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Abstract: Control systems prototyping is usually constrained by model complexity, embedded 

system configurations, and interface testing. The proposed control system prototyping of a 

remotely-operated vehicle (ROV) with a docking hoop (DH) to recover an autonomous 

underwater vehicle (AUV) named AUVDH using a combination of software tools allows the 

prototyping process to be unified. This process provides systematic design from mechanical, 

hydrodynamics, dynamics modelling, control system design, and simulation to testing in 

water. As shown in a three-dimensional simulation of an AUVDH model using 

MATLAB™/Simulink™ during the launch and recovery process, the control simulation of 

a sliding mode controller is able to control the positions and velocities under the external 

wave, current, and tether forces. In the water test using the proposed Python-based GUI 

platform, it shows that the AUVDH is capable to perform station-keeping under the external 

disturbances. 
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1. Introduction 

In the last few decades, the applications of underwater robotic vehicles (URVs) [1] have experienced 

tremendous growth in industry. Many are used for underwater inspection of sub-sea cables, oil and gas 

installations, and pipelines. However for search and rescue (SAR) applications involving launch and 

recovery tasks [2–5], an autonomous underwater vehicle (AUV) has become useful due to more reliance 

on sensor technology [6], rather than crewed workboats, remotely-operated vehicle (ROV), and 

expensive on-site labour. However, human intervention is often required for the initial launching and 

recovery operation in the event of high sea state [7,8] and in limited visibility at night. Most AUVs can 

home into dedicated stationary docking stations; the majority of the docking hoops for recovery purposes 

do not possess all of the required hardware and software or perhaps even the manoeuvrability to dock 

the AUV. Instead, an AUV with a docking system designed into the ROV manned by a surface ship 

becomes an alternative solution due to its robustness via hard-wire links and human-in-the-loop control 

during the initial launching and unforeseen faults [9] during recovery. 

In order to accomplish the recovery task successfully, we need to build a functional engineering 

prototype to demonstrate its feasibility to use a docking system to autonomously align the docking hoop 

to the path of the AUV. However, the modelling of an open-frame ROV can be quite challenging in 

terms of the accuracy of the model, time and costs spent in test facility. The hydrodynamic parameters 

and underwater behaviour of the ROV are identified using a lab-based experimental test approach such 

as towing tank, planar motion mechanism (PMM), marine dynamic test facility, pulley system [10],  

free-decaying experiment [11,12] and free-decaying method using springs [13]. In addition, these test 

methods, including a system identification (SI) method using adaptive and least square-based estimation 

to estimate the parameters of the ROV [14–16] were performed. However, these methods involved 

extensive sea trials, time, and costs for a mature vehicle design instead of a design that is in the prototype 

stage. 

With the current computer technology, the computational fluid dynamic (CFD) technology has  

been widely used for URV [17–22]. The CFD simulation have been successful in simulating the 

streamlined underwater vehicles such as an AUV but not on a ROV. This is mainly due to the availability 

of empirical formulae for these streamlined bodies for the AUV. Although, there is no actual error stated 

in those papers published in literature, approximately 30% error could be inherent for such simulation. 

Hence, the prediction of the hydrodynamic parameters of the ROV is still difficult due to the complexity 

of its geometry. 

In order to circumvent the problems due to model uncertainty and test constraints, this paper presents 

the applications of numerical modelling using CFD software, Simulink™ toolboxes for sliding-mode 

controller design, and a Python-based GUI platform to the final test of AUVDH control. The proposed 

robust simulation-to-design process helps to overcome the model uncertainty due to the model accuracy 
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and the uncertain external disturbances. Instead of having an exact model of high accuracy [23,24], a 

sufficient simulated model is reasonable for most control purposes. The proposed sliding-mode design 

will be simulated and implemented on an actual AUVDH. 

The paper is organized as follows. The ROV modelling is shown in Section 2. It is followed by the 

AUVDH simulation platform and graphical user interface (GUI) design for testing in Sections 3 and 4, 

respectively. Results and discussion are shown in Section 5. Lastly, Section 6 concludes the paper. 

2. ROV Model 

Modelling dynamic equations of the ROV is usually the first step before the computer simulation. In 

this section, the basic design of the ROV is described followed by the ROV modelling and simulation. 

