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Abstract: The purpose of this work is to explore the design principles for a Real-Time Robotic Multi
Camera Vision System, in a case study involving a real world competition of autonomous driving.
Design practices from vision and real-time research areas are applied into a Real-Time Robotic Vision
application, thus exemplifying good algorithm design practices, the advantages of employing the
“zero copy one pass” methodology and associated trade-offs leading to the selection of a controller
platform. The vision tasks under study are: (i) recognition of a “flat” signal; and (ii) track following,
requiring 3D reconstruction. This research firstly improves the used algorithms for the mentioned
tasks and finally selects the controller hardware. Optimization for the shown algorithms yielded
from 1.5 times to 190 times improvements, always with acceptable quality for the target application,
with algorithm optimization being more important on lower computing power platforms. Results
also include a 3-cm and five-degree accuracy for lane tracking and 100% accuracy for signalling panel
recognition, which are better than most results found in the literature for this application. Clear
results comparing different PC platforms for the mentioned Robotic Vision tasks are also shown,
demonstrating trade-offs between accuracy and computing power, leading to the proper choice of
control platform. The presented design principles are portable to other applications, where Real-Time
constraints exist.

Keywords: camera as a sensor; real-time vision; robotic vision; lane tracking; signalling panel
recognition; zero copy one pass

1. Introduction

Using cameras as rich sensors, with data coming from vision systems, is a particularly important
part of many real world robotic applications, be it by assisting people in their daily tasks [1] or in
vision perception related to mobile platforms [2]. One very relevant area of application is autonomous
vehicles, representing a major innovation for the automotive industry that, in turn, results in a great
economic impact world-wide. In such a dynamic context, work and research in this area has grown
greatly over the last years.

This topic has even raised interest within the robotics community and was the target focus of
many robotic competitions around the world [3], such as the Audi Autonomous Driving Cup [4] or
the Portuguese Robotics Open [5].

An autonomous intelligent vehicle has to perform a number of tasks, sometimes in a limited
amount of time [6]. This involves being able to identify and track road lanes, being able to process
traffic lights and road signs, and being consistent at identifying and avoiding obstacles [7–9].

Robotics 2018, 7, 12; doi:10.3390/robotics7010012 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0002-4769-8843
http://dx.doi.org/10.3390/robotics7010012
http://www.mdpi.com/journal/robotics


Robotics 2018, 7, 12 2 of 16

“Robot vision is not just computer vision. While robotics poses several challenges for visual
processing, for example, three-dimensional (3-D) operation and performance requirements, there is an
aspect in particular that makes robot vision special and distinguishes it from mainstream computer
vision.” [10]. Although many solutions exist, one of the most common approaches to tackle these
problems is the use of one or more cameras on the robot’s body.

Usually, when extracting information from an image, one holds some prior knowledge on
the state of the system (that is, some notion on the state of the surrounding environment) and,
therefore, more detailed measurements can be obtained. Often, however, in autonomous driving,
little information is known about the environment because no previous or overall structure is
present [11]. Therefore, it is not only important to get accurate results, but also to do it in an adequate
timing—real-time. Real-time is often defined as the sufficient time the robot needs to process external
data and actuate without causing any harm to himself or to others. The presented ideas lead to a set
of processing deadlines per task, as defined in the soft real time literature [12]. Furthermore, using
several cameras involves specific challenges that must be addressed to reduce the global amount of
computing power needed for processing—this is especially relevant for battery operating processing
platforms that are common in mobile robotics.

Robotic vision naturally inherits the characteristics from real-time vision, considered as having soft
real-time constraints, and encompasses two kinds of applications: applications where 3D information
is relevant and perception of flat scenes. A known real-time vision motto is “zero copy, one pass”
technique as proposed by Sousa et al. [13] and used by Costa et al. [14]. Using this technique, the input
image should be read only once, taking all the necessary information (which is organized into smaller
data structures). This approach guarantees that the objective is reached without creating copies of the
input image thus saving processing time.

