
robotics

Article

Design of a Mobile Robot for Air Duct Exploration

Moses A. Koledoye * ID , Daniele De Martini, Massimo Carvani and Tullio Facchinetti

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata, 5-27100 Pavia,
Italy; daniele.demartini01@universitadipavia.it (D.D.M.);
massimo.carvani01@universitadipavia.it (M.C.); tullio.facchinetti@unipv.it (T.F.)
* Correspondence: moses.koledoye01@universitadipavia.it

Received: 3 July 2017; Accepted: 9 October 2017; Published: 11 October 2017

Abstract: This work presents the solutions adopted for the design and the implementation of
an autonomous wheeled robot developed for the exploration and mapping of air ventilation ducts.
The hardware is based on commercial off-the-shelf devices, including sensors, motors, processing
devices and interfaces. The mechanical chassis was designed from scratch to meet a trade-off
between small size and available volume to host the components. The software stack is based on
the Robot Operating System (ROS). Special attention was dedicated to the design of the mobility
strategy, which must take into account some constraints and issues that are specific to the considered
application, such as the relatively small size of ducts, the need to detect and avoid possible holes
on the floor of the duct and other unusual obstacles and the unavailability of external reference
frameworks for localization. The main contribution of this paper lies in the design, implementation
and experimentation of the overall system.
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1. Introduction

The use of autonomous mobile robots is spreading in many application domains due to their
flexibility, mature off-the-shelf hardware and reusable software components and the general dropping
of costs. Exploration of unknown, dangerous or inaccessible environments is among the most
investigated and appealing application for autonomous robots. While mobile robots can adopt
different approaches, technologies and techniques (see [1] for indications regarding a formal ontology
to classify mobile robots), in particular to move on different terrains and surfaces, wheeled robots are
among the most popular.

The application discussed in this paper refers to the exploration and mapping of air ventilation
ducts by means of an autonomous wheeled mobile robot. The goal is to let the robot move
autonomously through the ducts to collect information useful to realize a map of the duct, since rather
often, such a map is not available or does not reflect the actual organization of the duct. The construction
of the map is outsourced to the ROS navigation stack and is done in real time as the robot traverses the
duct environment. A major application goal is to acquire video footage of the environment during
the motion, which can be examined offline to detect obstructions and pollution, allowing the optimal
planning of maintenance and cleaning operations. It is worth noting that the video is currently used
for offline inspection after the robot completes the exploration task. On the other hand, the inclusion of
a camera opens the door to the correction of errors in localization and mapping due to drifts in the robot
wheels and subsequent errors in the encoder measurements with photogrammetric techniques [2].

This paper presents the design and implementation of a novel robot, discussing how the ROS
navigation stack is leveraged to perform the exploration of the environment. The implemented motion
strategy is based on discrete local steps (in the form of iterations) to incrementally explore the global
space. The path planning is done by setting intermediate goal points using a method based on the
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centroid of free points in the operation space. This allows one to leverage the legacy navigation stack
provided by ROS to move from one goal point to the next one. The exhaustive exploration of ducts
is achieved by explicitly managing possible multiple branches in the tunnels. The exploration task
is made challenging by the harsh duct environment, which is populated by several types of peculiar
obstacles such as traps on the floor and thin suspended horizontal bars, as well as the lack of a global
reference frame.

Since openings are often present in the floor of ducts where the robot is moving, trapdoor detection
has a key role for the robot’s safety. The devised trapdoor detection approach is presented.

The proposed design and implementation have been evaluated by both simulations and
experimental measurements. The effectiveness of the navigation method is shown by means of
simulations on a realistic environment, while an evaluation of the overall processing capability
requirements has been assessed on the implementation of the software stack on the adopted
computational devices.

Article Organization

Relevant related works are reported in Section 2. The presentation of the project addresses the
hardware platform and the software stack, presented in Sections 4 and 5, respectively. Section 6
discusses the overall trajectory planning and navigation approach, while Section 7 focuses on the
algorithm developed specifically for this use case. Experimental results and evaluations are reported
in Section 8, and concluding remarks are stated in Section 9.

2. Related Work

Autonomous robot navigation has been an important area of research in the past few decades [3,4],
and mobile robots play a significant role in today’s world, ranging from military to consumer
applications. The research on autonomous mobile robots developed to navigate in special indoor
environments spans from general exploration tasks [5] to special applications such as fire fighting in
tunnels [6] or archaeological exploration [7].

