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Abstract: Teleoperated mobile robots, equipped with object manipulation capabilities, provide safe
means for executing dangerous tasks in hazardous environments without putting humans at risk.
However, mainly due to a communication delay, complex operator interfaces and insufficient
Situational Awareness (SA), the task productivity of telerobots remains inferior to human workers.
This paper addresses the shortcomings of telerobots by proposing a combined approach of
(i) a scalable and intuitive operator interface with gestural and verbal input, (ii) improved Situational
Awareness (SA) through sensor fusion according to documented best practices, (iii) integrated
virtual fixtures for task simplification and minimizing the operator’s cognitive burden and (iv)
integrated semiautonomous behaviors that further reduce cognitive burden and negate the impact
of communication delays, execution latency and/or failures. The proposed teleoperation system,
TeMoto, is implemented using ROS (Robot Operating System) to ensure hardware agnosticism,
extensibility and community access. The operator’s command interface consists of a Leap Motion
Controller for hand tracking, Griffin PowerMate USB as turn knob for scaling and a microphone for
speech input. TeMoto is evaluated on multiple robots including two mobile manipulator platforms.
In addition to standard, task-specific evaluation techniques (completion time, user studies, number of
steps, etc.)—which are platform and task dependent and thus difficult to scale—this paper presents
additional metrics for evaluating the user interface including task-independent criteria for measuring
generalized (i) task completion efficiency and (ii) operator context switching.

Keywords: teleoperation; human-robot interface; supervisory control; natural language input;
gesture input

1. Introduction

Telerobotics have successfully proven useful in numerous applications, allowing operators to
execute tasks from a safe distance. But many tasks are still completed by human operators despite the
presence of hazards as well as the costs associated with protective gear, training and additional waste
disposal. Workers still have performance and cognitive advantages over remote systems including
work-rate, adaptability, dexterity and minimal delay and latency issues during task planning and
execution. These advantages justify this choice in all but the most dangerous of environments.

The application domain for effective (i.e., performance competitive) telerobots is large. The U.S.
Department Of Energy (DOE) has stated, that teleoperation systems improve worker safety and are
needed to remotely access nuclear, chemical and other high-hazard facilities [1,2]. Over 30 robotics
and remote systems have been demonstrated at Fukushima where valuable information gathering
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continues, including from the otherwise inaccessible reactor core [3,4]. Teleoperation is also necessary
for space exploration (sample collection, extravehicular inspection, remote assembly, etc.) [5,6].
It also has many applications in medicine where minimally invasive surgical procedures [7] reduce
complications and recovery time. Teleoperation can also greatly improve the efficiency of medical
isotope production such as 99Mo [8].

The spectrum of a robot’s semiautonomous capabilities is defined with respect to its Levels Of
Autonomy (LOA) [9–11]. At one end of the spectrum, operators utilize low-level commands for joints,
grippers, wheels, etc. Low-level control can sometimes be justified or necessary but is time-consuming,
tedious and susceptible to operator error. A chronic issue with low-level control is the delay between
sending commands and receiving feedback [12]. Depending on the environment, the delay drastically
reduces task productivity and success rates. Transmission delay and excessive cognitive load
can be addressed by introducing a supervisory control approach [12,13]. Supervisory controllers
accept high-level instructions and the remote system executes integrated subtasks such as collision
avoidance, motion planning and grasping taken as a single action to the operator. On the other
hand, supervisory controllers are known to suffer from issues related to rapid dynamic changes in
the environment that impose unexpected conditions to the semi-autonomous behaviors. However,
these drawbacks can be overcome as the system’s LOA is increased.

An integral part of any teleoperation system—regardless of the LOA—is the user interface,
which must be intuitive and easy to learn even when the system and/or task is complex.
This requirement must not restrict the operator’s access to data. Data collection is a component
of every mission undertaken by a remote system and critical for the user to have proper Situational
Awareness (SA) related to the task, robot and environment. The unimpeded flow of information may
seem counter-intuitive, given the goal of developing a simple interface but car drivers, for example,
have access to large amounts of data when driving. We are adept at filtering this data and making
good control decisions. In fact, many accidents occur due to a lack of data (i.e., blind spots). Also,
note the car’s command interface is relatively simple.

One option for assessing the appropriateness of the user interface is to compare the similarity
between the operating principle of the input device and nature of the task. For example, it would
be difficult to paint a digital picture using only voice instructions. A digital graphics tablet would
be better as it minimizes context switching: when an operator must mentally translate input space
to a task space through any intermediary spaces. For example, if the task is to remotely open a door
and the user only has joint control, then Cartesian space must be translated to joint space, which is
translated to the input device space (joystick, game controller, etc.), which is finally translated to what
the operator’s hand must do. Only the last step is natural and intuitive. As the semiautonomous
capabilities and complexity of remote system increase, the operator's command-set becomes more
abstract. An analysis of the performance characteristics of participating teams in DARPA Robotics
Challenge showed a correlation between the robot’s interface design and team’s ranking [14] where
the best performing team had the fewest operators and monitors. Sensor data were fused to minimize
the display windows, which did not reduce the amount of data shown and instead utilized the user’s
innate ability to filter data.

The developed teleoperation interface, TeMoto (TeMoto is a Japanese noun, which translates
as ‘At Hand’), is an intuitive, hardware agnostic, supervisory controller for remote systems that
properly enables an operator’s innate capabilities while completing tasks remotely. TeMoto utilizes
natural modes of observation (superior ability to identify relevant information in a graphical scene)
and communication (hand gestures, speech). TeMoto minimizes the need to micromanage tasks
by utilizing virtual fixtures, semi-autonomous behaviors and adaptively scaling the interface to task
parameters. The user interface seamlessly transitions between navigation, inspection and manipulation
in unknown environments.