The presented research uses a multi-camera vision system to tackle two classes of challenges in
mobile robotics: recognition of a “flat” signal while tolerating distortions, and white lines detection
and tracking that need 3D reconstruction, using the “zero copy one pass” motto [15]. The proposed
algorithms optimizations and the tests performed in four hardware platforms culminate in generic
design principles for robotic vision tasks where real time requirements are demanded.

The remainder of this paper is organized as follows. In Section 2, a literature review is performed,
leading to the identification of the research issues, proposal, and research goals. In Section 3, all the
steps and methods followed in designing the algorithm are presented. Section 4 presents the real time
results obtained from the algorithm. Finally, Section 5 draws conclusions from the obtained data.

2. Literature Review

To assess the problems associated with Real-Time programming and computer vision,
a literature review is performed, focusing in two important classes of tasks for autonomous robots,
here exemplified as: (i) lane detection/tracking algorithms; and (ii) semaphore/sign recognition.

2.1. Lane Tracking

Road perception is a major task in an autonomous driving robot. Several strategies can be
employed, resulting in different trade-offs between accuracy and computational cost. Ros et al. have
proposed offline-online strategies with a well defined trade-off between accuracy and computational
cost to the perception of the real world [16]. A real time approach to lane marker detection in urban
streets, proposed by Aly [17] and capable of running at 50 Hz, is the generation of the top view of the
road, filtering it with selective oriented Gaussian filters, and using RANSAC line fitting to give initial
guesses to a new and fast RANSAC algorithm, for fitting Bezier Splines. Other authors like Sotelo et al.
centred their detection algorithm is the HSI colour segmentation, with the key difference of defining a
lane “skeleton”: a curve representing the middle line of the road. This “skeleton” is estimated using a
2nd-order polynomial parabolic function, and subsequent estimations are then calculated with the help
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of a Kalman filter [18]. A real-time lane detection invariant to illumination for lane departure warning
system, based on vanishing point calculation, running at 33 ms, was proposed by Son et al. [19].

Another algorithm, proposed by Thorpe et al. [20], is SCARF: after a step of preprocessing with
sub-sampling and applying a mean filter, the pixels of the image are separated into sets of similar
colours using mean clustering, using on-road and off-road sample sets to compute multiple Gaussian
colour models. Then, with the application of a matched filter, a road or intersection is selected from a
list of candidates. Some problems with this approach include difficulties in the classification step if
there aren’t distinguishable colours between on-road and off-road samples and control instabilities as
the robot speed increases.

Another technique useful to obtain relevant features for road estimation algorithms is the Inverse
Perspective Mapping (IPM), as proposed by Muad et al. and Miguel et al. [21,22]. IPM will be
further explained in this work, with more detail, in Section 3.1.1. IPM is a geometrical transformation
technique that projects each pixel of the 2D camera perspective view of a 3D object and re-maps it
to a new position, constructing a rectified image on a new 2D plane. Mathematically, IPM can be
described as a projection from a 3D manifold, W = {(x, y, z)} ∈ E3 (real life input space) onto a 2D
plane, I = {(u, v)} ∈ E2. The result is the desired bird’s eye view of the image, thus removing the
perspective effect.

This is achieved using information from the camera’s position and orientation in relation to
the road.

2.2. Semaphore/Traffic Light Recognition

Usually, the semaphore/traffic signs recognition algorithms comprise two tasks: (i) detection;
and (ii) classification.