In [8], the authors describe an autonomous robotics platform for the exploration of caves and
mines. While some localization challenges are common to our addressed scenario, several aspects
are peculiar to their specific application environment. The research in [9] presents the construction
aspects of an autonomous caterpillar vehicle developed for exploring tunnels in dangerous conditions,
i.e., where poisonous gases or other threats are present.

In [10], there is an analysis of the challenges related to robot operations in subterranean and
harsh scenarios. The identified challenges include autonomous navigation, localization, mapping
and communication. Sensors and mapping techniques play a key role in the development of an efficient
robotic exploration application in constrained environment. The case for this work requires a robot to
autonomously navigate within ventilation ducts without the use of a Global Positioning System (GPS)
as a global reference frame since GPS signals are inaccessible. While [11] analyzes recent advances
in both domains, [12] presents a localization approach based on a strap-down Inertial Measurement
Unit (IMU). In terms of navigation challenges, [13] provides a method to detect the walls in a corridor
to enable an efficient navigation of a mobile robot, and [14] focuses on the mapping of large-scale
underground environments. The present work focuses instead on ventilation ducts, which typically
have a relatively small scale.

Autonomous navigation of robots in GPS-denied environments with ventilation ducts is
a currently explored area of research. In the recent past, mobile robots have been controlled using
cables as with Remotely Operated Vehicles (ROV), using umbilical cords [15]. These cables supply
power and serve as channels for telemetry. The main bottleneck with tethered robots is that the cable
length limits the operational range of the robot. The advantages of tethering sometimes outweigh
the inherent limitation of bounded coverage, as seen in [16]. Similar approaches use line following
algorithms where the robot is equipped with an array of infrared sensors that center the robot’s motion
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with respect to a line drawn on the floor of the environment [17]. This method requires an existing line
to be drawn across the entire exploration space, limiting the flexibility of the approach.

3. Robot Model

The 3D rendering of the robot is shown in Figure 1a,b. Some considerations about the solutions
adopted for the mechanical frame, with special attention to obstacle detection and robot safety issues,
are reported. However, the core of this work is dedicated to the selection and integration of electronic
hardware components and to the development of the onboard software stack, which is based on the
Robot Operating System (ROS) [18].

The main project goal is the small size (the prototype is 30× 40× 30 cm), since the robot must be
able to move in relatively small ducts. The battery life is not critical; a target value is around one hour,
which can be achieved with standard batteries without major issues on power-awareness in the robot’s
electronics or mobility strategy. Traveling speed is also non-critical. The robot peak velocity can be as
low as 5–10 cm/s. As a target design goal, the length of the path to explore ranges between 20–30 and
250–300 m.

The robot is equipped with different sensors that allow it to interact properly with the unknown
ventilation ducts and achieve the overall exploration goal. The hardware setup includes a laser scanner,
two infrared sensors for specific obstacle detection, a strap-down Inertial Measurement Unit (IMU)
and two wheel encoders.

(a) (b)

Figure 1. The 3D rendering of the robot.: (a) front view; (b) side view.

The entire logic related to the movement of the robot has been outsourced to the ROS navigation
stack, which is described later in Section 6. The robot is a differential drive robot, where each wheel
is powered by an independent DC motor, while quadrature encoders provide angular displacement
measurements (more details in Section 4). The robot is able to maneuver in response to commands
provided by the navigation stack. In particular, the robot can easily rotate over its center of mass to
make a u-turn, while it can move backward provided the right set of commands is given to the wheel
motors by the navigation stack.

Robot Communication

The robot is intended to explore the duct environment autonomously. It is thus not tethered.
It was initially supposed to maintain a wireless communication between the robot and a base station,
so that the robot could transmit information via ROS’ networking framework and robot joint position
and mapping progress could be visualized on the control station using rviz, an ROS package that
provides robot visualization capabilities. However, upon the discovery that wireless signals perform
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poorly in the ducts, which are typically made of metallic materials, this requirement was suppressed.
To ensure that the robot can be easily recovered in case of errors or system exceptions that would bring
the robot to a halt, the robot is fitted with buzzers that sound periodically. The robot can then be easily
recovered by a human following the sound of the buzzers or the light from the LEDs to locate the robot
in the duct in case of emergency. We here note that a preliminary recovery is attempted by the robot
(described in Section 6.1.5), whose failure leads to the need for a manual recovery.

