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Abstract: This article describes an extremely simple controller as a minimal example of decentralized
motor coordination and gait generation. The control strategy is based on the stretch reflex in animals
and requires no mutual communication or detailed body models. Despite such simplicity, each
controller can sync itself and generate various resonant oscillation by only physical interaction
through whole body dynamics. To evaluate this controller, we conduct some simulations with
a linear spring–mass–damper system and a nonlinear legged robot model with multiple controllers.
The former shows an adaptability to change in vibration frequency and the body parameter. In the
latter, first we show a limitation of the proposed method due to the nonlinearity, and an alternative
method is proposed. Finally, the simple controllers generate versatile gaits just by choosing a control
parameter of “speeding up or down,” and the gait generation can be explained by the controllers–body
integration based on resonant oscillation.

Keywords: decentralized autonomous control; reflex; resonance; vibration; oscillation; legged robot;
gait generation

1. Introduction

Animals can adjust their motion to their environmental conditions. As typically observed in their
locomotive behavior, they synchronize multiple periodic motions of the limbs and the body to each
other, and make them adapt to the external force from the ground. This topic has long been discussed
by biologists [1,2], including a well-known result showing that horses select a gait that is suitable for
their speed [3] in terms of energy consumption. On the other hand, in the field of robotics, adaptive
motor coordination in animals still requires study.

An important keyword to discuss this topic is reflex. Reflex is an involuntary motor control,
which is mainly used for relatively quick and simple motion tasks, while voluntary control is slower
but suitable for complicated tasks. Research shows that this reflex control contributes to various quick
adaptations. In particular, a classic study using decerebrated cats [4] showed that the reflex control
provides functions to adapt a muscle activity to changes in a load [5] and stabilizes a gait pattern
during walking [6]. The reflex also contributes to human locomotions [7], in terms of stability during
standing [8], walking [9], and hopping [10–12].

As an artificial scheme to generate rhythmic patterns, the idea of central pattern generators
(CPGs) [13] were proposed based on a model of neural circuits in the spinal cord. CPGs generate
various locomotor patterns by designing a network connection between neuron modules.

Moreover, Owaki et al. [14] proposed a simple decentralized control scheme that does not
require any inter-neural communication. This controller allowed versatile gait transitions by exploiting
a physical (non-neural) inter-limb interaction. This result suggests that physical interaction between
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the independent controllers through body dynamics is important for the generation of synchronized
periodic motions.

When it comes to body physics, studies of a passive dynamic walker [15,16] demonstrated that
the mechanical dynamics of the robot leg plays a large part in gait stability. A biped walker [17] and
passive quadrupeds [18,19] achieved gait transitions by only the body dynamics. Moreover, some
results showed the functions of partial body dynamics for legged locomotion, including swing-leg
retraction [20], compliant legs [21,22], and torsos [23]. Although the functions of partial body dynamics
in animals were suggested in these studies, whole body dynamics is still entangled.

An alternative approach based on free vibration was taken in order to deal with whole body
dynamics explicitly. Inspired by the experiment with horses [3], a study [24] suggested that there is
a correspondence between the gaits of actual horses and the free vibration modes of a horse model.
In this paradigm, some authors [25,26] proposed a methodology to control the whole body motion
based on free vibration. Their robots had a simple elastic body and a vibration motor that achieves an
energy-efficient hopping motion by exploiting the free vibration mode of the robot body.

In this paper, we propose an extremely simple controller based on reflexes and investigate the
controllers–body integration based on resonant oscillation. This paper shows that the simple controller
can automatically generate versatile motion patterns, as animals do. In our approach, multiple
controllers are decentralized in each part of the robot body as a control module. Each module
is composed of an actuator part, which is modeled as a linear actuator with a spring–damper,
and a controller part, which provides oscillation and a reflex function. If the controller module
is subject to an external force from the robot body and environment, then the controller senses an
internal force in the spring–damper, and it adjusts the natural length of the actuator part. This control
strategy is based on the stretch reflex in animals that functions to maintain a current muscle length
when the muscle senses internal force. To model this reflex function simply, the proposed controller
maintains a current length of the linear actuator by delaying the oscillation speed according to the
magnitude of the internal force in the actuator. This controller syncs the multiple controllers and the
whole body dynamics with the resonant modes by only physical interaction. Moreover, by selecting
a scalar parameter of the controllers, seamless transitions between the resonant modes are achieved.
To evaluate this method, we conduct some simulations with linear and nonlinear systems, which
interact with an external environment. The first simulation is with a linear spring–mass–damper system
that has two reflex controllers, and the second is with a quadruped legged robot that is modeled in
a sagittal plane [27]. Finally, the simple controllers generate versatile gaits just by choosing a control
parameter of “speeding up or down.”

