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Abstract: The authors develop an approach to a “best” time path for Autonomous Underwater 

Vehicles conducting oceanographic measurements under uncertain current flows. The numerical 

optimization tool DIDO is used to compute hybrid minimum time and optimal survey paths 

for a sample of currents between ebb and flow. A simulated meta-experiment is performed 

where the vehicle traverses the resulting paths under different current strengths per run. The 

fastest elapsed time emerges from a payoff table. A multi-objective function is then used to 

weigh the time to complete a mission versus measurement inaccuracy due to deviation from 

the desired survey path. 

Keywords: autonomous underwater vehicle; optimal path planning; numerical optimization; 

minimum time; objective function 

 

1. Introduction 

The Naval Academy operates a variety of Autonomous Underwater Vehicles (AUVs) for educational 

and research purposes, including Remote Environmental Measuring Units (REMUS), made by Hydroid [1]. 

The REMUS AUV is depicted in Figure 1. These AUV units can be programmed to follow a sequence 

of straight-line path segments between waypoints while collecting data; refer to Figure 1. Using such 

capability, REMUS can follow any trajectory specified by waypoints from launch to destination; one 

that has properties in support of its mission such as “minimum time” and “minimum energy.” This paper 
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expands on research done in a previous work, in which the authors investigated the “minimum-time” 

path in the presence of an unknown current [2]. The case where the magnitude and direction of currents 

is known has been studied in the optimal control literature and is referred to as Zermelo’s problem [3]. 

More recently, the same problem has been investigated further in the context of underwater vehicles [4–6]. 

Along the same line of research, solutions in known time-varying current fields have also been  

reported [7,8]. A real-time approach to path corrections for unknown time-varying currents has been 

developed in [9]. Using data-based current fields, path planning for realistic ocean variability has been 

addressed in [10]. 

  

(a) (b) 

Figure 1. (a) REMUS deployed for data collection in the Severn River, Maryland;  

(b) Linear path specified on the REMUS’ graphical interface. 

The objectives of this work are two-fold. First, the authors develop an approach to a “best” time path 

for Autonomous Underwater Vehicles conducting oceanographic measurements under uncertain current, 

which is the most significant environmental factor affecting elapsed time or expended energy when 

following a desired trajectory. Second, a multi-objective function is then used to weigh the time to 

complete a mission versus measurement inaccuracy due to deviation from the desired path. Ideally,  

it would seem best to conduct surveys with the smallest possible measurement error. However, there are 

factors that would require the vehicle to survey an area more quickly at the expense of having some 

measurement error. For example, an underwater vehicle only has a finite amount of energy to expend in 

completing its survey. This is not only the energy required to travel the survey path, but also energy to 

run the onboard sensors and processors. Second, an underwater vehicle can only operate for a finite 

amount of time before its inertial navigation system develops too much error, causing its survey path to 

insert even more measurement error. For these reason, it is imperative to be able to accept a certain 

amount of measurement error in order to reduce the mission time. 

In the authors’ view, there are two approaches to tackle the problem of uncertain current. First, 

knowledge of extreme variations of current can be used for worst-case planning; that is, to select the 

“best” trajectory from a range of least favorable outcomes. Second, on-board velocity sensors can be 

used for adaptive planning, where the “best” trajectory from the vehicle’s actual position is recomputed 

at sample intervals. The authors follow the former approach. To determine the worst-case float plan, the 
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authors solve numerically for the minimum time trajectory, respectively, for a number of known current 

strengths, S, covering the range between ebb and flow waters. 

In addition to the objective “time”, the authors consider “measurement error” due to deviation from 

the intended geographic location. The reason for deviation is that the AUV need also reach a large 

number of locations in a short period of time. Typically, oceanographic surveys follow a  

“lawn-mowing” path conducting measurements at locations along each line segment; refer to Figure 2. 

In the absence of current, the “minimum-time” paths coincide with the respective line segments. When 

a current is present, however, the “minimum-time” paths are curved; thus, short travel times come at the 

expense of measurement error. The problem of energy-exhausting survey missions in fast-flowing 

waters has been studied in [11]. Trade-offs between energy onboard the AUV and spatial survey error 

have been investigated in an earlier work [12]. 

 

Figure 2. Measurement locations and “minimum-time” path in current. 