The parameters of the ROV are tabulated in Table 1. The ROV tasks include launch and recovery of the 

AUV. The ROV has six thruster inputs for six degrees of freedoms (DOFs) (i.e., surge, sway, heave, 

roll, pitch, and yaw velocity) with a high degree of cross-coupling between them. There is also a suite 

of sensors for position and velocity measurements, namely Inertial Measurement Unit (IMU), depth 

sensors, and DVL (Doppler Velocity Log). Prior to ROV modelling, the following assumptions are 

made. There are, namely: 

1. The ROV is a rigid body and is fully submerged once in water; 

2. Water is assumed to be ideal fluid that is incompressible, inviscid, and irrotational; 

3. The ROV is slow moving for operation such as pipeline inspection; 

4. The Earth-fixed frame of reference is inertial; 

5. The tether dynamics attached to the ROV is modelled as 3D Boundary Value Problems (BVP) [25] 

with end force estimation at the ROV’s centre of gravity (CG). The end point coordinate coincides 

with the CG of the ROV. The tether is designed to be neutrally buoyant and to operate with 

sufficient slack (or remain less taut) so that minimal disturbance loads are transmitted to the 

vehicle; 

6. Sea current and waves are modelled as disturbances to the ROV. 

Table 1. Linear (KL) and quadratic damping (KQ) coefficients of ROV in surge, sway, 

heave, and yaw [26]. 

Direction Surge Sway Heave Yaw 

Parameter KL KQ KL KQ KL KQ KL KQ 

STAR CCM+ 3.221 105.3 3.291 139.6 5.682 273.8 0 6.079 

The ROV model is conventionally represented by a six DOF, nonlinear set of first order differential 

equations of motion, which may be integrated numerically to yield vehicle linear and angular velocities, 

given suitable initial conditions. The vehicle is considered as a six DOF free body in space with mass 

and inertia, being acted on by numerous forces. Two reference frames [1] are used to describe the 

vehicles states, one being inertial frame (or Earth-fixed frame), one being local body-fixed frame with 

its origin coincident with the vehicle’s centre of gravity, and the three principle axes in the vehicle’s 

surge, sway, and heave directions. For marine vehicles, the six DOF are conventionally defined by the 

following vectors (by Society of Naval Architects and Marine Engineers): 
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1.    TT
| zyx 21 ηηη : position and orientation (Euler angles) in inertia frame; 

2.    TT
| rqpwvu 21 vvv : linear and angular velocities in body-fixed frame; 

3. 
   TT

|   zyx 21 τττ
: forces and moments acting on the vehicle in body-fixed 

frame. 

The external force and moment vector τ includes the hydrodynamic forces and moments due to 

damping and inertial of surrounding fluid known as added mass, and restoring force and moment.  

The mathematical model of an underwater vehicle can be expressed, with respect to a local body-fixed 

reference frame, by nonlinear equations of motion in matrix form [1]: 

  τηgvvDvvCvM  )()(  (1) 

vηJη 2 )(  (2) 

where    TT
| rqpwvu 21 vvv  is the body-fixed velocity vector, 

   TT
| zyx 21 ηηη  is the Earth-fixed vector, 66 ARB MMM  is the inertia 

matrix for rigid body and added mass, respectively, 6)( ηg  is the gravitational and buoyancy vector, 
66)()()(  vCvCvC ARB
 is the Coriolis and centripetal matrix for a rigid body and added mass, 

respectively,   66vD  is the linear and quadratic damping matrix respectively. The input force and 

moment vector 6Tuτ  relates the thrust output vector 6 uFu T
 with the thruster configuration 

matrix 66T , 66TF  is the dynamics of each thruster that converts the input voltage command 

6u  into thrust to propel the vehicle. 

)( 2ηJ  is the Euler transformation matrix which brings the inertia frame into alignment with the  

body-fixed frame: 
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The transformation is singular for o90 . However, for the ROV, this problem does not exist 

because the vehicle is neither designed nor required to pitch anywhere near o90  instantaneously. 