4. Hardware Setup

The hardware setup is composed by several devices, sensors and actuators, controlled by a Single
Board Computer (SBC). The SBC used in the actual implementation is a Raspberry Pi 2. Figure 2
shows a scheme of the devices connected to the SBC and the communication interfaces supporting
each connection.

Figure 2. Block diagram showing the hardware components of the robotics platform, including sensors,
actuators and the adopted interfaces.

The main components are the following:

• A Hokuyo laser scanner (Hokuyo urg-04lx-ug01): It is connected via a Y-cable Universal Serial
Bus (USB) connector to the Single Board Computer (SBC).

• A quadrature encoder board: The board uses dedicated hardware to read the signals from the
encoders installed on one left and right wheel; the communication with the quadrature encoder is
via the Serial Peripheral Interface (SPI) bus.

• Two incremental encoders connected to the quadrature encoder.
• Two micro-switches are mounted on the front sweeping arm. Connected to the SBC through

General Purpose Input/Output pins (GPIO), they are sampled to detect a possible front collision
of the vehicle. The two switches act as a logical OR, such that at least one of them needs to be
pressed to detect a collision.

• An Inertial Measurement Unit (IMU), which communicates with the SBC via the I2C bus.
• A hole detector sensor: It is an Infrared proximity sensor (IR) mounted beneath the front edge of

the sweeping branch. It is sampled to detect the presence of holes placed under the sensor. It is
connected to the SBC via I2C.

• A PiCamera is used for video capture. It communicates with the dedicated Camera Serial Interface
(CSI) available on the Raspberry Pi board.
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• A custom Light-Emitting Diode (LED) control Printed Circuit Board (PCB) is connected via a
General-Purpose Input/Output (GPIO) pin that generates a software PWM (created with a driver
called pigpio).

• A motor control PCB: Connected via two GPIOs, it produces two independent Pulse-Width
Modulation (PWM) signals, independent of the SBC processing. This dedicated hardware uses
much less computing power with respect to to the PWM implemented via the software driver,
which has a processor utilization of around 5%.

• A USB memory drive to save the camera footage and make it easily copyable to a computer.

Since the adopted SBC (i.e., Raspberry Pi) lacks analog interfaces, there is a micro-controller-based
board (Arduino Trinket Pro) that controls the servo motor connected to the robot’s sweeping arm
by means of a PWM signal and that reads the signals of the analog sensors. Figure 3 shows a block
schema describing how the Trinket Pro (indicated as the secondary processing device) is connected to
the SBC and other analog interfaces.

Figure 3. Block diagram showing the components handled by means of an analog interface.

Obstacle Detection

While the laser sensor offers a great source of data for localization, Figure 4 shows how the
environment where the robot moves can make it face obstacles that the laser sensor cannot detect.
Indeed, if the obstacle does not lay in the sensing plane of the laser scanner, it will not be detected.

Figure 4. Example of an environment with obstacles. From left to right: horizontally-suspended
obstacle, short obstacle and a trapdoor.

In addition to the walls that are detected by the laser sensor itself, the obstacles the robot can face
are trapdoors or, in general, holes in the floor, bumps, short obstacles and horizontally-suspended
ones. Figure 4 shows an example of these possibilities.

A possible solution could be to employ a rotating laser scanner with the sensing plane not parallel
to the floor plane, or to use more than one scanner. Although these solutions are widely considered for
similar situations, the simple nature of the environment and the finite number of obstacle types the
robot can face led to the use of simpler and much less expensive sensors.

The trapdoor sensor, the micro-switches and the roof distance sensor are used to detect holes,
bumps and suspended obstacles, respectively. These sensors are mounted on an arm connected to
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the main body by a servo motor. The arm is able to sweep over the whole width in front of the
vehicle. This approach allows one to detect obstacles before they collide with the front side of the robot;
trapdoors are detected before the front wheels fall into them. Since during its sweeping, the arm may
collide with an obstacle, the contact sensor located on the front edge of the arm, and implemented
using the micro-switch, allows detecting possible collisions of the edge. The adopted solutions allow
a complete detection of possible obstacles and holes that may appear in front of the robot during its
motion. The early detection of an impeding object allows the robot to promptly stop its motion.