One well known technique is colour segmentation. A transformation to enhance red, blue,
and yellow colours in the RGB colour space was presented by Ruta et al. in [23]. Additionally, they have
proposed a variant of the Distance Transform (DT) called Colour Distance Transform (CDT). The main
idea of CDT is the definition of a smooth distance metric to be used on the comparisons between the
previously stored template and raw input image. For the traffic sign detection task, Dalal et al. in [24]
have presented seven colour representations: the plain channels R, G, B, the normalized channels
r = R/S, g = G/S, b = B/S, and the greyscale channel S/3, where S = R + G + B. For the
classification stage, the authors used a Linear Discriminant Analysis (LDA), and unimodal Gaussian
probability densities. For the detection phase, Maldonado-Bascon et al. in [25] have used a threshold in
the HSI colour space (Hue Saturation Intensity) for the chromatic signs and, at the same time, the white
signs are detected using achromatic decomposition. Then, the recognition phase uses linear Support
Vector Machines (SVM) for shape recognition and SVMs with Gaussian kernels for recognition.

The main drawback of using HSI for colour segmentation is the high computational cost due to
its non-linear formula, as demonstrated by Escalera et al. in [26]. To improve the time performance
and accuracy, Zaklouta and Stanciulescu [27] have proposed an adaptation to the colour enhancement
stage and improved the classification stage using a HOG-based SVM detector (Histogram of Oriented
Gradients).

Other computational expensive solution to recognize signs is the use of the Fast Fourier Transform
(FFT) as used by Gil-Jiménez et al. in [28]. The classification phase involves the usage of the FFT
transform to generate signatures and the matching is performed by comparing the signatures of the
template and detected blob. The use of FFT makes the matching method very robust to rotation
and deformation.

2.3. Research Issues

From the literature review, it is possible to identify some issues:

• Little information on results about robotic vision systems under real time constraints is presented.
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• The trade-off results relating accuracy and characterization of global execution times are not
commonly found.

• There is a lack of information about the hardware/software platforms used to obtain results,
mainly their specifications.

2.4. Proposal and Research Goals

The presented work aims to minimize the issues listed above, mainly the addition of information
about results to the area of real time robotic vision, identification on trade-offs and comparisons
between real computing platforms.

Using as motivation the PRO Autonomous Driving competition, the goal of the current research
is the search of Real-Time Artificial Vision approaches that are applicable to real robotics problems,
such as:

• Understanding the Robotic Real-Time Vision design principles;
• Understanding the Robotic Real-Time Vision paradigm as a trade-off—time versus accuracy;
• Identifying design strategies for the development of an algorithm capable of running on low

computational power, battery operated hardware to tackle the autonomous driving tasks with
adequate accuracy;

• Demonstration of the importance of the reduction of data to process (as in “zero copy one pass”
principle);

• Identifying the information of the Signalling Panel as an example of perception of a flat scene;
• Finding, tracking and measuring angles and distances to track lane;
• Characterization of execution times in different processes; and
• Discussion of platform choices.

3. Materials and Methods

The methodology is based in an analysis of the PRO Autonomous Driving competition, with the
test robot being used in the before-mentioned competition and in four tested hardware platforms.

The test robot, Figure 3a, uses a differential steering and no mechanical modifications on the robot
platform were made throughout all tests.

The sensory system is vision-based and is made up of two PLAYSTATION EyeTM(“PSEye”)
running with a resolution of 320x240 @ 30Hz (wide lens mode), kept constant. For testing purposes,
video footage was recorded to create a relevant dataset to be used in all platforms under test (using
the same data allows meaningful comparisons of issues). The recording of this dataset was made to
ensure that most pertinent tests are performed.

The on-board high level computing platform is changeable, communicating with motor driver
via USB connection. Two vision tasks are presented as examples: (i) “flat” scene interpretation; and (ii)
3D scene perception (Figure 1).

• Task (i)—track following—3D recognition and tracking of the several white lines of the road
(dashed or continuous) on black background;

• Task (ii)—signalling panel recognition—identification of one signal from a set of 6, with
characteristic colours and shapes, occupying a large portion of the image. The region of interest
occupies about about 30% of the total image area.

Firstly, the algorithms in their original form for both vision tasks are briefly presented and their
improvement is discussed.

Results include comparative results of execution times for both algorithms for several computing
platforms.