The position of the thruster on the ROV (as seen in Figure 1) is defined by the thrusters’ configuration 

matrix, T. As mentioned in the nonlinear ROV dynamic equation, the left hand-side of the equations 

refers to the input forces and moments to the ROV model. These input forces and moments are determined 

based on the summation of the force and moment equations in the six DOFs. The force and moments for 

the open-hoop configuration are as follows. 
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(6) 

where 61,uuu maxmin  ii
 are the minimum and maximum thrust output by each thruster and 

T][   zyxτ  is the force and moment vector generated. Here α (=45°) is the orientation angle 

for T3 and T4 while β (=45°) is the orientation angle for T1 and T2. Similar equations can be established 

for the closed-hoop configuration. 

 

Figure 1. Six thruster locations on AUVDH platform [27]. 

In the proposed hydrodynamics modelling approach, Figure 2 shows the overall approach from 

numerical modelling to control system design. The computer-aided model of a ROV created using 

SolidWorks™ and MultiSurf™ is used by computational fluid dynamic (CFD) software such as  

STAR-CCM+™ and WAMIT™, respectively. As a result, hydrodynamic parameters such as damping 

and added mass coefficients will be determined for the nonlinear ROV model. For more realistic 

modelling, the model will be subjected to its inherent model uncertainty due to the numerical 

computational error and external disturbances. To overcome the model and external disturbance 

uncertainty, a proposed control system design using sliding-mode based design is applied. The termination 

of the simulation will depend on satisfying the time-domain criteria and the number of iterations. 
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Figure 2. Overall flow chart of AUVDH modelling to control system design. 

Figure 3 shows the geometrical model of the ROV. The major components of the ROV such as floater, 

pod, frame and thrusters, are modelled to ensure the flow characteristic is similar to the actual design. 

As Figure 3 depicted, the ROV is actuated by six thrusters in six DOFs (namely: surge, sway, heave, 

roll, pitch, and yaw). The docking hoop for docking the AUV is not included in the model. The rigid-body 

mass and inertia properties with respect to the centre of gravity of the ROV, are determined using the 

CAD software. The vehicle has a weight of 135 kg, volume of 0.05 m3, and surface area of 4.75 m2. 

Hence, the rigid-body ROV mass inertia can be written as: 
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(7) 

The overall damping effect of ROV is described as a sum of linear damping, drag and the vortex 

shedding (nonlinear damping). The ROV is designed to be self-stabilizable in pitch and roll motion.  

The viscous effect of the flow causes the non-linear force and moment under a small pitch angle 

condition to be negligible. The linear coefficients are adequate to represent the force and moments  

due to the inviscid part of the flow when ROV is operating at a slow speed (less than 2 m/s) [1] and 

small pitching angle. 
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Figure 3. Vector plot at centre plane of AUVDH at 0.5 m/s [26]. 

Thus, the ROV hydrodynamic damping matrix D is simplified due to ROV working at a speed 

approximately equal to 0.5 m/s (angular speed of 0.3 rad/s). The off-diagonal elements in the damping 

matrix D(v) are small compared to those diagonal elements on the underwater vehicle. Therefore, this 

hydrodynamic damping matrix becomes: diag[{𝑋𝑢, 𝑌𝑣, 𝑍𝑤 , 𝐾𝑝, 𝑀𝑞 , 𝑁𝑟}] . As shown in Figure 4, Case 1 

shows the real situation where the ROV moves forward at a certain speed in a static fluid domain. 

However in CFD simulation, the ROV was made static and the flow is at opposite direction (Case 2) due 

to the drag force depends only on the relative motion between the fluid and the vehicle. Hence, it helps 

to simplify the modelling of the ROV boundary conditions and meshing. 

 

Figure 4. Flow on CFD models for AUVDH [26]. 

A turbulence model with unsteady three-dimensional flow was built for the Reynolds number flow 

condition greater than 1.0 × 106. The Shear-Stress-Transport (SST) model was used in CFD software 

STAR CCM+. The flow in fluid domain is expected to be turbulent and isothermal. The fluid properties 

of water remain unchanged throughout the simulation process. The temperature is fixed at 20 degree 

Celsius and the water is modelled as an incompressible fluid. It is impractical to set the fluid domain to 

be infinitely large to analyse damping force acting on ROV in CFD or in towed tank tests. The suggest 

dimension is around 10 to 20 times larger than the dimension of the ROV (see Figure 5) to ensure the 

accuracy [11] of the actual flow domain around the ROV. 