After a summary of previous efforts, we describe the interface requirements and system (user and
software) design. The user interface is evaluated completing three tasks of different scale each using
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different hardware systems (Figure 1) operating in unknown environments. The proposed tasks are
qualitatively and quantitatively compared to base-line tele-operation interfaces. Finally, the results
and future work are summarized.
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destabilizes control, risking damage to the equipment and environment [12]. Supervisory control 
alleviates this problem as dynamic changes are handled locally. Higher LOA also reduces training 

Figure 1. Robot hardware systems used to evaluate the developed TeMoto interface: (a) UT Austin’s
dual-arm mobile manipulator, (b) UT Austin’s 7 DoF Yaskawa SIA5 and (c) Univ. of Tartu’s KUKA 5
DoF youBot.

2. Related Work

The operator interface is a combination of input/output devices and the integrating software
typically evaluated quantitatively using task-specific metrics: completion time, number of steps,
training periods, success rates; and qualitative evaluations of the provided Situational Awareness
(SA), required cognitive load and user experience [15]. General interface design guidelines have been
proposed for urban search and rescue systems based on observations of different robotics challenges
and comparative studies [16].

Humans naturally use hand gestures and speech for conveying instructions and feedback to one
another. Thus, it is intuitive to use hand gestures and speech when commanding remote systems [17].
Telerobotic hand tracking applications have demonstrated the benefits of gesture-based control for
platform or robot end-effector (EEF) guidance tasks [18–21]. Controlling spatial manipulators with
conventional controls is not intuitive as the operator must construct a complex mental model relating
the control input, via joystick or mouse to 3D task space (i.e., context switching). A study on telerobotic
surgery indicates that touch-free interfaces have a faster learning rate than touch-based interfaces
supporting the potential for better performance with touch-free interfaces [22]. Speech input is
considered a viable substitute for conventional controls (e.g., keyboard, mouse, joystick) [23]. Also,
a single verbal phrase (i.e., “open the door”) can combine multiple complex instructions thus reducing
operator fatigue. In [24], operators utilized both gestures and speech to manually control a simulated
aerial vehicle and concurrently performed data entry using manual or voice commands resulting in a
40% decrease in data entry time.

The relationship between teleoperation efficiency and data representation methods has been
analyzed for both robotics competitions and disaster response missions. A common hindrance to
good SA when navigating in unknown environments is depth perception [25,26]. A thorough analysis
of performance characteristics of participating teams in DARPA Robotics Challenge indicated that
more sensor fusion, fewer operators and more automation led to better performance [14]. Kaber and
Endsley studied the effects of different LOA on task performance, cognitive load and SA and observed
that task completion improves with automation as long the highest level of autonomy considered is
technically attainable [27]. Furthermore, higher LOA decreases SA as the operator is less involved
with constructing and maintaining a mental representation of the environment [27]. More intuitive
presentation of sensor data (point clouds of the surroundings, robot model, etc.) can maintain SA at high
LOA [14]. The benefits of high LOA are evident when there is limited bandwidth for communication.
Direct control over delayed communication channel destabilizes control, risking damage to the
equipment and environment [12]. Supervisory control alleviates this problem as dynamic changes
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are handled locally. Higher LOA also reduces training time as shown by several studies where
unexperienced subjects benefit considerably from increased automation to reduce task execution
times [28,29].

A critical element necessary to integrate imprecise gestures with precision tasks are visual cues
with artificial constraints commonly referred to as Virtual Fixtures (VFs). VFs impose virtual constraints
on the user workspace [30] allowing the operator to utilize system’s accuracy and increase safety [31]
without adversely impacting the intuitive nature of the interface. VFs have been examined for
nuclear [32,33] and surgical applications [34–36].

3. System Design and Implementation

Based on lessons learned from the literature, the software requirements were determined.
This section reviews the software requirements, architecture and user interface implementation.
The system allows the operator to

• navigate the robot in an unknown environment while avoiding collisions,
• control end-effectors or other points of interest (with option to simplify this control using

virtual fixtures),
• do so with a minimal number of I/O devices, and
• maximize SA with complete visual access to sensor data.

The command interface (Figure 2a) utilizes gestural and vocal input devices, which allow
concurrent task execution and monitoring. The GUI design utilizes the key findings of [14]: the only
source of visual feedback is a single window, where graphical content is fused into a Mixed-Reality
(MR) scene (Figures 2b and 3). The MR scene combines the model-based representation of the robot’s
current state with remote sensor data and operator input, creating a virtual representation of robot’s
surroundings augmented with VFs. The tracked hand (Figures 2b and 3) is interpreted as a virtual
pointer for commanding the pose of interest (mobile base, left manipulator, right manipulator, etc.).
A rotational knob maps operator input to the task’s scale. Thus, a comfortable 15 cm hand-waving
gesture scales to any commanded move such as traversing a lab (>10 m), an EEF gross motion (≈10 cm),
or fine adjustments to a tool’s location (<1 mm). The user does not need to be quantitatively aware
of the actual scale any more than a photographer using a camera’s zoom lens needs to know the
magnification value. It has been established that scaling helps reduce the operator burden when
executing high-precision (<1 mm) tasks [37].
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Figure 3. TeMoto hardware set-up. The red marker in (a) represents the operator’s hand mapped to
mobile system’s task space. Views from behind and in front of the robot are shown in (b,c), respectively.
The (c) also includes visual cues representing motion constraints in translucent yellow area.

The left hand of the operator hovers above the hand pose tracker while the right hand adjusts
scaling via the turn knob. The operator’s point-of-view (POV) of the MR scene is updated to
predefined perspectives based on the control mode and view constraints (as described in Section 3.1.3),
which further reduces the operator’s cognitive load required to construct a mental model of the remote
robot and its workspace [38]. The system allows the operator to manually select any perspectives.