2. Reflex Controller for Resonance Mode Excitation

This article describes an extremely simple controller to achieve the controllers–body integration
based on resonant oscillation (Figure 1). Let multiple controllers be decentralized in each part
of the robot body as a control module. Figure 2 illustrates the structure of the proposed control
module. Each module is composed of an actuator part, which is modeled as a linear actuator with
a spring–damper, and a controller part, which provides oscillation and a reflex function. If the controller
module is subjected to an external force from the robot body and environment, then the controller
senses an internal force in the spring–damper and adjusts the natural length of the actuator part.
This control strategy is based on the stretch reflex: a kind of involuntary control circuit in animals.
When an animal muscle receives a force from the body or the external environment, the stretch reflex
functions to maintain a current muscle length. To model this reflex function simply, the proposed
controller maintains a current length of the linear actuator by delaying the oscillation speed according
to the magnitude of the internal force in the actuator.



Robotics 2018, 7, 23 3 of 13

Oscillation
+

Local Reflex
Adjustment

Robot Body

Environment

Syncronize
through Physical

Interaction

Time

M
o

ti
o

n

Oscillation
+

Local Reflex
Adjustment

Time

M
o

ti
o

n

Figure 1. Concept of the proposed reflex controller. The simple and fast-response reflex controllers in
each part of the robot allows the robot to sync itself by only physical interaction through the whole
body dynamics.
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Figure 2. Overview of the proposed controller module. Each module is composed of an actuator part,
which is modeled as a linear actuator with a spring–damper, and a controller part, which provides
oscillation and a reflex function. If the controller module is subjected to an external force from the robot
body and environment, then the controller senses an internal force in the spring–damper and adjusts
the natural length of the actuator part.
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The proposed control strategy in the i-th module is written as

φ̇i(t) = ω − ε|Ni(t)| (1)

where φi(t) is the phase of the ith controller, ω > 0 is the intrinsic angular velocity, and ε > 0 is sensory
gain. Ni(t) is the internal force in the corresponding linear actuator.

Each linear actuator i is modeled as a spring–damper, so the internal force N(t) in the actuator
and the actuator length xi(t) obey the following equation:

Ni(t) = −ki
(
xi(t)− Li(t)

)
− ci

(
ẋi(t)− L̇i(t)

)
(2)

where ki and ci denote the viscoelastic constants. Each controller i drives the natural length Li(t) of
the actuator

Li(t) = L0 − Asin
(
φi(t)

)
. (3)

Figure 3 illustrates the feedback effect in the proposed controller. When the controller does not
sense forces Ni(t) = 0, it oscillates the body in a constant frequency ω by driving the linear actuator.
If the controller senses a non-zero internal force Ni(t) 6= 0 in the spring–damper, then the local feedback
term −ε|Ni(t)| is activated, and it slows down the oscillation. To prevent the reverse rotation of the
phase φi(t), we determine the sensory gain so as to satisfy a condition ε > ω /Nmax with an expected
upper limit of the internal force Nmax. In this paper, the expected upper limit of the internal force Nmax

was estimated through trial and error.

External Force

External Force

Oscillation

Slow Down

Figure 3. Feedback effect in the proposed controller. When the controller does not sense forces,
it oscillates the body in a constant frequency by driving the linear actuator; however, if the controller
senses a non-zero internal force in the spring–damper, then it slows down the oscillation.
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In other words, the proposed controller expressed by Equation (1) delays the phases when there
are unmatched forces to the actuator movement. As a result, the controllers converge on a steady state
that decreases the unmatched forces in each actuator.