 

Figure 5. Meshing for flow domain around AUVDH [26]. 
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Table 1 shows the drag coefficient of ROV in the three principle motions. The flow in domain was 

simulated at different speeds using STAR CCM+. It also shows the drag moment versus angular velocity 

in yaw direction. 

With that, the linear and quadratic hydrodynamic damping matrix for ROV is written as: 

]}00.0682.5291.3221.3{[diagLD  (8a) 

]}079.600800.273600.139300.105{[diagQD  (8b) 

In summary, the results show that surge motion has the lowest damping while the heave motion has 

the largest drag force. The values of linear damping coefficients are less than the quadratic terms due to 

its velocity square term. This may be due to the interaction of the thrusters that was not included in the 

CFD model. 

The hydrodynamic added coefficients of the AUVDH are analysed and presented. The added mass 

and inertia are independent of the wave circular frequency for a fully submerged vehicle. The added 

mass coefficients matrix for a ROV can be written as follow: 
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where  is the added mass along X-axis due to an acceleration u in X-direction,  is the added mass 

along X-axis due to an acceleration v in Y-direction, and so forth. 

On the other hand, the corresponding added Coriolis and centripetal matrix is represented. 
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where 
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(11) 

The surface-based computer aided design (CAD) software MultiSurf™ is used to model the geometry 

of the AUVDH. According to the WAMIT™ manual [28], MultiSurf™ was designed to operate with 

WAMIT™. It is able to export the necessary file for WAMIT™ applications. The panel surfaces of the 

AUVDH geometry is shown in Figure 6. As observed, only half of the ROV is modelled due to the 

symmetry of the vehicle in XZ-plane. This greatly reduces the complexity of the added mass matrix and 

computation time required by WAMIT™. Since the AUVDH consists of multi-component, these 

uX  vX 
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components were drawn simultaneously in MultiSurf™. The mesh of the AUVDH were created using 

MultiSurf™ and WAMIT™ to compute the added mass matrix. 

 

Figure 6. Finite surface panels generation using MultiSurf™ on AUVDH [26]. 

The geometry file created by MultiSurf™ was imported to WAMIT™. The low-order panel method 

was used. The output file created using WAMIT™ can be imported into MATLAB™ for analysis. 

Figure 7 illustrates the procedure of using MATLAB™ to analyse the hydrodynamic added mass. 

MULTISURF .MS2 .PAT

.GDF

WAMIT.POT .FRC

.OUT

MATLAB SIMULINK

low-order method

high-order

method

hydrodynamic settings

graphical settings
Reference frame,

depth, gravity, length

settings

output

plotting

1.

2.

3.

Steps

 

Figure 7. Program flowchart to determine added mass coefficients for AUVDH [26]. 

Before using the WAMIT™ to test the AUVDH, a study of the empirical results of a 2-m diameter 

sphere to verify the program setup and parameters was used. The theoretical added mass of a sphere is 

𝐴 = 2/3𝜋𝜌𝑟3 for the three translational motions; surge, sway, and heave. The added mass of the sphere 

can be written as 𝐴 = 2/3𝜋𝑟3 through normalizing the mass against density. Table 2 shows the low-order 

method results of the sphere. 

Table 2. Low-order method for sphere [26]. 

Panel Number Numerical Results Theoretical Results 

 Surge Sway Heave Surge Sway Heave 

256 2.085167 2.085168 2.073719 2.0944 2.0944 2.0944 

512 2.084073 2.084074 2.087820    

1024 2.083766 2.083768 2.091414    

Errors    −0.5% −0.5% −0.1% 

As seen in Table 2, the numerical results obtained from WAMIT™ low-order method have a small 

difference compared with the theoretical results. The above case study identifies the input parameters 
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settings that are suitable and accurate to compute the added mass coefficient of the AUVDH.  

The AUVDH was then modelled using MultiSurf™ and imported into the WAMIT™ to solve the 

problem using the low-order panel method. Only the main components of the AUVDH are drawn to 

reduce the complexity of the geometry. The convergence tests of the added mass of the AUVDH against 

various panel numbers are shown in Figures 8 and 9. As observed from the convergence tests, the added 

mass results achieved desired value of around 3000 to 4000 panels. 

 

Figure 8. Convergence plot for surge, sway, and heave [26]. 

 

Figure 9. Convergence plot for roll, pitch, and yaw [26]. 