Hardware agnosticism is partially ensured by using the Robot Operating System (ROS) [39].
In ROS, subprograms (nodes) communicate asynchronously via a publisher-subscriber structure
using standard TCP/IP protocols. Each node can be independently executed or stopped. Thus,
nodes responsible for control, image processing, motion planning, etc. can be distributed to satisfy
computational or other restrictions. For example, it is practical to handle planning and execution tasks
on the robot’s onboard computer in low-bandwidth scenarios to avoid delay during autonomous
task execution. Or if the robot has limited computational power, it may be preferable to perform
intensive computations remotely and transmit easy-to-process waypoints at a rate commensurate with
the available bandwidth.

TeMoto has been successfully tested on the robot platforms shown in Figure 1. For hand tracking
we use a Leap Motion Controller (LMC) [40], a depth sensing camera, which—in our set-up—is
embedded in the computer’s keyboard. LMC provides low-latency tracking and does not require
markers attached to the operator’s hands. LMC is able to track all the joints of a hand, from which
TeMoto utilizes the palm’s position and orientation to create a simplified virtual representation of the
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arm. A Griffin PowerMate infinite turn knob allows the operator to change the scaling factor intuitively
(i.e., logarithmically).

3.1. Software Architecture

TeMoto’s architecture is shown in Figure 4. Note the architecture is depicted as structurally
distributed between two computers but the ROS nodes (green) can be instantiated on any number
of computers.
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5 modules.

When possible, TeMoto leverages ROS packages to minimize the redevelopment of existing
capabilities. MoveIt! [41] (which internally utilizes RViz [39] and the Open Motion Planning
Library (OMPL) [42]) provides the robot’s kinematics, motion planning and 3D visualization.
ROS Navigation [43] generates collision-free paths for the mobile base. Voice commands are converted
to text using a speech recognition package Pocketsphinx [44]. The TeMoto Core contains 5 developed
modules, implemented as ROS nodes. Instruction parser acts as a filter that detects valid voice
commands. Manipulator Interface and Base Interface provide means for manipulation and mobile
navigation respectively. The Human-Robot Interface (HRI) agent directs teleoperation system based
on operator input and feedback data. It is also responsible for keeping track of the system’s overall
status. The HRI agent is structured as a supervisory controller (Figure 5), which continuously monitors
command inputs (hand pose, scaling factor and voice commands). Visualization Manager processes
all operator graphical guidance and constraint related data for visualizing in RViz. The hand pose,
robot pose and surrounding environment are visually combined after adjusting for current scale.
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Voice commands allow the operator to

• plan and/or execute a path,
• manage (change) the point of view on the MR scene, and
• switch control modes (manipulation, navigation).

Functionally, TeMoto’s Visualization Manager interprets HRI agent’s state and generates intuitive
visual feedback that helps the operator to comprehend any applied motional constraints (via voice
commands). Additionally, it adjusts operator’s perspective in the MR scene based on the state of
the HRI agent. Using RViz simplifies integration and visualization for different data structures to a
single MR scene as it includes plug-ins for visualizing and manipulating common data structures (e.g.,
point clouds, meshes, maps, trajectories, coordinate frames, etc.).

To complete the architecture’s structure, several analytical and technical contributions were
necessary, which are explained in the following sections. They include:

• Model-based robot representation—Central to TeMoto is putting the robot “at hand.” The robot’s
model must provide accurate representation of its system parameters, configuration and
environment when depicted from any perspective the operator selects.

• Mobile manipulation planning—MoveIt! provides collision-free motion-planning for
manipulators and ROS Navigation for autonomous ground movement but there is no documented
method for integrating these capabilities.

• Automated selection of user perspectives—To reduce the operator’s cognitive load and errors
due to the lack of SA, the system must automatically adjust the operator’s POV of the MR scene
for the selected motion type.

• Visual cuing and active constraints—Visual cues as well as the representation of active
constraints via VFs in the MR scene are necessary to align user intention with the robot’s behavior.

• Sensor fusion—Environmental, robot and visual cue data come from multiple non-deterministic
sources and must be effectively managed and presented to the user.

• Verbal interactive capabilities—The voice interface must also be intuitive, which requires careful
compromise between flexibility (so operators do not have to memorize very specific language)
and unambiguity (so the command’s meaning is clear and specific). The operator also requires
audio feedback.

Each of these is discussed in more detail below.
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3.1.1. Model-Based Robot Representation

The operator must be aware the robot’s configuration states and its surroundings. Thus,
every aspect of the MR scene centers on the model-based representation whose joint states continuously
match the real robot. The kinematical, geometrical and visual properties of the robot are described
using Unified Robot Description Format (URDF) [39] that defines all relations and constraints between
its links as well as provides other visual components (2D map, RGB-D camera data, etc.) a frame
of reference. Figure 6 depicts a model-based representation for an industrial manipulator and how
the LMC coordinate frame (Figure 6a) is linked to its EEF while maintaining human centric control
approach (Figure 6a,b).
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3.1.2. Mobile Manipulation Planning

Path-planning with the ROS Navigation libraries do not consider the dynamic reach of the
manipulator and MoveIt! does not include the mobile base’s Degrees-of-Freedom (DoF). This creates
additional burden on the operator who currently segregates mobility and manipulation motion
commands. Thus, we developed a Mobile Manipulation (MM) planning algorithm (MM planner)
which virtually expands the manipulator’s kinematic description to include the mobile base. A similar
approach was recently described in [45] where a system automatically switched between manipulation
and navigation subsystems depending on the distance between current and target EEF location.
The system determined velocity commands but did not provide a trajectory planning framework.
The approach below combines existing navigation and EEF manipulation software tools which then
provide a complete trajectory planning solution including path planning and collision avoidance.