3. Linear Spring–Mass–Damper System

This section describes simulations to investigate fundamental features of the proposed controller.
The simulation setting is illustrated in Figure 4. The system is composed of three masses and four

linear spring–dampers and has three vibration modes corresponding to each resonant frequency. In this
simulation, we show an adaptability to changes in the vibration frequency and the body parameter.
We compare the analytically derived resonant frequencies and the simulated ones.

Controller Controller

Figure 4. Simulation setting of spring–mass–damper system. Two control modules (red spring–
dampers) are in the left and right. Passive springs–dampers (black spring–dampers) are in the middle
that transmit the physical interaction.

3.1. Resonance Frequency Analysis

For simplicity, we assume that the spring constants of all the springs, the natural length, and the
weights of the masses are equal (k1 = k2 = k3 = k4 = k, L1 = L2 = L3 = L4 = L0, m1 = m2 = m3 = m),
and the effect of the damper is sufficiently small. Let a new state variable zi(t) = xi(t)− L0. Then the
model in Figure 4 is formulated as follows: z̈1(t)

z̈2(t)
z̈3(t)

 =

 −2k/m k/m 0
k/m −2k/m k/m

0 k/m −2k/m


 z1(t)

z2(t)
z3(t)

 . (4)

By using eigenvalue analysis of the state matrix of the model expressed by Equation (4),
the resonant frequencies of the mechanical dynamics ω1 ≤ ω2 ≤ ω3 can be estimated as

ω1 =

√
(2−

√
2)k

m
, ω2 =

√
2k
m

, ω3 =

√
(2 +

√
2)k

m
. (5)

Next, we show some simulation results that the proposed controller excites these modes adaptively
and automatically.

3.2. Simulations of Resonance Mode Excitation

We conducted two simulations with two different spring constants k = 1, 2 N/m. In each case,
simulations are performed iteratively by changing the initial phase difference φ1(0)− φ2(0) and the
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intrinsic angular velocity ω rad/s. The control input is given by Equation (1), and we set the following
parameters equal for all spring–dampers and actuators:

ε = 2, c = 0.1 Ns/m, L0 = 1 m, A = 0.1 m, m = 1 kg. (6)

We set the initial states of each controller

φ1(0) = 0 rad, φ̇1(0) = 0, φ̇2(0) = 0 rad/s (7)

and change φ2(0) in [0, π] rad, and ω in [0, 5] rad/s.
Figure 5a,b show the simulation results with different spring constants k = 1, 2. The color of

bullet denotes the phase difference of converged solutions of two controllers. The blue bullet denotes
that the solutions of the two controllers are in an in-phase manner, and the red bullet denotes that
the solutions are in an anti-phase manner. The triangles at the top of the graph indicates the resonant
frequencies ω1, ω2, and ω3 that is analytically derived. In these figures, the phase differences of
converged solutions change as the intrinsic angular velocity ω increases. In Figure 5a with k = 1,
the first transition occurs at around ω = 1.2, and the second is at around ω = 1.8. In Figure 5b with
k = 2, the first is at around ω = 1.8, and the second is at around ω = 2.8. Each solution converged to
the resonant modes and achieves transitions between the modes:

1st Mode→ 2nd Mode→ 3rd Mode.

as illustrated in the upper of Figure 5a,b.
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Figure 5. Simulation result of the spring–mass system. Figure 5a shows a result with k = 1,
and Figure 5b shows a result with k = 2. The blue bullet denotes that the solutions of the two
controllers are in an in-phase manner, and the red bullet are the solutions in an anti-phase manner. The
triangles at the top of the graph indicates the resonant frequencies ω1, ω2, and ω3 that is computed in
advance by mathematical analysis.

3.3. Discussion of the Simulation

As shown in Figure 5a,b, the proposed controller generated the resonant modes and achieved
the transitions between the modes automatically. Table 1 shows the analytically derived resonant
frequencies and the simulated ones. Based on the tables, the three modes in Figure 5a,b were excited
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around the analytically derived frequencies ω1, ω2, and ω3. This result shows that the proposed
controller expressed by Equation (1) automatically generates versatile resonant modes by selecting
a scholar control parameter.