Once an obstacle or trapdoor is detected and the robot is stopped, the sweeping arm could also
be used to map the impeding object, so that the robot can eventually determine its size and shape
and figure out whether the robot can navigate around it.

5. Software Stack

The software stack is built on top of the Robot Operating System (ROS). An ROS application is
made of different processes, called nodes, which communicate by exchanging messages (topics). In the
implemented application, the values obtained from sensor sampling are translated into ROS topics to
simplify the access from nodes implementing the robot behavior. Similarly, control signals are first
sent as ROS topics and then translated in hardware signals by specific nodes. This section explains
and analyzes the most interesting processes, which are grouped according to the corresponding
specific task.

5.1. Hardware Interfaces

There are several different interfaces between the SBC and the actual hardware. The data provided
by the laser scanner are read by the hokuyo_node and passed via the /map topic to the slam_gmapping
node, which in turn localizes the robot using SLAM with respect to a global reference frame.

Acceleration and angular velocity are read by imu_reader and transferred to the SBC via I2C.
The data are filtered by imu_filter, before being published on the /imu topic. Data from the encoders
are received by the robot_odom node from the quadrature_encoder node, which in turn exploits the
spi_driver to communicate with the quadrature encoder hardware device.

The robot_bumper node, using the gpio_driver, monitors the status of the switch and publishes
on topic /collision in case a collision is detected; this information is used to stop the robot. In the
same way, the ir_short node uses I2C_driver for reading the trapdoor IR sensor. A topic is published
to stop the robot when a trapdoor is sensed. ir_long is the node that receives the raw data of the ceiling
distance sensor. It then publishes the actual distance from the ceiling through the linearization node.

led_controller allows turning the LEDs on and off. It operates on the LED status by means
of a PWM signal created using the pwm_driver_rasp library. The motors_controller node receives
linear and angular velocities from the navigation stack and translates them into PWM signals that
are sent to the motor controller bridge. The servo_motor node calculates the servo motor angle and
publishes it in order for the Trinket Pro to actually control the servo motor by means of a PWM signal.
While the PWM signal is carried by the Trinket Pro in order to lower the amount of load on the
Raspberry, the latter calculates the servo position. The position is needed by the system in order to
know the position of the sweep branch relatively to the robot body frame.

The current_sensor nodes is responsible for publishing the battery voltage topic, the amount
of consumed current and battery power information. The calculations for these data are done by the
secondary processing device. This node takes the data via ros_serial from it and publishes them on
the system topics.

Interfacing New Hardware

The current robot setup can be extended by adding new hardware in order to fit the robot with
more capabilities. In terms of hardware/software setup, to allow communication between the new
hardware and the existing robot setup, it is sufficient to write an ROS node that communicates with
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the driver of the new hardware. The new node will be a subscriber that reads data from existing topics
and takes action accordingly (e.g., for new hardware that is an actuator), or a publisher that publishes
data supplied by the new hardware, in the case of new hardware that is a sensor, which can then
be consumed by parts of the setup that need these data. From the mechanical viewpoint, however,
new hardware can only be added if it fits into a chassis that is already optimized to contain the
necessary components and properly dimensioned to allow the robot to enter relatively small ducts.

5.2. Localization and Mapping

The localization and mapping parts of the setup are essential to the completion of the exploration
and mapping objective of the robot. The logic for the localization of the robot has been outsourced to
ROS’s robot_localization node, which provides nonlinear state estimation through sensor fusion of
the available sensors. It uses an extended Kalman filter as described in [19], in our case combining
IMU samples, laser scans and odometry information. The odometry due to the non-uniform friction
in the ventilation ducts suffers from slippage propagated from the encoder measurements; the IMU
suffers from noise and drift; while the laser scanner strives to make accurate ranging measurements
when the robot is traveling along a lengthy stretch of tube. Fusing all the sensor information together
with the Extended Kalman Filter (EKF), the error from one source is compensated by integrating
from the others. Using the static transformations published by robot_tf, the robot_localization
node maintains a coherent geometry, e.g., the position of the laser scanner with respect to the robot
body frame.