For example, Figure 2 depicts an AUV traversing a “minimum-time” path. The current flows in the 

unit vector î  direction and its profile changes along the unit vector ĵ  direction. There are N intended 

locations for conducting measurement, lying along ĵ , with coordinates    1, ,..., , Nd y d y . AUV 

trajectory is denoted as  ( ), ( )x t y t . The (spatially) cumulative error due to deviation from desired 

measurement locations is: 

  
2

1

( ) ( )
N

n

n

y t y x t d


    (1) 

where     is the Kronecker delta function. In the proposed approach, the authors weigh such 

“measurement error” against the “time” to traverse the path under current. The multi-objective functional 

is the weighted sum of two conflicting objectives associated with “time” and (geographic) “measurement 

error.” Using the numerical optimization tool DIDO [13], the authors analyze the effect that the 

weighting of these objectives has on their respective fulfillment. 

The paper is organized as follows. Under Section 2, the problem is bounded; the scope of the 

investigation defined. In Section 3, the authors perform an analytical investigation in order to estimate 

the effect of different current profiles on the optimal trajectories and to weigh the time to complete  
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a mission versus measurement inaccuracy due to deviation from the desired path. Section 4 presents the 

main results, arrived at by means of the numerical optimization. 

2. Modeling Assumptions 

Consider an earth-fixed reference frame defined by an orthogonal basis  ˆ ˆ,i j ; refer to Figure 3. 

Relative to the basis, the REMUS’ velocity components have as follows: 

 

 

,

,

( ) cos ( ) ( ), ( )

( ) sin ( ) ( ), ( )

w i

w j

x t v t v x t y t

y t v t v x t y t

  

  
 (2) 

where v is the vehicle’s speed relative to the water and adjustable in the interval  max0,v ; for REMUS, 

max 2.3v m s . Furthermore, θ denotes the vehicle’s course; ,w iv  and ,w jv  are components of water’s 

flow rate. 

 

Figure 3. Vehicle path in one-dimensional current flow. 

Referring to Figures 2 and 3, the start and end points A and B are at (0, 0) and (0, l); the straight 

distance l = 1800 m. The current flows along unit vector i only, that is, , ( , ) 0w jv x y  . Furthermore, the 

profile of , ( , )w iv x y  is independent of the position x, that is, , ,( , ) ( )w i w iv x y v y . 

To simplify presentation, the authors adopt the following convention: 

 ( ) ( ), ( )x t f x t u t

x
x

y

u



 
  
 

 

 (3) 

The objective function is: 

 ( ), ( )
B

A

t

t
J L x t u t dt   (4) 

For the “minimum time” path from point A to B, the integrand is  ( ), ( ) 1L x t u t  . When the problem 

weighs both “time” and “accuracy” the integrand becomes    
2

( ), ( ) 1 ( )
2

r
L x t u t x t d   . The second 

objective captures the essence of the cumulative error in Equation (1). If the weight r = 0, the problem 

becomes one of “minimum time”; if r  , one of “minimum measurement error”. 
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3. Analytical Approach to an Extremal Path 

The following optimization problem results from the given modeling assumptions: 

 min ( ), ( )
B

A

t

tu
J L x t u t dt   (5) 

subject to Equation (3). 

Let  *, *x u  be an extremum. For the “minimum time” path the Hamiltonian function is: 

       ( ), ( ), ( ) ( ), ( ) ( ) ( ), ( ) 1 ( ) ( ), ( )T TH x t t u t L x t u t t f x t u t t f x t u t      (6) 

When the problem weighs both “time” and “accuracy” the Hamiltonian function becomes: 

         
2

( ), ( ), ( ) ( ), ( ) ( ) ( ), ( ) 1 ( ) ( ) ( ), ( )
2

T Tr
H x t t u t L x t u t t f x t u t x t d t f x t u t        (7) 

where  1 2

T     are Lagrange multipliers. 

According to Pontryagin’s minimum principle, evaluated at the extremum and at the solution of the 

adjoint equation: 

 *, *

( )
x u

H
t

x

 
    

 
 (8) 

the Hamiltonian is constant; its value calculated as follows: 

   *( ), , *( ) min *( ), ,
u

H x t u t H x t u    (9) 

At the minimum of the Hamiltonian: 

0
H

u

 
  

 (10) 

Substitution in Equation (6) from Equation (2) results in the following necessary condition for 

 *, *x u  to be an extremum: 

1 2( )sin *( ) ( )cos *( ) 0t u t t u t     (11) 

Equivalently, the decision variable (here, heading input) is optimal, θ*, only if: 

  2

1

tan *


 


 (12) 

Adjoint Variables: Effect of Current 

From Equations (6) and (12), the current is affecting the heading indirectly and through the adjoint 

variables. After manipulation, Equation (8) yields the following: 

,,

11

,, 22

w jw i

w jw i

vv

x x

vv

y y

 
      
         
   

 (13) 
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If , ( )w i wv y v , a constant flow profile, then the adjoint equations integrate to constants.  