However, in Figure 5a,b, at small or large frequencies, the solutions depends on the initial values.
These failures were due to the small sensor values. At small frequencies, the internal forces for feedback
were small due to the slow movement of the masses, and at large frequencies, the internal forces
were also small due to the low amplitude motion due to the gain characteristic of the mechanical
structure. Moreover, in Table 1a,b, as the frequency increased, particularly in the 3rd mode, the
analytical and simulated results were in disagreement. It is assumed that these disagreement are due
to the assumption that the natural length is constant in the analysis. In the simulation, the frequency
of the output motion becomes smaller than ω because the controller has a feedback term that delays
the phase rotation.

Table 1. Analysis vs. simulation.

k = 1

1st mode 2nd mode 3rd mode
Analysis ω1 = 0.77 ω2 = 1.41 ω3 = 1.85

Simulation ω1 = [0.6, 0.8] ω2 = [1.4, 1.6] ω3 = [2, 2.6]

k = 2

1st Mode 2nd Mode 3rd Mode
Analysis ω1 = 1.08 ω2 = 2 ω3 = 2.61

Simulation ω1 = [0.4, 1.4] ω2 = [2.2, 2.4] ω3 = [3, 3.6]

4. Gait Generation in Legged Robot Model

This section demonstrates some simulations with a simple legged robot model to evaluate the
proposed controller.

The model of the robot is the simplified sagittal plane model for a quadruped robot [27], which
has two known resonant modes. We show that the simple robot model with two proposed control
modules can generate versatile gaits that can be explained by resonant oscillation.

4.1. Model Formulation

Figure 6 shows an overview of a simplified legged robot model moving on the vertical (sagittal)
plane. We adopt a simple model that has two known resonant modes for a mode analysis as mentioned
later. This model is based on the simplified sagittal plane model [27], which can be considered as
a quadruped robot model in two-dimensional space (side view). This model composed of fore and
hind springy legs, and a rigid spine that joins these legs. Although the robot is quadruped, we assume
that the motions of the left legs is mirrored to the right ones, and the legs are always perpendicular to
the ground. The model is formulated as follows:

Mẍg(t) = NF(t) + NH(t)−Mg (8)

Iθ̈(t) = −d
2
{NF(t)− NH(t)}cosθ(t) (9)

where M and I denotes the body mass and moment of inertia, d is the body length, and g is the gravity
constant. θ is the robot posture, and xg is the position of the center of gravity. xg and the hip heights xF

and xH satisfy the following conditions:
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xF(t) = xg(t) +
d
2

sinθ(t) (10)

xH(t) = xg(t)−
d
2

sinθ(t). (11)

The internal forces in the legs NF and NH are computed as follows:

NF(t) = h
(
−k
(

xF(t)− LF(t)
)
− c
(
ẋF(t)− L̇F(t)

))
(12)

NH(t) = h
(
−k
(

xH(t)− LH(t)
)
− c
(
ẋH(t)− L̇H(t)

))
(13)

where we assume that the viscoelastic parameters k and c are identical in each leg.

Fore

Hind

Controller

Controller

Figure 6. The simplified sagittal plane model [27] of a quadruped robot. The model assumes that the
motions of the left side of the body is mirrored to right. The proposed controller are applied to the fore
and hind legs.

To describe the flight phase of legs, we defined a switching function

h(∗) =
{

0 (flight phase)
∗ (stance phase)

. (14)

The natural length of fore and hind springy legs LF, LH are as follows:

LF(t) = L0 − Asin
(
φF(t)

)
, (15)

LH(t) = L0 − Asin
(
φH(t)

)
. (16)

The phases of the legs φF, φH are determined by two controllers as follows:

φ̇F(t) = ω − ε|NF(t)| (17)

φ̇H(t) = ω − ε|NH(t)|. (18)
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Here, we assume that the mass of the feet tip is sufficiently small. Thus, the internal forces NF

and NH in each leg are zero when the corresponding leg leaves from the ground.