Once these data are combined, the robot_localization node publishes the position of the robot
with respect to a global /odom reference frame. Using SLAM, the tf transformation that renders the
two global reference frames—/odom and /map—coherent can also be published. This allows letting the
robot move using one reference frame, while maintaining coherent knowledge of the space around the
robot with respect to the two frames. Figure 5 shows the setup of the localization stack for the robot.
Drivers and hardware devices are depicted with rectangles in dashed-lines, ROS nodes with rectangles
in continuous lines and ROS messages with ellipses.

robot
localization

odometry

encoder
odometryIMU topic

quadrature
encoder

SPI driver

IMU filter

Low-end device
library

I2C driver

robot model
odometryIMU reader

Figure 5. Components of the robot localization stack.

The SLAM operation is performed by the slam_gmapping node, which is fed by ranging
information from the Hokuyo laser scanner and odometry information from the sensors data that
robot_localization combines. As the robot moves in the duct environment, a 2D occupancy grid
map is generated by slam_gmapping, which can later be exported in a suitable image format after
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the exploration is complete. Since the map creation and storage are handled by ROS, partial maps
of the already performed exploration are available in case of emergencies where the robot stops or
shuts down arbitrarily. To read raw laser scans, the hokuyo node performs periodic reads from the
Hokuyo laser scanner and publishes ranging information to the hokuyo topic, which is consumed by
slam_gmapping. The latter in turn generates the map and publishes the /map topic. Figure 6 shows the
components of the mapping framework and how they are connected. The odometry topic depicted in
Figure 5 is also fed into the slam_gmapping node to be integrated with other sensory information.

Hokuyo node Hokuyo topic
SLAM

Gmapping
map

Figure 6. Components of the mapping stack.

6. Trajectory Planning and Navigation

The global exploration task is formulated as a sequence of successive local problems. The robot is
required to move in small steps.

ROS uses information from costmaps to provide the localization data required by its trajectory
planners. A costmap is an occupancy grid corresponding to a physical area in the environment.
The grid consists of cells that have costs indicating the status of a sub-area in the environment,
which can either be occupied, free or unknown. Cells are marked as occupied or cleared as free using
information from the robot’s sensors. Sensors are seen as topic publishers providing the relevant data
to the navigation stack. In each local step, the following actions occur (in the given order):

• goal pose is computed;
• the computed pose is sent to the ROS navigation stack;
• the ROS base_local_planner (a node in the navigation stack) computes a path to reach the goal;
• ROS move_base (another node in the navigation stack) sends the motion control sequence for

following the path and responds with success (or failure) at the end;
• if the path following operation succeeds, the robot computes the next goal pose;
• this process is repeated until the duct space has been completely explored or some higher priority

condition is triggered, such as the low battery indication.

Our setup uses three costmaps: a local and a global costmap for local and global trajectory
planning and a custom costmap for the goal pose estimation. The robot’s global movement is
discretized into steps whose intervals are bounded by the maximum displacement of a goal from the
current location of the robot within an instance of the custom costmap.

6.1. High Level Robot’s Behavior

Ventilation ducts include different topological features, namely: freeway, branch/crossroad,
hole/trapdoor and dead-end, as depicted in Figure 7.

The robot behavior is dictated by a Finite State Machine (FSM) that captures all known possible
scenarios within a ventilation duct. Figure 8 shows the organization of the FSM. The set of states
composing the FSM, their meaning and their relationships are explained in the following.
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Figure 7. The layouts that can compose a typical air ventilation duct. The walls and roof of the duct are
not shown.
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Figure 8. Finite state machine describing the high level behavior of the robot during the navigation.
The states are: Snooze(Sa), Navigate (Sb), Hole Area (Sc), Return (Sd), Recovery (Se).

6.1.1. State Sa: Snooze

The Snooze state is an abstraction that models the intermittent stops between two consecutive
instances of the Navigate state. The time spent in an instance of this state is equivalent to the time
taken by the duct navigation node to refresh the custom costmap and compute a new goal pose for the
ROS navigation stack.

6.1.2. State Sb: Navigate

The Navigate state is the most crucial state in the FSM. It defines the interaction between the
navigation algorithms described in Section 7 and the ROS navigation stack. Empirically, the robot
spends about 90% of its exploration time in this state, switching back and forth between Navigate and
Snooze states. In this state, the robot attempts to reach the target goal computed by the navigation
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algorithm using the custom costmap. In the execution of this state, a few exceptions could be
encountered as indicated in Figure 8:

• The robot is stuck since the base_local_planner drove the robot too close to an adjacent wall
while approaching a bend; the robot is unable to move further given the constraints of its inflation
radius or when the robot has reached a dead-end. The actions taken to face this condition are
described in Recovery.