The off-diagonal terms in the added mass are smaller as compared to the diagonal components for 

most of underwater vehicle with approximately three planes of symmetry in the added mass matrix. The 

off-diagonal components [1] are usually neglected for a slow-speed operating underwater vehicle. The 

added mass matrix obtained by MATLAB™ can be further simplified. 
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The added mass matrix 𝐌𝐀  of the AUVDH must be positive. The following relations are observed 

from the matrix: 𝑚11 < 𝑚22 < 𝑚33. A smaller added mass in the surge direction, i.e., m11 has been observed. 

It is due to the AUVDH has the smallest projection area in the surge direction. The corresponding 

Coriolis and centripetal added mass matrix from Equation (12) can be written as: 
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𝐂𝐀 (𝐯) =
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 (13) 

In summary, the added mass coefficients of the AUVDH were computed by WAMIT™ using both 

potential flow and panel method theory. The added mass in surge motion is around 20 kg; in sway motion 

is 53 kg; in heave motion is 126 kg. As shown in Figures 8 and 9, different added mass results with the 

various numbers of panels are presented were compared. The added mass results tend to converge near 

to 10,000 panels. By observing the numerical results based on the surface area and shape of the AUVDH, 

it shows a good relationship with the respectively hydrodynamic parameters. Hence, the AUVDH model 

is adequate for subsequent control system design. 

]}263.5703.13802.2144.126435.53392.20{[diagAM  
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]}275.1319.5679.0682.5291.3221.3{[diagLD  

]}204.0240.33520.15800.273600.139300.105{[diagQD  

(14) 

3. AUVDH Simulation Platform 

The AUVDH dynamics include the inertia mass and added mass model, Coriolis and centripetal 

forces, Euler’s transformation, gravitational and buoyancy forces, damping forces and thruster model. 

The simulation models for each subsystem are shown in this section. 

3.1. AUVDH Simulation Model 

The overall view of the AUVDH dynamic model [27] can be seen in Figure 10. The desired input to 

the AUVDH is on the left-hand side of the block diagrams that is a joystick input to move the AUVDH 

manually. The error signal can be computed by finding the difference between the desired inputs and 

actual feedback of the AUVDH. The input signal is then passed to the controller to control the AUVDH. 

The thrust configuration on the AUVDH is set by the thrust configuration matrix. The tether force (in 

orange colour) is treated as an external disturbance acting against the thrust inputs in X, Y and Z direction. 

The total forces to the AUVDH body dynamics are contributed by the rigid body and added mass matrix, 

Coriolis and centripetal forces, damping forces, and gravitational and buoyancy forces. The sum of all 

these forces is then multiplied by the inverse of the rigid body and added mass matrix to obtain the 

acceleration of the vehicle. With the integration function, the velocities are computed for the next 

iteration until end of the simulation time. In addition to obtaining the body-fixed velocities, the  

Earth-fixed position can be found by the Euler’s transformation block. The Euler’s angle is used to 
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calculate the gravitational and buoyancy forces. The external environmental forces (in orange colour) 

due to the wave and sea current are acting on the AUVDH. 

 

Figure 10. AUVDH Model using Simulink™. 

The dynamics of the thruster (namely: Tecnadyne Model 520 and 540) are obtained from the 2D 

lookup tables. To determine the thrust inputs to the six thrusters, an inverse operation on T is performed. 

Note that the multi-ports switches are used to trigger the hoop to open or close. 

3.2. Tether Model 

A tether of length 50 m is fastened in the zero start coordinate The tether weight is approximately, 

1.1 N/m, diameter is 0.0177 m and the Young’s Modulus is 0.025 GPa for polyurethane elastomer. We 

solve the 3D Catenary Boundary Value Problem (BVP) using the MATLAB™ routine [25]. An estimate of 

the end force given the end point distance or the AUVDH final Earth-fixed position can be computed. 

For example, the MATLABTM command line: sol = cable3dbvp ([10 10 50], 50). The calculated end 

force in X, Y, and Z directions becomes [46.43 46.49 257.67] N, respectively. This routine will be used 

to calculate the force exerted on the AUVDH simulation model while manoeuvring in water. However, 

it is quite computationally-consuming to compute the tether forces for every change in the end point 

coordinates. Instead, a backpropagation neural network is used to model the tether forces. 