4.2. Resonance Frequency Analysis

In this section, we adopt a few assumptions for the resonant frequency analysis. We assume that
the feet of the robot model are fixed on the ground, all of the natural lengths are equal (LF = LH = L0),
and the effect of the damper is sufficiently small. Assuming that the infinitesimal angle θ, we have
a linearized robot model around the origin

NF(t) ' −k
(
(xg(t) +

d
2

θ(t))− L0
)
, NH(t) ' −k

(
(xg(t)−

d
2

θ(t))− L0
)

cosθ(t) ' 1, sinθ(t) ' θ(t). (19)

Let a new state variable zg(t) = xg(t)− L0. Based on Equations (9) and (19), the model in Figure 4
is formulated as follows:

Mz̈g(t) = −k(zg(t) +
d
2

θ(t))− k(zg(t)−
d
2

θ(t))−Mg (20)

Iθ̈(t) =
d
2
{k(zg(t) +

d
2

θ(t))− k(zg(t)−
d
2

θ(t))}. (21)

By using eigenvalue analysis of the state matrix of the model expressed by Equations (20) and (21),
the resonant frequencies can be estimated as

ω1 =

√
2k
M

, ω2 =

√
kd2

2I
=

√
6k
M

(22)

where we assume that the rigid spine is a uniform rod (I = 1
12 Md2). The frequency ω1 corresponds to

the pronk gait, the fore and hind legs are in an in-phase manner, and the ω2 is the bound gait, the fore
and hind legs are in an anti-phase manner.

4.3. Simulations of Resonance Mode Excitation

Finally, we show the simulations with the legged robot model.
The simulations are performed iteratively by changing the initial phase difference φ1(0)− φ2(0)

and the intrinsic angular velocity ω. We set the following parameters equal for all spring–dampers
and actuators:

ε = 2, k = 500 N/m, c = 10 Ns/m (23)

L0 = 0.1 m, A = 0.3 m, d = 0.2 m, M = 0.5 kg. (24)

We set the initial states of each controller

φ1(0) = 0 rad, φ̇1(0) = 0, φ̇2(0) = 0 rad/s, (25)

and change φ2(0) in [0, π] rad and ω in [0, 80] rad/s.
Figure 7a shows the simulation result. Similar to the previous simulations, the color of the bullet

denotes the phase difference of the converged solutions of the two controllers. The blue bullet denotes
the solutions that the two legs are in an in-phase manner, and the red bullet are the solutions in an
anti-phase manner.

From this result, we observe that the resulting phase difference is sensitive to the choice of
the initial values—not to the choice of the control parameter ω. This result means that there is no
steady limit cycle or gaits. Now, let us consider selecting the motion pattern by choosing the control
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parameter ω and make it insensitive to the initial values (make the limit cycle steady). For this purpose,
we propose a modification to the controller in the next subsection.
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(b) with only the spring force feedback
φ̇∗(t) = ω − ε|k∗

(
x∗(t)− L∗(t)

)
|

Figure 7. Simulation result of the legged robot model. Figure 7a shows the simulation result with the
spring-damper force feedback, and Figure 7b shows the simulation result with the modified controller
using only spring force feedback. The blue bullet denotes the solutions that the two legs are in an
in-phase manner, and the red bullet denotes that the solutions are in an anti-phase manner. The triangles
at the top of the graph indicates the resonant frequencies ω1 and ω2, which are analytically derived.

4.4. Modification to the Controller

Based on the result above, we apply an modification to the controllers. In this modification,
we alter the sensory information (the spring–damper force in Equation (18)) to the spring force
as follows:

φ̇∗(t) = ω − ε|k∗
(
x∗(t)− L∗(t)

)
|. (26)

Although this modification was discovered by chance, some evidence in conventional research
agrees with this result (see the discussion).

Figure 7b shows the result with the modified controller. The triangles at the top of graph indicates
the resonant frequencies ω1 and ω2 that are analytically derived. Each solution converged to the
resonant modes, as illustrated in the upper figure. As shown in these figures, the phase differences
of converged solutions change as the intrinsic angular velocity ω increases. From the upper figure,
the in-phase gait is generated in ω = [0, 28], and the anti-phase is generated in ω = [32, 50]. In other
words, at around ω = 30, the following gait transition occurs:

Pronk→ Bound.