The conclusions include a systematization of the design guidelines for algorithm adaptation and
discussion of other relevant results.
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Figure 1. Track (a); and signalling panels used in the 2016/2017 autonomous driving competition:
(b) green turn left; (c) green go forward; (d) green turn right; (e) red stop; (f) yellow parking; and (g)
green and red checkers flag.

3.1. Lane Tracking Algorithm

The tracking algorithm used, represented in a flowchart diagram, is exhibited in Figure 2. The first
step is to capture a RGB frame from the camera. Then, a point selection is performed in the greyscale
space, extracting only the points that most likely form a line. The third step is the removal of the
distortion due to the lens used (which raises the field of view of the camera). Next, for each of
these points the Inverse Perspective Mapping (explained in the following subsection) is applied, and,
after this step, the Probabilistic Hough Transform is employed to detect the lines. From the detected
lines returned by the transform, only the “best” one is retained (the line that has the minimum distance
between the actual line and the one before).

Figure 2. Block diagram for the tracking algorithm.

3.1.1. Inverse Perspective Mapping (IPM)

IPM is a geometrical transform that projects each pixel from the 2D view of 3D objects with
perspective and maps them to a new position, building a new image on a new inverse 2D plane
(this perspective is normally called bird’s eye view). In this case, the strategy used was the calculation
of the transform from the camera referential to the chessboard referential (T1), then calculating the
transform from the chessboard to the robot referential (T2), as seen in Figure 3c. Figure 3b shows the
setup used to calculate T1 and T2.
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a b c

Figure 3. Real robot (a) used on the 2016 and 2017 Portuguese autonomous driving competition;
and IPM-Transformations used: top view of the scheme used to calibrate IPM (b); and side view of the
scheme used to calibrate IPM (c).

T1 was obtained using the camera extrinsic parameters and T2 was calculated measuring the
distances between the chessboard/robot references and the rotation matrix between them. To apply the
IPM transform, it is necessary to perform the transformation described in Equation (1). The remaining
equations, Equations (2)–(4), are intermediate steps leading to IPM transform:


X
Y
Z
w

 =


p11 p12 p13 −x
p21 p22 p23 −y
p31 p32 p33 −1
a b c 0


−1 
−t1

−t2

−t3

−d

 (1)

P = KT2RT1R =

p11 p12 p13

p21 p22 p23

p31 p32 p33

 (2)

t = KTt =

t1

t2

t3

 (3)

K =

αx β x0

0 αy y0

0 0 1

 (4)

aX + bY + cZ + d = 0 (5)

in which αx and αy are the focal length in pixels along x and y, respectively, x0 and y0 the principal
point coordinates in pixels and β the skew factor in matrix K. T1R and T2R are the rotation matrices
from the transformations T1 and T2. x and y are the coordinates from the input image pixel. Tt is the
vector of translation resulting of the T1 and T2 multiplication. a, b, c, d define a geometric plane for the
application of the IPM ( Equation (5)). X, Y and Z are metrical coordinates on the robot’s referential.

After we obtain X and Y (the Z coordinate is irrelevant to this case and can be discarded),
to achieve a visual representation of the IPM, the last step is to map these points into an image
(Equations (6) and (7)):

yi = H − H × (X− xmin)

xmax − xmin
(6)

xi =
W
2
− W ×Y

ymax − ymin
(7)
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where H and W are the height and width in pixels of the window used to map the points. xmin, xmax,
ymin, ymax define a box in meters on the robot’s referential. An example of the application of the IPM
can be seen in Figure 4.

a b

Figure 4. Example of the IPM transform: (a) the original image taken from the camera undistorted;
and (b) image obtained by the IPM transform with a defined window of 2 m width and 1.5 m height.

This algorithm has the advantage of allowing, from the input image, the direct calculation
of the position (x,y) in meters on the robot’s referential. Another advantage is the possibility to
delimit a window of interest on the robot’s referential, allowing an optimized processing of the
relevant information.