Figure 7 illustrates the integrated MM planner. Upon receiving a EEF target pose, a plan is
generated considering only the manipulator (Figure 8a). If the target pose is reachable then the plan is
executed. If the target is not reachable, then a new plan is generated using the manipulator’s Extended
Kinematic Description (EKD) (Figure 8b). If a successful collision-free plan is found, the end location
and rotation of the mobile base are extracted and automatically passed to the navigation planner.
Once the mobile platform has reached the target, the process is repeated until the target EEF pose is
attained. The algorithm ensures that the EEF reaches the target pose given a single operator command
and recovers from positional uncertainty (e.g., dynamic obstacles) between the intended and achieved
poses for the mobile base.



Robotics 2018, 7, 9 9 of 21

Robotics 2018, 7, x FOR PEER REVIEW  9 of 21 

 

 
Figure 7. Working principle of the integrated MM planner. 

 
(a) (b)

Figure 8. (a) Regular robot joint configuration; (b) Extended Kinematic Description. 

The Equation (1) describes the manipulator’s serial kinematic chain. The joint states are 
represented by ࢘ோ (Equation (2)). Figure 8b depicts the joint representations with additional virtual 
joints T୎୶	, T୎୷	and T୎஦  that describe the mobile base’s DoF. T୎୶	and T୎୷  constrain the base to the  
xy-plane and T୎஦ allows the base to rotate around z-axis. The kinematic chain can now be described 
by Equation (3) with the extended state vector ࢘௏ா (Equation (4)). ࢘ோ = ሺߙ଴;… ; ;୬ߙ ୛୊ܚ ୉୉୊ሻ (2)ߙ = T୛୆ × ൣ൫ܠ۸܂ × ܡ۸܂ × ۸૎൯܂ × T୎଴ × …× T୎୬ × T୎୉୉୊൧ × T୉୉୊ × ௏ா࢘ ୉୉୊ (3)ܚ = ൫ܠࢻ; ;ܡࢻ ;૎ࢻ …;଴ߙ ; ;୬ߙ  ୉୉୊൯ (4)ߙ

MoveIt! first solves the problem using the EKD. If a solution is found, the necessary values ܠࢻ	ܡࢻ , and ࢻ૎ are then sent to ROS Navigation which ensures the base safely arrives at its location prior 
to finishing the move using MoveIt! 
  

Figure 7. Working principle of the integrated MM planner.

Robotics 2018, 7, x FOR PEER REVIEW  9 of 21 

 

 
Figure 7. Working principle of the integrated MM planner. 

 
(a) (b)

Figure 8. (a) Regular robot joint configuration; (b) Extended Kinematic Description. 

The Equation (1) describes the manipulator’s serial kinematic chain. The joint states are 
represented by ࢘ோ (Equation (2)). Figure 8b depicts the joint representations with additional virtual 
joints T୎୶	, T୎୷	and T୎஦  that describe the mobile base’s DoF. T୎୶	and T୎୷  constrain the base to the  
xy-plane and T୎஦ allows the base to rotate around z-axis. The kinematic chain can now be described 
by Equation (3) with the extended state vector ࢘௏ா (Equation (4)). ࢘ோ = ሺߙ଴;… ; ;୬ߙ ୛୊ܚ ୉୉୊ሻ (2)ߙ = T୛୆ × ൣ൫ܠ۸܂ × ܡ۸܂ × ۸૎൯܂ × T୎଴ × …× T୎୬ × T୎୉୉୊൧ × T୉୉୊ × ௏ா࢘ ୉୉୊ (3)ܚ = ൫ܠࢻ; ;ܡࢻ ;૎ࢻ …;଴ߙ ; ;୬ߙ  ୉୉୊൯ (4)ߙ

MoveIt! first solves the problem using the EKD. If a solution is found, the necessary values ܠࢻ	ܡࢻ , and ࢻ૎ are then sent to ROS Navigation which ensures the base safely arrives at its location prior 
to finishing the move using MoveIt! 
  

Figure 8. (a) Regular robot joint configuration; (b) Extended Kinematic Description.

To formulate the EKD, the coordinate transformation of an arbitrary geometrical object r from
EEF coordinate frame (TEEF) to world coordinate frame is described as

rWF = TWB × (TJ0 × . . .× TJn × TJEEF)× TEEF × rEEF (1)

where:

• rWF and rEEF are the poses of object r in the world and EEF coordinate frame;
• TWB is the mobile base coordinate frame;
• TJ0, TJn, TJEEF are manipulator joints, i.e., transforms from 0th to nth joint, ending with the

EEF joint;
• TEEF is a coordinate frame of the EEF.
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The Equation (1) describes the manipulator’s serial kinematic chain. The joint states are
represented by rR (Equation (2)). Figure 8b depicts the joint representations with additional virtual
joints TJx, TJy and TJϕ that describe the mobile base’s DoF. TJx and TJy constrain the base to the
xy-plane and TJϕ allows the base to rotate around z-axis. The kinematic chain can now be described by
Equation (3) with the extended state vector rVE (Equation (4)).

rR = (α0; . . . ; αn; αEEF) (2)

rWF = TWB ×
[(

TJx × TJy × TJϕ
)
× TJ0 × . . .× TJn × TJEEF

]
× TEEF × rEEF (3)

rVE =
(
αx; αy; αϕ; α0; . . . ; αn; αEEF

)
(4)

MoveIt! first solves the problem using the EKD. If a solution is found, the necessary values αx,
αy and αtϕ are then sent to ROS Navigation which ensures the base safely arrives at its location prior
to finishing the move using MoveIt!