• The robot detects a trapdoor opening/hole in which case the state changes to Hole Area.

When the exploration is deemed complete according to a set criteria described in Section 7,
the state changes to Return. Thanks to the inflation radius set around the robot footprint by the
navigation stack in the costmap, the robot does not proceed into spaces narrower than its width. In fact,
when the inflation radius intersects with a wall of such spaces on entry, the wall is deemed an obstacle.

6.1.3. State Sc: Hole Area

On reaching this state, the robot runs a procedure that marks as dangerous the cells in the
local and global costmaps corresponding to portions of the hole that are reachable by the sweeping
arm. Although it is desirable to devise a procedure that would allow the robot to evade the hole
(i.e., circumnavigating it) and continue the exploration, this requirement was suppressed upon the
knowledge that most holes in a ventilation duct network span the entire width of the duct itself,
making it impossible for the robot to circumnavigate it. Hence, the robot only maps the hole area
(seen by the IR sensor on the robot’s sweeping arm) as occupied/dangerous, considers the associated
duct section as a dead-end and turns around to continue to the next goal in the exploration stack
(see Section 7). Alternatively, it switches to the Return state if the exploration stack is empty.

6.1.4. State Sd: Return

In this state, the robot returns to the its global start position at the end of the exploration task.
This is an oversimplification of the Navigate state, as no goal is computed, and the navigation
algorithm simply gives base_local_planner a goal equivalent to the starting pose. The successful
execution and transition of this state into the final Snooze state depends greatly on the accuracy of
our localization. If the drift in odometry readings for example is too large, the robot might end up in
a position that is several tens of centimeters away from the original starting position. In such cases,
as stated in Section 3, the robot can be located in the duct using the sound from the buzzer and/or the
light from the LEDs and recovered manually. On the other hand, when the return-home task begins,
the robot exploration is already deemed complete. Therefore, it would not be required to have an
accurate map or to perform any mapping at all during the robot’s return to home.

6.1.5. State Se: Recovery

As discussed regarding the Navigation state, the Recovery state handles both cases where the
robot is stuck or a dead-end has been reached.

When the robot is stuck, rotate_recovery, a ROS package that provides a simple recovery
behavior that rotates the robot 360 deg (if local obstacles permit) in an attempt to clear and free
neighboring cells in the navigation stack’s costmaps, is invoked by the Navigation stack.

The recovery action for a dead-end is to backtrack the robot by a few centimeters, perform an in
place rotation of 180 deg, after which the robot proceeds to the next goal position in the exploration
stack (discussed in Section 7). Before the robot is backtracked, the sweeping arm is retracted close to
the robot to create more allowance for the rotation and clear the sweeping arm and chassis from any
collisions while rotating. A dead-end is flagged either by a collision on any of the micro-switches or
most often after computing the relative displacement between successive goal positions in the custom
costmap; once the displacements are seen to converge towards zero, it implies that the custom costmap
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is not being updated with new free cells while the old ones are being depleted as the robot moves
further away from them. The Recovery state is reachable from the Navigate and Return states.

7. Navigation Algorithm

The approach developed for the autonomous navigation of the mobile robot in the ventilation
ducts is called Map Edge.

The Map Edge approach initializes the custom costmap, scans the entire perimeter of the map
moving anticlockwise from the origin: up, left, down, and right, in this order. The points marked as free
on this perimeter are collected. These points are clustered by checking for point-wise discontinuities
along the x and y coordinates of the cells; each discontinuity marks the boundaries of a potential
branch. The coordinates of the cells in each cluster are averaged, to select a goal point for each
branch. In the event more than one branch is detected after clustering (implying the robot is at
a crossroad), the algorithm needs to memorize the branching points that have yet to be visited by the
robot. From Figure 9, if the robot takes branch A first, it has to memorize branch B, and in the case
where more branches are detected while a branch is currently being explored, all unvisited branches
are altogether cached in the exploration stack. When branches are detected/scanned at a crossroad,
the edges of the immediate costmap are scanned in an anticlockwise fashion (see Algorithm 1).
Openings in the edge (i.e., detected branches) are added to the exploration stack in the order in which
they are detected. The branch that is first visited after the detection task is complete is the one at the
top of the stack (i.e., the branch that was lastly added), which is usually the leftmost branch at the
crossroad with respect to the robot; scanning was done in an anti-clockwise fashion.