3.1.2. Tracking Lines Algorithm

After the IPM transform, the next step is the detection of the lines present on the IPM transformed
image. The strategy employed is the application of the Hough Transform variant for line detection.
This transform is available in OpenCV in two alternatives: HoughLines() and HoughLinesP(). The major
difference between them is on the choice of the pixels used in the calculation of the Hough space.
The first one resorts to every pixel on the image, while the second uses a set number of random pixels
to calculate the transform, making it more faster than the previous one mentioned.

The Hough Transform function returns a vector of lines detected. After that, the algorithm chooses
the “best” line from the received vector, which is the line nearest to the previous one detected (inside
a limited range). If no line fulfils this condition, the previous one is maintained. The last step is to
calculate the distance from the robot’s referential to the point chosen. Because the IPM strategy was
used, this step is simplified, making its computation direct.

The algorithm represented in Figure 2 (from now on denominated as “Fast version”), was designed
under the real-time image motto: “zero copy one pass”—meaning that, in a single pass, all relevant
information is extracted, with no need for creating kernels or auxiliary images. However, a previous
attempt (“Slow version”) was tested, and is as follows: after receiving a RGB frame and converting it to
a greyscale representation, a Gaussian filter is applied to remove noise. With the image preprocessed,
the lens distortion is corrected with IPM. Finally, the Hough line transform is used, enabling the
retrieval of the distance and angle needed for the tracking. A full time-performance comparison
between these two approaches is performed in Section 4.

3.2. Signalling Panel Recognition

The detection of the panel is achieved via another camera installed on the robot (pointed up).
The algorithm was also designed under the “zero copy one pass” principle (the tasks inside the red
bounding box in Figure 5 are computed in a single pass), and this version of the program is also
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labelled “Fast version”. The competition ruling [29] defines a specific dataset of panels used, shown
in Figure 1.

Figure 5. Block diagram for the signalling panel recognition algorithm.

The signalling panels are characterized by three main different shapes (arrow, cross and the
letter “P”) and colours (red, yellow and green). A block diagram representing the main stages of
the semaphore recognition algorithm can be seen in Figure 5. Based on that information, for each
RGB pixel x, the algorithm uses a colour segmentation strategy to enhance red (Equation (8), green
(Equation (9)), and yellow (Equation (10)) colours where S = xR + xG + xB. Then, the object that
possess the maximum area is selected. Next, the object is divided in four quarters (Q1, Q2, Q3 and Q4;
see Figure 6), and the area for each one is calculated. Finally, a decision tree is used to recognize each
panel by testing ratios between the quarters. In the same way as in the lane tracking algorithm, the first
version of the signalling panel recognition algorithm (“Slow version”) was tested and all of the tasks
were applied to the full size images with no reduction of information between tasks. The “Fast version”
takes advantage of design principle “zero copy one pass” and a full comparison between the two
versions is presented in Section 4.

Figure 6. Example of a signalling panel divided into quarters.

fR(x) = max(0, min(xR − xG, xR − xB)/S) (8)

fG(x) = max(0, min(xG − xR, xG − xB)/S) (9)

fY(x) = max(0, min(xR − xB, xG − xB)/S) (10)

The decision tree used to recognize each signalling panel is described in Algorithm 1.



Robotics 2018, 7, 12 9 of 16

Algorithm 1 Signalling Panel Recognition Algorithm

procedure RECOGNIZEPANEL

//Input: RGBImage
//Output: PanelString
blob← search for blob in imageRaw using acceptable RGBRegion
globalArea← calculate area in blob
if globalArea < minimunArea then

return “No Semaphore”
else

q1area← calculate area in blob
q2area← calculate area in blob
q3area← calculate area in blob
q4area← calculate area in blob
if 0.9 < (q1area + q2area)/(q3area + q4area) < 1.1 & 0.9 < (q2area + q3area)/(q1area +

q4area) < 1.1 & 0.9 < q2area/q4area < 1.1 & 0.9 < q1area/q3area < 1.1 then
return “Stop”