A neural network models the tether dynamics force at the end point of the AUVDH. The training 

function used is Levenberg-Marquardt (trainlm) and the performance mean square error (MSE) using 
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MATLAB™ toolbox is used. A total of 10 neurons and one hidden layer are used. The inputs are the X, 

Y, and Z end point of the tether. While the outputs are the respective force on the body-fixed coordinate 

of the AUVDH at its CG. As shown in Figure 11, the neural network model (difference in the target and 

the output) has largely an absolute error of 3.594, and they are also closely correlated in  

Figure 11. Thus, the neural network model gives a close result to the actual computed values from 3D 

Catenary BVP. 

  

(a) (b) 

Figure 11. Results of backpropagation neural network model for tether model for training, 

validation and test (a) error histogram plot (b) regression plot where R values measure 

correlation between outputs and targets (R value of 1 means a close relationship, and 0 means 

a random relationship). 

3.3. Launch and Recovery Process Model 

The launch and recovery process [27] of the AUV consists of deploying the AUVDH into the  

water using a simple remote-operated rope winch. The mission is in a standby mode and begins when 

the AUVDH reaches the mission depth and steers away from the aft of the launch vessel. The AUVDH 

executes its mission with the aid of external sensors. Data is logged during the mission. After the 

recovering of the AUV is completed, the AUVDH ascend to the surface near to the winch. The AUVDH 

is retrieved with the help of the winch with hook. A new mission can be performed and the whole process 

is repeated. 

A robust control system such as sliding-mode controller [27] will be used to control the AUVDH in 

order to recover of the AUV. The control strategy is to steer the AUVDH away from the aft before 

submerging, and align the AUVDH to the incoming AUV. The AUVDH starts to close the hoop when 

the distance between the vehicles reached around 50 m. With a current speed of 1.5 m/s, the time for 

AUV to reach AUVDH is around 33 s. This will be the time available for the AUVDH to close its hoop 

for the incoming AUV. However it can be difficult to determine the time as the current speed and 

direction changes with time. Likely scenario of path misalignment can be seen in Figure 12. As observed, 

the heading or/and Y-offset in either direction can happen during the path alignment. The control strategy 
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is tasked to detect the presence of the AUV first and try aligning itself to the incoming vehicle. If it fails, 

the second attempt will be activated as the AUVDH is not designed to chase after the AUV. 

 

(a) 

 

(b) 

 

(c) 

Figure 12. AUV detection and recovery scenarios [27]. (a) AUV moving toward AUVDH 

at different yaw angle (b) AUV moving toward AUVDH at different sway direction 

(c) AUV moving toward AUVDH at different yaw angle and sway direction. 

To accomplish the control strategy, the following control architecture is used. As observed,  

the control system uses the nonlinear AUVDH model determined in the earlier part of the work.  

The first part of the control is to detect the presence of the AUV using the abovementioned detection 

method. Path planning (with sufficient time) and speed correction (insufficient time) are required to 

provide robustness due to the uncertainty in the time allocated for hoop triggering that depends on the 

current speed. The sliding-mode controller (SMC) [27] controls both the position and velocity of the 

AUVDH such that the path is maintained (i.e., aligned with the correct heading and path of the incoming 
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AUV). The control signal then triggers the respective thrusters to control the AUVDH to its desired 

position and speed. The controller is designed to deal with the current and model uncertainty in  

a theoretic manner as shown below. 

The Lyapunov function candidate can be written as such: 

Mss
T

2

1
)( tV  (15) 

The time derivative yields: 

sMs
T  )(tV  (16) 

Here )( ηηMsM    since 0,0  dd ηη   and v(ηJvJ(ηη ))   , it can be written as: 
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where the current velocity is included as relative velocity. 

cr vvv   (18) 

Here 
T]000[ ccc wvucv  is the current velocity vector in body fixed frame, and 

),,,( cc vvηv   is the lumped uncertainty defined as: 

)()()( rvDηgvvCvM    (19) 

Thus, the control law can be defined as: 

])sgn(),,,(           

)()()([

controller SMC   
 vssvvηv
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cc
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 (20) 

where 
sdsisp KKK ,,  are the controller gains and T1T

TTTT
  )(  is the Moore–Penrose pseudo-inverse. 