The depth first algorithm is used for revisiting nested branches. Algorithm 1 provides the
mathematical details of the algorithm.

Algorithm 1 Map Edge navigation algorithm.

Input: costmap-boundary, global-stack
Output: goal

1: local-stack← ∅
2: boundary-set-stack← ∅
3: for all Pi ∈ costmap-boundary do . scan/iterate in anticlockwise
4: if Pi ∈ free space then
5: push(Pi, boundary-set-stack)
6: end if
7: end for
8: if boundary-set-stack 6= ∅ then
9: for all Pi ∈ boundary-set-stack do

10: Sneigh ← ∅
11: while Pi and Pi+1 are neighbors do
12: Sneigh ← Sneigh ∪ Pi
13: end while
14: c = centroid(Sneigh)
15: push(c, local-stack)
16: end for
17: global-stack.append(local-stack)
18: goal ← local-stack.tail
19: else . Dead end reached
20: if global-stack 6= ∅ then
21: goal ← global-stack.tail
22: else
23: goal ← home . Exploration complete
24: end if
25: end if
26: return goal
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From Algorithm 1, it can be observed that two stacks are managed:

1. Branches detected from any iteration of the algorithm are pushed into the local stack. This is not
emptied until the start of the next iteration before which the costmap is reset.

2. Updates from the local stack are appended to the global stack. Hence, the global stack caches
all the branching points, which are yet to be explored. As soon as a branch has been completely
explored, its corresponding branching point is popped off, and the next branching point in the
stack becomes the new goal pose.

When not at a crossroad, every new iteration assumes that the robot is traveling through the same
branch. For this reason, no caching is performed. The area of the costmap is set to fall within the
range of the laser scan while the width is set to be larger than the maximum width of the duct at any
point (see Figure 9). This is to ensure that crossroads in the duct environment have all their branches
detected so as to be included in the exploration stack maintained by the algorithm. If the custom
costmap area is too small, the robot will have a blind-spot for branching points. The only constraint
to this could be the range of the laser scanner, which is however usually sufficiently large. Figure 9
shows the robot marking the centroids of two branches as the next potential goal positions.

Figure 9. Navigating a crossroad with the map edgealgorithm.

8. Experimental Evaluation

This section reports some experimental assessments made on the developed platform. An image
of the physical robot is shown in Figure 10.

One main concern in this application is the complexity of the software application, which is
evident from the number of ROS nodes and functionalities that have been implemented. For this
reason, special attention was paid to profiling the computational load due to these nodes on the actual
SBC. The problem is related to the tradeoff between a low power-consuming SBC and its relatively
limited processing capability. Table 1 shows the list of nodes running on the SBC and their processor
usage. ros_launch and ros_master, which are not considered as ROS nodes, are added to the table
to help better understand how the processor allocates resources for default ROS processes alongside
other nodes in a typical setup.
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(a) (b)

Figure 10. Front and side view of the developed robot: (a) robot front view; (b) robot side view.

Table 1. ROS nodes and their minimum, maximum and mean processor usage.

Node Name
CPU Usage (%)

Min Max Mean

roslaunch 0.3 75.1 1.04
rosmaster 0 39.1 0.43
rosout 0 5.6 1.5
hokuyo_node 1.3 3.3 1.98
robot_odom 0 8.6 1.69
robot_bumper 0 2.6 0.22
robot_tf 0 3.6 1.15
twist_mux 0 6.6 0.37
logic_node 1.3 7.9 1.67
current_sensor 0 4.6 0.33
robot_shining 0.3 3.6 1.24
ekf_localization 7.3 57.8 45.86
move_base 2.3 50.3 11.57
servo_motor 2.6 6.5 4.65
led_controller 0 2.6 0.22
motors_controller 0 23.7 0.6
imu_reader 3.9 31.5 27.23
ir_short 4.6 7.2 6.04
ir_long 0 4.6 0.43
ir_2d_nav_node 4.9 26 5.85

As can be noticed, most of the computation refers to the sensor fusion, while another heavy
process is due to the IMU data reading and filtering. Almost all the other activities have a negligible
impact on the processor utilization.