else
if 0.9 < (q1area + q4area)/(q2area + q3area) < 1.1 & 0.9 < q2area/q1area < 1.1 then

return “Go Forward”
else

if 0.9 < (q1area + q2area)/(q3area + q4area) < 1.1 & (q2area + q3area) > (q1area +
q4area) then

return “Turn Left”
else

if 0.9 < (q1area + q2area)/(q3area + q4area) < 1.1 & (q2area + q3area) <
(q1area + q4area) then

return “Turn Right”
else

if (q1area + q2area + q3area)/(q1area + q2area + q3area + q4area) > 0.75 then
return “Park”

return “No Panel”

4. Results and Discussion

This section presents the results obtained from the application of real time vision guidelines.
Tables 1 and 2 show a comparison between the same tracking algorithm, one version using the real-time
vision premise “zero copy, one pass” (Fast) and another version without (Slow). Table 3 presents
the real time results for the signalling panel recognition algorithm. Additionally, two histograms
that juxtapose the four platforms time results for the tracking and panel recognition algorithms are
presented. The accuracy of the distance and angle measures obtained from the tracking system is
displayed in Figure 8, and some image results for the tracking lines algorithm are also presented.
Regarding to the signalling panel recognition algorithm, some results taken in a laboratory environment
are presented in Figure 9.
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Table 1. Average execution time of IPM algorithm.

PC Mean of Slow IPM Time (ms) Mean of Fast IPM Time (ms) Ratio (S/F)

Asus ROG 80.74 0.4854 166.34
EeePC 587.7 3.100 189.60

RaspberryPi2 1344 7.174 187.41
RaspberryPi 2970 15.52 191.31

Table 2. Average execution time of the tracking algorithm shown in Figure 2.

PC Mean of Slow Tracking Time (ms) Mean of Fast Tracking Time (ms) Ratio (S/F)

Asus ROG 84.56 1.424 59.36
EeePC 604.2 8.599 70.25

RaspberryPi2 1366 22.98 59.46
RaspberryPi 3209 45.60 70.37

Table 3. Average execution time of the signalling panel recognition algorithm.

PC Mean of Slow
Panel Recognition Time (ms)

Mean of Fast
Panel Recognition Time (ms) Ratio (S/F)

Asus ROG 0.5830 0.3533 1.650
EeePC 11.28 4.084 2.761

RaspberryPi2 13.20 5.301 2.490
RaspberryPi 73.99 24.42 3.030

Looking at Tables 1 and 2, it is clear that there is significant time reduction between the different
platforms on the IPM and tracking algorithm. In the case of the Asus ROG, the execution time became
59 times faster and on the EeePC and in the Raspberry was 70 times faster. The results in the signalling
panel recognition shown in Table 3 also present a satisfactory real-time vision performance in this
context. The measured time does not take into account the camera data transfer time on the USB port.

The histograms presented in Figure 7 are relative to the measured time obtained, both in the
fast version, for the tracking algorithm, Figure 7a; and for the measured times for the signalling
panel recognition algorithm, Figure 7b. To test the tracking and panel recognition algorithms,
two representative real case scenario datasets from the 2016/2017 PRO autonomous driving
competition were used, which were recorded and replayed similarly on all machines. The number of
samples used to draw the histograms was 5000 in both algorithms (in all platforms), and the same
implementation of the algorithms was used. Furthermore, the histograms are individually normalized.

From the histograms in Figure 7a,b, it is possible to see that the peak in each platform appears
around its mean. However, in Figure 7a, another peak appears in all platforms. This can be explained
by the presence of a cross-walk (zebra crossing, as in Figure 4a) on the dataset used (real case scenario
regarding the 2016/2017 PRO autonomous driving competition) to test the tracking algorithm. In this
region of the track more lines appear, therefore more information needs to be processed.
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a

b

Figure 7. Normalized time histograms for the tracking algorithm (a); and signalling panel recognition
algorithm (b).