3.1.3. Automated User Perspectives

To reduce cognitive load due to robot misalignment with operator perspective, the HRI agent
(Figure 5) automatically adjusts the operator’s point-of-view on the MR scene based on the control
mode or instructions (verbal or gestural) from the operator. For example, navigation is best managed
when the operator has a top-down view (Figure 9). Perspectives are predefined for control modes
and workspace constraints. Figure 6 depicts the natural and inverted perspectives for guiding the
EEF. For both perspectives, the LMC frame remains stationary with respect to the operator. In natural
perspective (Figure 6b) the operator’s right, forward and up (given in LMC frame as in Figure 6a) are
interpreted as the right, forward and up of the robot end-effector, respectively. In the inverted control
perspective (Figure 6c), the robot is rotated 180◦ around y-axis of the LMC frame, i.e., around the up
vector of the operator’s hand.

Robotics 2018, 7, x FOR PEER REVIEW  10 of 21 

 

3.1.3. Automated User Perspectives 

To reduce cognitive load due to robot misalignment with operator perspective, the HRI agent 
(Figure 5) automatically adjusts the operator’s point-of-view on the MR scene based on the control 
mode or instructions (verbal or gestural) from the operator. For example, navigation is best managed 
when the operator has a top-down view (Figure 9). Perspectives are predefined for control modes 
and workspace constraints. Figure 6 depicts the natural and inverted perspectives for guiding the 
EEF. For both perspectives, the LMC frame remains stationary with respect to the operator. In natural 
perspective (Figure 6b) the operator’s right, forward and up (given in LMC frame as in Figure 6a) are 
interpreted as the right, forward and up of the robot end-effector, respectively. In the inverted control 
perspective (Figure 6c), the robot is rotated 180° around y-axis of the LMC frame, i.e., around the up 
vector of the operator’s hand. 

 
Figure 9. Top-down view on the MR scene for navigating the robot with following visual elements: 
(1) 3D model of robot; (2) The gesture guided red marker with a dynamically updated (3) distance 
indicator. 

3.1.4. Visual Cues 

With the model robot integrated with sensor data, TeMoto provides a variety of visual cues for 
perceiving depth, motion constraints, visualizing planned paths and indicating distance between the 
virtual hand and EEF. For example, the HRI agent allows the operator to select/combine four visual 
cue modalities for representing motion constraints: 

• No constraints on orientation and position (Figure 10a) 
• Orientation constrained to current orientation of the EEF (Figure 10b), 
• Position constrained to z-axis (Figure 10c), 
• Position constrained to xy-plane (Figure 10d) 

   
(a) (b) (c) (d) 

Figure 10. Example of different constraints on the youBot in natural (a), (b) and inverted (c), (d) 
control perspectives. (a) No constraints; (b) Orientation maintained; (c) Constrained to a direction; (d) 
Constrained to a plane. 
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3© distance indicator.

3.1.4. Visual Cues

With the model robot integrated with sensor data, TeMoto provides a variety of visual cues for
perceiving depth, motion constraints, visualizing planned paths and indicating distance between the
virtual hand and EEF. For example, the HRI agent allows the operator to select/combine four visual
cue modalities for representing motion constraints:

• No constraints on orientation and position (Figure 10a)
• Orientation constrained to current orientation of the EEF (Figure 10b),
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• Position constrained to z-axis (Figure 10c),
• Position constrained to xy-plane (Figure 10d)
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Each constraint is visualized as a virtual fixture informing the operator of the constraint.
By default, when no constraints are applied, a rectangular parallelepiped is rendered together with a
red arrow and a translucent 3D bounding box for depth perception (Figure 10a). The red parallelepiped
serves as a virtual marker representing hand pose (the parallelepiped is aligned with the centroid
of operator’s palm) while the arrow depicts in-scale displacement between the EEF and gesturally
designated pose. When the orientation is maintained (Figure 10b), the red parallelepiped is not
rendered into the MR scene. When movements are constrained to 2D space, the virtual markers are
represented in yellow (Figure 10c,d). A distance numerical marker, indicating the distance between
the center points of the EEF and virtual hand, is often added to MR scene to provide a scale feedback.
Furthermore, trajectories can be temporally visualized prior to execution in the MR scene.

3.1.5. Sensor Fusion

From the perspective of safe and reliable task execution, it is critical that the operator is fully
aware of the state of the robot in its environment. Also, the data necessary for the operator to make
this determination must be suitably presented. Many telerobotic systems suffer due to overly complex
operator interfaces. For this effort, we distinguish between the complexity of the interface (to be
avoided) and the complexity of the task/environment (to be shared). Tracking sensor data from
multiple sources (e.g., displays) dramatically increases the operator’s cognitive load and chances for
error. A number of studies emphasize the importance of choosing what and how to represent data
from multiple sensors [14,25,26]. The MR scene combines data from a variety of sources providing
the user a clean and intuitive visual interface while maintaining high situational awareness. Figure 11
compares the operator’s perspective over MR scene (Figure 11b) and a photo of the actual environment
with the robot platform (Figure 11a). The sensor-fused mixed-reality workspace (Figure 11b) visualizes
different types of data, including:

• robot joint state representation as a 3D model,
• point cloud stream from a RGB-D camera,
• point cloud stream from a 2D LIDAR,
• 2D map of the environment, and
• virtual representation of the operator’s hand with relevant visual cues.
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Figure 11. (a) Image of a test environment where the robot operates in. (b) Resulting sensor fusion
with (1) robot’s 3D model using joint data, (2) point-cloud stream from RGB-D camera, (3) point cloud
stream from 2D LIDAR, (4) 2D environment map, (5) gestural hand location with scale and constrained
motion visual cues.