Equation (12) shows the optimum heading is necessarily constant. The optimum path is a straight line 

from A to B and the vehicle will have to sail across maintaining the optimum heading in a  

“crabbing” fashion. 

The current profile ,

2
( )w i w

y l
v y v

l


  , a linear flow profile, is studied in [3]. The adjoint equations 

are as follows: 

11

22

0 0

0wv l

     
     

     
 (14) 

Then, the necessary condition for optimum heading becomes: 

1
1

1

( )

*( ) tan

w
A

v
t t

lt 

 

 


, At t  (15) 

The following piecewise-linear current profile allows for the flow rate to equal zero on the boundaries 

and to peak in the middle: 
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From Equation (13), the second adjoint equation yields: 
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 (18) 

The optimum for the “second leg” of the float plan resembles the previous case. 

The parabolic flow profile has the same properties as the piecewise-linear and allows for a smooth 

flow rate: 

2

, 2

4 4
( ) w w

w i

v v
v y y y

l l
    (19) 

In this case, using Equations (7) and (12), we include both “time” and “accuracy” objectives.  

The adjoint equations are as follows: 
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For current in the direction of the unit vector i with parabolic profile: 

11

22

0 0
( )

4 2
1 00 w

r x l
v y

l l

 
                             

 (21) 

For the r = 0 “minimum time” case, the adjoint equations become: 

11

22

0 0

4 2
1 0wv y

l l

 
                     

 (22) 

Since Equations (21) and (22) are, respectively, coupled to Equation (2), the above equations cannot 

be solved analytically. The authors investigate “minimum time” paths for various parabolic profiles and 

then weigh “time” versus “accuracy” using the numerical optimization tool DIDO. 

4. Numerical Approach to the Optimum Path 

DIDO is a MATLAB-based software package that utilizes pseudo-spectral methods to determine an 

extremal for a properly formulated optimal control problem. Information and illustrations portraying 

DIDO’s development, viability, and applicability for solving such problems is found in [14,15]. 

4.1. The Minimum Time Problem 

First, DIDO is used to plan a minimum time path between points A at (x, y) = (0, 0) and B at  

(x, y) = (0, 1828.8) in the presence of a parabolic flow field. The units of distance will be in meters; time 

in seconds; and angle in radians. The speed is at max (v = 2.3); heading θ = π/2. To cover the range of 

expected current strength, the authors use S = 5 sets of parabolic flow profiles with maximum current 

 0.3, 0.8,1.3,1.8, 2.3wv  , respectively. Figure 4 shows the resulting vehicle paths. As the current 

increases the path length increases as the vehicle must travel further upstream and, then, downstream to 

complete the maneuver in minimum time. (Notice that the paths resemble sine functions with skewed 

peaks and troughs). 

Second, the authors design a meta-experiment (at present, simulated) programming REMUS to 

navigate through M = 30 waypoints along each of the S = 5 paths in Figure 4. Every trajectory is traversed 

S times, each under a different current strength. During the meta-experiment, even though the shape of 

the flow field is unchanged, the current strength is unknown to REMUS; thus, the vehicle is traversing 

non-optimal trajectories (unless the actual current happens to match the trajectory’s assumed current). 

The worst-case float plan emerges from an S × S pay-off table as the one that yields the least elapsed 

time. The elapsed time, B At t , along each path and the path average results are contained in Table 1. 
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The “best” time is boldfaced; the associated path is traversed in fastest time irrespective of the  

current strength. 

 

Figure 4. Minimum time optimal paths for five current flows. 

Table 1. Table of elapsed time, 
B At t . 

Current/Path 1 2 3 4 5 

1 798 804 812 838 920 

2 821 817 824 849 907 

3 873 864 858 878 918 

4 998 987 943 930 955 

5 1871 1460 1225 1087 1039 

Average 
B At t  1072 986 932 916 948 

In order to investigate “time” vs. “accuracy”, the authors thought it logical to consider the “best” 

minimum time path as the desired survey path. Deviation from that desired path would result in 

measurement error. The meta-experiment was expanded to include S = 10 paths. Every path was 

traversed S times, each under a different current strength. Simulations indicate that the AUV will traverse 

the “minimum time” path computed for assumed current strength 
0

max0.75wv v  in the shortest time, on 

average, given any actual current strength, wv . The authors computed the time to traverse the “minimum 

time” path above for actual current strength 0

w wv v . Assuming current profile and strength 0

wv , one 

solves for the “minimum time” path from point A to B using the objective function: 