Another important result is the accuracy of the distance and angle returned by the tracking
algorithm. The accuracy results were obtained by placing the robot in different known positions on
the track, measuring the real distance and angle between the robot’s referential and the intersection
point to the right line. Figure 8a,b show a comparison between the real-life measurements and the ones
obtained from the algorithm. The blue line represents the real-life measurements, assumed to be the
“ground truth” (ignoring errors in the manual measurement). By examining Figure 8a,b, it is noticeable
that the obtained distance and angle are precise enough for the application at hand, showing a distance
error below 0.03 m, and an angle error below five degrees.
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a

b

Figure 8. Distance accuracy tests results and related absolute error: (a) angle accuracy tests results; and
(b) related absolute error .

In Figure 9b, detected lines returned by the Probabilistic Hough Lines Transform function drawn
on top of the IPM image (Figure 9c) in the slow version, and fast version Figure 9d are shown.

a b c d

Figure 9. Undistorted image from the track (a); probabilistic Hough transform detected lines drawn on
top of the IPM image using slow tracking (b); IPM transform image with slow tracking (c); and IPM
transform image with fast tracking (d).
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The yellow and purple circles are the result of the tracking lines system (A video showing the
results of the proposed tracking system can be found in Supplementay Material). The distance and
angle measures needed are calculated from the yellow/purple circle near bottom part of Figure 9d.

The signalling panel recognition algorithm was also tested into the 2016 and 2017 PRO. In the
context of the competition, this technique is precise enough, ensuring zero false positives and zero
false negatives in both tests made at the competition (A video showing the results of the proposed
signalling panel recognition system can be found in Supplementay Material).

In Figure 10, a laboratory test is shown for each panel used in the competition.

a b c d e

Figure 10. Example of the application of the proposed signalling panel recognition algorithm:
(a) turn left panel successfully recognized; (b) go forward panel successfully recognized; (c) turn
right panel successfully recognized; (d) stop panel successfully recognized; and (e) parking panel
successfully recognized.

The characteristics of the PCs used on the tests are detailed in Table 4.

Table 4. Specifications of the platforms used in the tests of the proposed algorithms.

Model CPU RAM OS

Raspberry Pi B 512MB ARM1176JZF-S 700 MHz 512 MB Raspbian
Raspberry Pi 2 B 900MHz quad-core ARM Cortex-A7 CPU 1GB Raspbian

Asus EeePC 1005HA 1.66GHz Intel Atom N280 2GB Xubuntu 14.04 LTS
Asus ROG GL550JK Intel Core i7-4700HQ 2.5GHz 16GB Xubuntu 14.04 LTS

5. Conclusions and General Design Guidelines

This article presents and debates design principles for Robotic Vision Systems targeting real
world autonomous mobile robotics running software under soft real time constraints. A common
application example is autonomous driving and this article presents a scaled down car, in this case,
a robotic platform for the autonomous driving competition of the Portuguese Robotics Open. In many
applications, and particularly in the presented robot, the perception is solely vision based and typical
robotic vision tasks include interpretation of both flat and 3D scenes coming from several cameras.
Considering the presented case study, the recognition of a “flat” scene corresponds to identifying a
Signalling Device and the perception of a 3D “scene” relates to lane tracking. The utilized robot has
two cameras and runs perception and high level control software in a changeable platform of PC class.
The tests were run using several distributions of the Linux operating system. The two mentioned
vision tasks (signalling recognition and track following) are presented and then adapted/improved to
follow interesting robotic real time vision guidelines.

The proposed general guidelines are:

(1) Use the structure of the problem to define the working limits of the algorithms (the algorithm
does not have to work outside of the “rules” of the problem).

(2) Try to recognize Real Time limits for your problem by finding lowest safe working frequency
(for both the perception and the control loops); additionally, try to minimize latency of the closed
loop information travel inside the system from perception to control (including decision)—the
perception, decision and control loop.
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(3) Plan debug and visualization features to run at a lower rate than other tasks, preferably in a
separate task; if this is complex, preferably run debug and visualization after the perception,
decision and control loop.