The 2D map and the robot’s location on it is acquired using a Simultaneous Localization
and Mapping (SLAM) package GMapping [46] that utilizes 2D LIDAR and odometry data.
Point clouds originating from LIDAR and RGB-D camera are inserted into the MR scene by defining a
coordinate transformation between the respective device and a designated attachment location. Thus,
transformations between the 2D map and both point clouds are known and overlaid in a single MR
scene with the visual cues and robot model. The MR scene is viewable either from any 2D perspective
rendered on a monitor or virtual reality headset.

3.1.6. Verbal Interaction

Verbal interaction allows the operator to focus on the visual feedback, rather than manipulating a
controller mapped to the robot’s task space. The structure of a verbal instruction follows the command
language approach. Each instruction is predefined and paired with a callback procedure triggered
when a matching word sequence is detected. The instruction set is greater than the number of callback
procedures to provide flexibility without creating command ambiguity. For example, both “robot,
please move” and “robot, please execute” map to a procedure where the system executes a motion
task. Figure 12 gives an overview of the verbal interaction cycle. The speech recognition module
converts audio commands to text. The text stream is sent to the instruction parser to identify known
word sequences. Valid instructions are sent to the HRI agent triggering a callback procedure. Finally,
audio feedback is synthesized using sound-play package [47] to communicate task status to the user.

Commands are designed to minimize misinterpretation for critical actions. Verbal instructions
that only influence the virtual workspace can be one word (“navigation” or “manipulation” to switch
control modes), whereas triggering movement requires uttering a phrase with three distinct words (e.g.,
“robot please execute”). Table 1 shows 3 of the 22 currently defined verbal instructions, demonstrating
the differences between the verbal instructions for critical and non-critical actions.
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Table 1. Partial list of predefined verbal instructions and their criticality.

Command Criticality Function

“navigation” not critical Switches the system to navigation mode
“limit directions” not critical Constrains the virtual hand to a xy-plane (Figure 10d)

“robot please execute” critical Executes a previously planned trajectory

4. Implementation and Demonstration

TeMoto was utilized and evaluated on three functionally different robotic systems (Figure 1).

• Yaskawa SIA10 and SIA5D 7 DoF industrial manipulators used separately to validate usability
for high-precision tasks (e.g., threading a needle).

• VaultBot is a dual-arm mobile manipulator with a Clearpath Husky mobile base and two
6 DoF UR5 manipulators used for inspection tasks. Both large-scale navigation and small-scale
manipulation were achieved.

• Omnidirectional KUKA youBot is a mobile 5 DoF manipulator for achieving MM planning for
the robot end-effector, i.e., combined collision-free trajectory planning for the mobile base and
serial manipulator.

By demonstrating TeMoto on multiple hardware configurations completing a variety of tasks,
it was possible to fully evaluate all aspects of TeMoto. Furthermore, it was necessary to evaluate TeMoto
using techniques that easily scale from evaluation methods common in the literature and often limited
to a single hardware system completed a small (often just one) set of tasks. Thus, unique tasks were
conducted with each setup to demonstrate all developed functional capabilities as well as hardware
agnosticism. All three systems have publicly available ROS hardware interface packages. All three
platforms utilized ROS Indigo and Ubuntu 14.04 LTS. The remainder of this section outlines the tasks
completed by each of the three platforms.

4.1. Yaskawa SIA5D—High Precision Stationary Industrial Manipulator

When completing tasks inside a glovebox, operators have a limited view, reduced dexterity and
ergonomic challenges. Responding to accidents in such spaces is difficult or impossible. The completed
demonstration (needle threading) also illustrates the advantages of scaling the operator’s gestures to a
sub-millimeter task commands [37] which are impossible to complete via manually through gloveports.
Thread was attached to the robot’s EEF while the needle was kept upright and stationary. Copper wire
and sewing thread were used to thread needles with eye widths in the range from 1 mm to 0.5 mm.
Figure 13 shows the needles and threads after a successful task using the hands-free user interface,
verifying the feasibility for high-precision tasks.
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With approval from the Institutional Review Board of the University of Texas at Austin,
a comparative study was completed with 12 engineering students, who were asked to use two
teleoperation controllers to complete the thread-a-needle task using:

1. the proposed gesture—and speech-based teleoperation system, TeMoto, and
2. a more conventional drag-and-drop interaction using a computer mouse to manipulate so-called

interactive markers [48] in RViz.

Subjects had 5 min to familiarize themselves with both interfaces. After the “training” period,
they threaded a needle using both methods in a randomized order, 3 attempts per each method.
Task completion times and number of move commands were recorded and results showed a slight
decrease in average task completion times with the gesture/speech interface, taking 94 s (σ = 61 s)
with the mouse-based interface and 86 s (σ = 42 s) with TeMoto [37]. The results imply that without
prior experience, humans are as fluent with gestural control as with the deeply-rooted mouse-based
interface for this particular task and in this particular environment.

