmed/17001987
http://dx.doi.org/10.1016/j.compstruc.2007.06.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Problem Description
	Solution Approaches
	Path Planning Layer
	Task Allocation Layer
	Compromise View (CV) Model
	Nearest-Neighbour Search (NNS) Model
	Comparison between CV Model and NNS Model

	Collision Avoidance Layer

	Simulation Results and Discussions
	Static and Dynamic Environments with Various Number of Agents and Targets
	Breakdown of some Agents
	Task Switching

	Conclusions
	References