(4) Robotic vision is information intensive: try to use as low resolution as possible in the initial
image (naturally without loosing relevant data).

(5) Design algorithms so that information is reduced as quickly as possible, particularly do not visit
same data structure more than once and do not copy raw data; if possible, calculate all results
with a single pass on the data structure (in short, the motto of “zero copy, one pass”).

(6) Presently, real world robotic vision tasks mostly deal with semi-structured environment and
practitioners recognize that there is a trade-off between accuracy and low computing power.

(7) Use high level programming languages and Consumer Of The Shelf (COTS) hardware to allow
choosing from many different hardware platforms that are currently available from the results of
the profiling (execution times of the application).

(8) The practitioner should acutely be aware that running hardware more powerful than necessary
or an algorithm doing excessive processing above what is strictly necessary will drain valuable
energy from the batteries; separate and run tasks only as needed; use profiling tools to optimize
relevant algorithms.

(9) Plan and run tests for the safety, security and Real-Time compliance that need to be addressed.

From the presented guidelines, the signalling panels are recognized without any perspective
correction and the decision tree algorithm is run from data coming from half of the pixels of the image.
All the images on the dataset with 5000 frames were recognized correctly (no missing values, no wrong
recognitions). Naturally, this result arises from the definition (“easiness”) of the problem and if tested
elsewhere the presented algorithm will inevitably fail (more perspective, further away).

Under the same guidelines, the 3D perception used only the IPM algorithm for meaningful pixels,
such as starting edges (left to right) of the lines of the track. The accuracy of the proposed method
yields about 3 cm in distance tracking and five degrees in angle measurement, for the dataset of 3 min
of video coming from a real driving situation, containing frequent purposeful oscillations on the track.

The improved “fast” algorithms are comparable to previous “slow” ones and prove to be better
than most of the state of art for this application, such as Ribeiro et al. in [30]. Execution time
improvements range from almost 200 times to 1.6 times (time_slow_algorithm/time_fast_algorithm)
for the same hardware, with the same input videos. For the shown platforms, improvements seem
to be even more relevant in low processing power hardware platforms than for hi-end computing
platforms. Tests on the well known Raspberry Pi 1 displayed the largest improvements for the
presented algorithms—this makes sense because resource economy is more relevant when they
are scarcer.

The guidelines above are thought to be of general application and they demonstrate dramatic
improvements that are enough to determine the viability of the project as a whole or at least help
choose an adequate hardware processing platform that, in turn, will allow to optimize the overall cost
of the project (example: reduce battery size). With the optimized algorithms and for the shown vision
tasks, the second most inexpensive platform (Raspberry Pi 2) can be chosen, with associated energy
savings, even more relevant for battery-based systems. The mentioned platform was successfully
tested in autonomous driving competition of the Portuguese Robotics Open.

Regarding the case study, future work includes better profiling inside the perception, decision
and control loop, even better separation of debug tools and measuring latency times. Another study of
interest would be multi-core distribution of tasks on several platforms.

Supplementary Materials: This work was been tested in the 2017 Autonomous Driving Competition of the
Portuguese Robotics Open. A video showing the results of the proposed tracking system can be found at: https:
//www.youtube.com/watch?v=6XN29PRc5Eg. A video showing the results of the proposed signalling panel
recognition system can be found at: https://www.youtube.com/watch?v=KaPIKzncMd8. A representative video
of the robot competing in the year of 2017 can be found at https://www.youtube.com/watch?v=dbCXKyT-d-w,
and the corresponding simulator at https://github.com/ee09115/conde_simulator.

https://www.youtube.com/watch?v=6XN29PRc5Eg
https://www.youtube.com/watch?v=6XN29PRc5Eg
https://www.youtube.com/watch?v=KaPIKzncMd8
https://www.youtube.com/watch?v=dbCXKyT-d-w
https://github.com/ee09115/conde_simulator
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