4.2. VaultBot—Mobile Manipulation by Switching between Navigation and Manipulation Control

Motivated by applications in large, hazardous environments (nuclear decommissioning, offshore
drilling, etc.), a mobile dual-arm manipulator platform was controlled using TeMoto to navigate
a cluttered environment to inspect ducts and pipes. VaultBot (Figures 1a and 14b) is a skid-steer
Clearpath Husky base with two UR5 manipulators. One supports a RealSense R200 RGB-D camera
while the other has a Robotiq two-finger gripper and a GoPro camera. A SICK LMS511 2D LIDAR,
UM6 IMU, wireless router and on-board laptop are included. Further details about VaultBot can be
found in [49].
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TeMoto with VaultBot was put into real-life test at the U.S. Department of Energy’s (DOE’s)
Gaseous Diffusion Plant in Portsmouth, OH. The goal was to use on-site workers with no prior
robotic experience as operators to remotely complete Decommissioning and Decontamination (D&D)
tasks [51]. More specifically, their objective was to read a sign placed ~300 mm inside a pipe opening.
The operator first moved the system across the room (~7 m), then moved the gripper holding the
GoPro camera inside the pipe to read the sign. The GoPro camera stream was sent to a separate
screen independent of the TeMoto interface. The operator had no line of sight with the task space.
The operator completed the task after 45 min of training. All the capabilities mentioned above were
present during this demonstration except the MM planning and motion capability. From the DOE
report on the effort: “The operator used gesture control to plan a path that the robot then followed
to an area of interest. The robot moved autonomously, including utilization of obstacle avoidance.
[ . . . ] The hardware and software worked flawlessly. Open libraries using ROS is well done and
better than most universities” [51]. While this demonstration generated positive as well as useful
feedback for TeMoto, it also demonstrated the difficulties associated with developing larger studies
in these environments given the security requirements, limits on the number of eligible technicians,
overall cost, variety of tasks to consider and logistics for completing such tests in DOE government
facilities. This in turn, motivates the need for more general evaluation techniques.

4.3. YouBot—Mobile Manipulation with Full Configuration Motion Planning for Navigation and Manipulation

TeMoto was tested on KUKA youBot Figure 1c, which has an omnidirectional base, 5 DoF
manipulator, Hokuyo URG-04LX-UG01 2D LIDAR and on-board computer. This effort included
the EKD capabilities for MM planning eliminating the need to switch between navigation and
manipulation control modes, i.e., segregated planning. Note that the EKD addresses the spatial
deficiencies of the 5 DoF manipulator since the base’s additional 3 DoF are automatically included
when executing any commanded move. The advantages of MM planner can be evaluated by comparing
the minimum number of operator instructions required to complete a manipulation task.

Consider an inspection task where the target pose is outside the EEF’s current workspace. Table 2
summarizes the operator instructions for completing the task in segregated and MM planning mode.
Without the EKD, navigation control mode must be used at least once—yielding 2 instructions for
switching control mode and 1 for repositioning the base. The EEF target pose requires one additional
command, for a total of 4 commands assuming no operator error. With EKD, the target pose can be
achieved with a single instruction with no chance for human error. This also halves the number of
voice commands necessary for the operator to learn, further reducing training time and the potential
for ambiguity.

Table 2. A minimum number of commands required in the case of segregated and MM planning for
obtaining a new EEF pose that is initially out of reach.

Segregated Planning MM Planning

Control mode switching 2 0
Navigation instructions 1 0

Manipulation instructions 1 1
Instructions in total 4 1

The above demonstrations validate the capabilities and wide range of applications where
TeMoto would be useful. But they also illustrate key challenges for making such assertions generally.
User studies can focus too narrowly on specific tasks or environments. Studies may not be possible
in certain cases. Also, regular upgrades in the software’s capabilities (which are common in large,
open source, collaborative efforts), quickly render user studies as dated. Thus, the following section
summarizes the existing and proposed methods to scale evaluation techniques and to address
these issues.
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5. System Performance Evaluation

Prior to use in the field, any proposed human-machine interface must be evaluated after all
major components are developed and fully integrated. User interface effectiveness can be evaluated
from three perspectives: (1) task completion (success rates), (2) task completion efficiency (number of
steps, duration, etc.), (3) command latency or delay and (4) reduction in operator burden by reducing
cognitive load, training time, etc.

We note that latency is a non-issue given TeMoto relies on discrete (semi-autonomous) commands
and not direct tele-operation. Also, the time delay between giving a command and the robot executing
the command was not significant in any our tests. Though, delays can vary wildly in a general task
space (i.e., long delays for the Mars Rover, no delay for a tethered proximal system, etc.) but our
solution should minimize the impact of such delays given its ability to complete discrete commands in
the presence of dynamic obstacles.

Performance evaluations can be analytical—which has the advantages of task/environment
independence—or empirically completed through user studies. Data collected from user studies can
be both quantitative and qualitative. The following section reviews efforts to evaluate TeMoto both
analytically and empirically, with the purpose of gaining insight into its effectiveness for completing
general tasks across a range of environments. The results are summarized below.

5.1. Task Completion Rates

In separate study, completion and performance metrics were collected for needle threading (i.e.,
high-precision) tasks [37]. The users quickly adapted to the gesture-based input and used it as efficiently
as a mouse-based input. Similar results were obtained by [22] where they demonstrated that touch-free
hand tracking interfaces have faster learning rates than touch-based interfaces. Task completion was
further validated for mobile manipulation during DOE’s Portsmouth demonstrations. A worker with
no prior robotic experience (and 45 min of training) successfully completed a pipe inspection task
using hand tracking input and verbal instructions. The youBot consistently completed the commanded
task of moving its EEF to a location outside of its initial reachable space but the primary focus of these
efforts was to address completion efficiency while reducing the operator’s burden. Thus, the results
are discussed in sections below.

5.2. Task Completion Efficiency

Two metrics to evaluation completion efficiency are completion time and number of steps.
Lab studies documented in [37] show a reduction in task completion time for threading a needle
(average reduced from 94 s to 86 s) compared to EEF control using an interactive marker (n = 36).
The maximum completion time was more dramatically reduced from 300 s to 200 s.

The issue with empirical time completion studies is that they are task specific and difficult to
generalize. To address this issue, let’s consider the number of operator instructions as an efficiency
metric. The number of instructions necessary to complete EEF relocation were shown in Table 2,
which exemplifies the increased task efficiency possible when commands are performed at a higher
LOA (MM planning). This analysis can be generalized and include the potential for user and planner
error. Equations (5) and (6) estimate the number of instructions required to finish tasks with n EEF
relocations (steps) to a position initially unreachable without moving the base. Let fp represent the
number of planner failures (i.e., how many times the operator had to re-specify a goal due to the
planner failures) and fr represent the number of reachability failures during the navigation process of
segregated planning (i.e., how many times the operator navigated to a location where the EEF still
could not reach the goal.)