Several tests were also carried out on the suitability and the effectiveness of the navigation
algorithm. Two examples of the execution of the exploration task are reported. Figure 11 shows the
behavior in a relatively simple environment, without obstacles and branches. Afterwards, a more
advanced duct environment is considered, having typical features of a real ventilation duct such as the
crossroad and dead-end shown in Figure 12a. The simulation environments were created in the Gazebo
simulator, while the maps were taken from the ROS RVIZ (Robot Visualization tool). Holes were not
included in the environment since the default action after detecting a hole is to terminate the pursuit of
the current goal point, push the goal point off the stack and then pursue the topmost (or next) available
goal position in the stack. Mapping results for two duct environments are shown in Figures 11 and 12.
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The red markers are goal points selected by the navigation algorithm in use. The lines trailing the robot
were traced from these markers, and they indicate the robot path. In both cases, the robot succeeds in
fully exploring the environment, building a reliable map of the unknown area.

(a)

(b)

(c)

Figure 11. Exploration and mapping of a simple duct. Both maps—SLAM map and costmap—were
generated concurrently: (a) simple duct environment with walls depicted by transparent red barriers;
(b) map generated using SLAM by the slam_gmapping node; (c) global costmap generated by the ROS
navigation stack.

(a)

Figure 12. Cont.
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(b)

(c)

Figure 12. Exploration and mapping of a duct with dead-ends and branches. Both maps—SLAM map
and costmap—were generated concurrently: (a) advanced duct environment with a crossroad and
two dead-ends; (b) map generated by the slam_gmapping node; (c) global costmap generated by the
navigation stack.

Since the value of the costmap resolution is not fixed and should be selected by the user, to ease
the selection of a suitable costmap resolution, more experimental results are provided in Figure 13
showing two graphs. The first graph in blue shows the average iteration/exploration time (i.e., time
for goal computation plus robot transit time to reach the goal) against costmap resolution. The second
graph in red shows the average error on reaching the computed goal against costmap resolution.
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Figure 13. Errors on goal computation and exploration time dependence on resolution.
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The graphs were plotted by averaging 20 runs of the robot exploration in the environment in
Figure 11c, increasing the resolution from 10 cm to 1 cm in steps of one. From the graphs, the increase
in error as the resolution of the costmap reduces is noticeable, while the slightly increased average
exploration time for higher resolutions is also noticeable. Therefore, a good compromise between
average time to complete an exploration and the accuracy of the robot movement/transitions will
mean selecting a costmap resolution of about 5 ±1 cm.

9. Conclusions

This paper presented the design and the implementation of an autonomous wheeled robot meant
for the exploration of air ventilation ducts. The presentation included the hardware and the software
stack, with discussions on the adopted methods. Part of the focus was on the navigation, obstacle
detection and avoidance approaches, which have some peculiarities related to the specific working
environment. The adopted navigation approach, hardware or software architectures can be extended
for more complicated environments or, alternatively, simplified for environments that are relatively
less complicated. The setup emphasizes the use of off-the-shelf devices to ease the replicability of the
entire setup. The modeling of the robot, the environment and the navigation algorithm were equally
done with free and open source software, consistent with the aforementioned objective of replicability.
The implemented solutions were validated both by simulation and with processor load measurements
on the developed robot.

A drawback of this work is the unavailability of a global localization reference, as such errors in
localization keep increasing. Approaches to reduce the growth rate of the error can be considered as
the integration of the video capture into the localization system. Another drawback is that the accuracy
of the system as reported in this work does not include practical experiments. On the other hand,
despite these limitations, this work proposes a relatively inexpensive and easy to deploy solution for
autonomous robot exploration of ventilation ducts and similar spaces. The simulations also provides
a setup for rapidly prototyping our solution in other similar environments.
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Abbreviations

The following abbreviations are used in this manuscript:

CSI Camera Serial Interface
FSM Finite State Machine
GPIO General Purpose Input/Output
GPS Global Positioning System
I2C Inter-Integrated Circuit
IMU Inertial Measurement Unit
IR Infrared
PCB Printed Circuit Board
PWM Pulse Width Modulation
ROS Robot Operating System
ROV Remotely-Operated Vehicle
SBC Single Board Computer
SLAM Simultaneous Localization And Mapping
UART Universal Asynchronous Receiver/Transmitter
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