 0,
B

A

t

w w
t

J v v dt   (23) 

where wv  is the actual current strength. To demonstrate the finding, Figure 5 depicts the average travel 

time,  
100 0

1

1
( ) ,

10

k

ave w w wk
J v J v v


  , on a path planned for assumed current strength 0

wv  over  
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k = 1, ..., 10 equally-likely actual current strengths, k

wv . The “best” path, corresponding to the lowest 

average mission time, is the “minimum time” path associated with a current strength of 0

max0.75wv v . 

 

Figure 5. Average time traveled on ten different paths planned for 0

max0 wv v  , where  

vmax = 2.3 m/s. 

4.2. Time vs. Accuracy 

The next step is to weigh “time” versus “accuracy” in the generation of the optimal float plan. In this 

case the integrand of Equation (4) becomes: 

   
2

( ), ( ) 1 ( )
2

r
L x t u t x t d    (24) 

The authors examine the two cases where the actual current wv  is the same as and different than the 

assumed current 
0

max0.75wv v . The single degree of freedom in the design of the optimum path  

is the weight r introduced in Equation (24). Performance is assessed in terms of “time” and  

“measurement error.” 

In practice, disparity in sensitivity led the authors to introduce a scaled version of the weight r in 

Equation (24) as follows: 

'

2 max *( )r p

r r

x t d



 (25) 

The quantity *max ( )r px t d  is the worst “measurement error” possible over the range of r. It occurs 

for r = 0, i.e., “minimum time” path and at tp on either peak of the trajectory. The scaled version, rʹ, is 

used in the ensuing analysis, but the prime (ʹ) is omitted for brevity. 
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4.3. Actual Current 
wv  Coincides with Assumed 0

wv  

Figure 6 depicts ten paths corresponding to a range of weights r (in fact, rʹ). Here, the offset d is set 

at zero. For small r, the optimum paths are close to “minimum time” trajectories [2]. As expected,  

large weighting of the second term in Equation (24) results in trajectories that are nearer the desired 

measurement locations. 

 

Figure 6. Optimum paths for a range of weights r. 

Figure 7 depicts normalized “measurement error” for  0,5r . Near the knee of the curve, a weight 

value r = 0.5 results in 80% improvement in accuracy compared to the “minimum time” path. 

 

Figure 7. Measurement error normalized to maximum error for  0,5r . 
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Similarly, Figure 8 shows the traveled time  0 0,w wJ v v  from Equation (23) normalized to  0 0max ,r w wJ v v . 

The curve has its knee in the same neighborhood of r as the one in Figure 7. Therefore, a weight value  

r = 0.5 results only in 3% increase in traveled time compared to “minimum time”. 

 

Figure 8. Traveled time normalized to maximum time for  0,5r . 

4.4. Actual Current 
wv  Differs from Assumed 0

wv  

To investigate the case of unknown flow, the authors consider actual current strength maxwv v , i.e., 

a 25% increase in flow than the previous case. The dashed curve in Figure 9 carries the same information 

as the one in Figure 7 albeit for a wider range  0,20r . In comparison, the current curve (solid) is 

similar in shape with knee in the same vicinity of r. 

 

Figure 9. Normalized measurement error in actual current maxv  (solid) and max0.75v  (dashed). 
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In the companion Figure 10, however, the solid curve has different quality than the dashed curve 

obtained under known flow and has also been depicted in Figure 8. The knee has shifted to higher values 

of the weight r and, at the same time, its shape is obtuse due to the change in curvature. 

 

Figure 10. Normalized traveled time in actual current 
maxv  (solid) and 

max0.75v  (dashed). 

5. Conclusions 

If REMUS is to sail from A to B under unknown current (strength 1–5 of Table 1) in minimum time, 

it will achieve the fastest (on average) time by traversing path number four, obtained for the second 

strongest current (strength 4). Simulations indicate that the AUV will traverse the “minimum time” path 

computed for assumed current strength 
0

max0.75wv v  in the shortest time, on average, given any actual 

current strength, vw. 

Based on the evidence at hand, a weight value r = 0.5 results in a good tradeoff between “time” and 

“accuracy” when the flow is known to be at 0.75vmax, where vmax is the maximum current strength as 

well as the AUV’s top speed. In the future, the authors will investigated conditions under which a similar 

tradeoff may be possible in the case of unknown current strength. 
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