Iseg = fp + 4(n + fr) (5)

IMM = fp + n (6)
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η = Iseg/IMM (7)

where:

• Iseg—number of operator instructions in segregated planning mode,
• IMM—number of operator instructions in MM planning mode,
• η—relation between Iseg and IMM, which estimates the efficiency of MM planning over

segregated planning,
• n—number of EEF relocations to initially unreachable positions,
• fr—number of reachability failures,
• fp—number of planner failures.

The efficiency criteria η quantifies the relative efficiency, i.e., how many times is MM planning
more efficient than segregated planning in terms of number of given voice instructions. By introducing
the terms ( fp and fr) that represent the potential failures during the execution, η quantifies the benefits
of the increased autonomy. Table 3 contains an illustrative set of the calculated values of η with respect
to different values of failure rates, given as the percentage of steps n. For example, if the task can be
ideally completed with minimal amount of 10 steps and the failure rate is 50%, the total number of
retries is 10× 50 % = 5 and thus the overall step count is 15. If the failure rate is >100% then this
implies that the number of retries is greater than the minimal number of required steps.

Table 3. Calculated values of efficiency η with respect to different values of failure rates.

fp (% of n) fr (% of n) η

0% 0% 4
50% 50% 4.3
100% 100% 4.5

fp → ∞ fr → ∞ lim
fp , fr→∞

η = 5

50% 0% 3
100% 0% 2.5

fp → ∞ 0% lim
fp→∞

η = 1

0% 50% 6
0% 100% 8

0% fr → ∞ lim
fr→∞

η = ∞

Given that the operator does not fully comprehend the kinematic dexterity of the manipulator,
it is plausible that the operator might encounter a significant amount of reachability failures fr with
segregated planning. Hence the results (Table 3) of this theoretical assessment indicate that operator
will benefit from MM planning as the cognitive load and execution time is reduced. This assessment
considered only the voice instructions needed for completing the task. The operator may have to
switch between different perspectives during navigation, which further increases the command count
per single task execution cycle. While this analysis is applied to determine the increased efficiency
by using MM planning, TeMoto’s interface enables this type of analysis for any added autonomous
feature since its input commands are discrete (i.e., a gesture or utterance) and not continuous (i.e.,
moving/holding the joystick to the left, right, etc.). Thus, this approach provides important insight
into the maximum potential benefit for a given user interface.

5.3. Reducing the Operator’s Cognitive Load

It is tempting to assert there is a cognitive load reduction when command count is reduced but this
conclusion is incorrect. In chess, executing moves is simple compared to the necessary prior thought.
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Executing a single joint motion is simple compared to the cognitive burden of determining its impact
on the EEF and designated task. TeMoto utilizes a single interface and a human’s natural abilities
to filter graphical data. To accommodate high-precision task execution, virtual fixtures imposed
motion constraints when necessary to reduce the operator’s burden. The operator’s point-of-view of
the task was adjustable when needed to give the operator a better understanding of the task space.
Coordinate transforms from the operator frame to task space are handled automatically which further
reduces cognitive load. In contrast to current systems, the operator is no longer responsible for
internally mapping the task space to EEF space to joint space to input device space to a hand motion.
In TeMoto, the operator gives commands directly into the task space with a hand motion or voice
command. Cognitive burden in this category is fully minimized by reducing the number of context
switches to zero. In summary, TeMoto reduced or removed the following operator cognitive tasks.

• Path planning and collision detection.
• Collecting data from multiple sources (just one screen)
• Mentally mapping from the task frame to the input frame
• Context switching between the task space, robot space and user interface device.
• Completing tasks with inputs outside of an operator’s comfortable ergonomic range.

6. Conclusions

The paper presents TeMoto: a hardware agnostic, highly intuitive supervisory teleoperation
system for operating manipulators and mobile platforms. A combination of gestural control via
scalable hand tracking and speech input are used to command remote systems. ROS was leveraged
whenever possible and allow TeMoto developers to focus on the user experience and not back-end
robot software development. The results show that untrained operators can quickly understand
and use TeMoto as well as the well-established mouse input, even to run systems too complex to
be efficiently operated with only a mouse input. To reach this conclusion, TeMoto was evaluated
using established, task-specific metrics (task completion time, number of steps, user studies) as well as
task-independent metrics quantifying efficiency and operator context switching.

Despite their availability, gesture-based input devices are not common and the technology has
yet to reach its full potential. One could argue that as the technology for gesture detection and
hand tracking evolves, the intuitiveness of the proposed teleoperation system is likely to increase.
The integration of this device with a natural language input further increased the usability of the
system and reduced command ambiguity. As an analogy, consider how much more effective one is at
giving instructions to another individual when the instructor can both speak and use gestures.

In the future specific objects of interest can be highlighted in the MR scene when detected by the
computer vision algorithms. In this way, an operator’s attention can be brought to objects that would
otherwise have been disregarded. Adopting VR headset to look upon the MR scene can improve the
way operator perceives the robot and task space (increases SA) whereas the IMU within the headset
allows more intuitive access to different point-of-views on the task at hand. Furthermore, by adding
context-based virtual fixtures, the system can be used to visualize other sensor data (thermal, radiation,
etc.) without the need to create another interface screen and adding to the operator’s cognitive burden.
Another ongoing effort is collaborating with researchers who study user interface design and then
apply identified principles on this topic to further improve TeMoto.
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