4.5. Discussion of the Simulation

Based on Figure 7a, when we use the spring–damper force feedback, we could not generate steady
limit cycles. Based on Figure 7b, the proposed controller achieved steady gait generation and transition
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automatically. However, at small frequencies ω = [0, 16], the solutions depend on the initial values for
the same reasons as Figure 5. This model might explain the mechanism for the gait transition between
the pronk and bound observed in gazelles.

By comparing these two results, Figure 7a,b, in the legged model (a nonlinear system with the
switching between the the swing and stance states), the spring force feedback is more effective than
the spring–damper force feedback for steady gait generation. Although this modification was found
heuristically, there is evidence in conventional research that agrees with our result. In biology, it is
well known that the muscle spindle receptor, which contributes to the stretch reflex in animals, has
two feedback pathways: one sends muscle displacement information, and the other one sends muscle
velocity [28]. Related to the function of the pathways, one study [29] showed that the sensitivity
of the muscle displacement was mainly activated during periodic motions in walking and running
cats. In contrast, the receptor for the muscle velocity was deactivated during these periodic motions.
Similar agreement was found in our recent study [30]. In that study, we constructed a biological model
of the stretch reflex circuit and confirmed that the sensory feedback of the muscle displacement
generates resonant modes. These results suggest that the displacement feedback is effective in
generating steady resonant modes.

Table 2 shows the resonant frequencies, which were analytically derived, and the excited
frequencies in the simulations. There are large disagreements between the analytical and simulated
frequencies: the simulated frequencies are almost half of the analytical ones. These disagreements are
due to the modeling error based on the assumption that the feet of the robot model are fixed on the
ground: the flight phase was not considered in the analysis. A similar phenomenon has also been
reported in [26].

Table 2. Analysis vs. simulation.

1st Mode 2nd Mode

Analysis ω1 = 44.7 ω2 = 77.5
Simulation ω1 = [20, 24] ω2 = [36, 44]

5. Discussion

From the results above, an extremely simple controller based on reflex can automatically generate
versatile motion patterns. This phenomenon can be explained by the controllers–body integration
based on resonant oscillation.

The results in this paper provide a few suggestion for understanding animals’ motor function.
First, the results suggest that the control from the upper central is not necessary required, and the
physical interaction of the local reflex controllers are crucial to excite the periodic motions as
resonant modes. Second, for generating the synchronized periodic motions, the muscle displacement
information is more important than the muscle velocity information. The large amplitude motion
at resonant modes helps to increase stride length. These results suggest that the simple and local
reflex strategy in animals contribute a motion pattern generation by exploiting the physical interaction
through the body dynamics.

Compared with a conventional controller [14] that formulates as follows:

φ̇i(t) = ω − εNi(t)cosφi(t), (27)

the proposal (1) does not use any information of current phase φi. Related to this approach, our
conventional controller [31], which uses the current phase φi, also generates the various resonant modes.
Although various experiments show that actual animals use the current phase information φi during
walking (reactions to ground reaction forces are changed according to the leg phase), this response is the
behavior of whole systems, including neural circuits and inter-limb neural connection. The proposed
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method without the current phase information can explain the fundamental stabilization ability of the
reflex strategy itself.

6. Conclusions

In this paper, we propose an extremely simple controller based on reflexes and investigate the
controllers–body integration based on resonant oscillation. This paper shows that the simple controller
can automatically generate versatile motion patterns, as animals do. This reflex controller syncs
the multiple controllers and the whole body dynamics with the resonant modes by only physical
interaction. In the simulations, the spring–mass–damper system shows an adaptability to changes in
the vibration frequency and the body parameter. By selecting a frequency of the controller, seamless
transitions between the resonant modes are achieved. In the legged robot model, we show a limitation
of the proposed method due to the nonlinearity, and an alternative method to replace the sensory
value with a spring force is proposed. Finally, the robot model with the simple controller generates the
gazelles’ gaits just by choosing a control parameter of “speeding up or down.” This result suggest that
the muscle displacement information is more important than the muscle velocity information for gait
generation and resonant mode excitation.
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