Substituting the control law into V  yields: 

])(),,,(                            

)sgn([)(

ηvηJvvηv
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cc

T







 sdsisp KKKtV
 (21) 

Choose 
sdsisp KKK ,,  large enough so that 

6IsiK )()( ηJηJ   ),,,( cc vvηv  , and   is small such that

0))(( tV s . Notice that )(ηJ  and )(ηJ  do not exceed one. The bounds of the lumped uncertainty are 

assumed to be given as:  ),,,( cc vvηv  , and )(tv  is small,  0)(0 tVV s  is bounded. This 

implies that V  must be uniformly continuous. Application of Barbalat’s lemma shows that 0s  and 

thus 0~ η  as t . 

This technique can yield good tracking with the price of excessive discontinuous switching across 

0s  or chattering. In addition, a boundary layer around the sliding surface with thickness 

)0(.)(6  ΦΦ  is adopted to avoid chattering. The vehicle dynamics remains “inside” this boundary 

layer with no switching. If the region outside the layer is reached, then switching is carried out. 

Mathematically, it can be expressed as: 
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Including the boundary layer in preceding equation, the control becomes: 
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 (23) 

The Simulink™ block diagram for the sliding-mode controller consists of a subsystem to compute 

the sliding surface and to compensate for the nonlinear function. The controller has the following 

parameters: bandwidth = 111; boundary layer thickness = 4 and other controller gains:
4

s sv sdk 20; k 1 10 ; k 55     as shown in the last three terms of Equation (23). We assume the controller 

gains are similar for each DoF. However, they can be adjusted to tune the AUVDH performance. 

The sliding-mode control works as follows: the tracking error is negative (positive), indicating that 

the position is too small, the control input will be increased (or decreased) in order to increase the output. 

The “energy” of the system diminishes slowly as it reaches the sliding surface (near to zero tracking 

error). In this simulation, the AUVDH was commanded to move in vertical plane followed by horizontal 

plane, that is o45,5  dd mz  . By simulating the sliding-mode controller, the position and velocity 

time responses can be seen in Figures 13a and 14. The 2D animation of AUVDH was done offline after 

the simulation was completed. It basically consists of many frames of AUVDH motions which are 

combined to form an animation of the AUVDH from the start to the final AUV recovery as seen in 

Figure 13b. 

As observed in Figure 14, the position response yields good tracking without excessive discontinuous 

switching or chattering, as seen in the velocity plots. With the use of the boundary layer around the 

sliding surface, the chattering has disappeared and results in less oscillatory responses in the velocity. In 

Figure 13a and 14, the roll and pitch DOF are stable without any control. Further improvement can be 

performed by tuning the sliding-mode controller gains. 

  

(a) (b) 

Figure 13. Position response for o45,5  dd mz   (a) position of AUVDH during entire 

recovery operation (b) top view of AUV and AUVDH during final recovery. 

0 5 10 15 20 25 30
-10

-5

0

5

10

Time(sec)

x
(
m

)

0 5 10 15 20 25 30
-10

-5

0

5

10

15
Position Response

Time(sec)

y
(
m

)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time(sec)

z
(
m

)

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time(sec)


(
d

e
g

)

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

Time(sec)


(
d

e
g

)

0 5 10 15 20 25 30
0

10

20

30

40

50

Time(sec)


(
d

e
g

)



Robotics 2015, 4 508 

 

 

 

Figure 14. Velocity response for o45,5  dd mz  . 

The impact of the sea current acting on the AUVDH during manoeuvring was studied. Further tuning 

on the sliding-mode control was performed at different current speed. As observed in Figures 15 and 16, 

the desired position ( o45,5 m,3  ddd mzy  ) is affected when the sea currents exceed 1 m/s. The 

roll and pitch motions remain unperturbed and small. The velocity responses increase due to the current 

but they are regulated around the zero value. The AUVDH distance travelled is around x = 10 m,  

y = 15 m (see Figure 15). The reason for these large distances travelled is due to the current velocity 

(simulated at 0.5 m/s, 1 m/s and 1.5 m/s). For example, 20–30 s (at current speed of 1 m/s), the AUVDH 

moves to around 20–30 m. The robust design simulation of autonomous underwater vehicle docking 

hoop during recovery operation after a search and rescue mission was successfully simulated and shown 

to work under the external wave, current, and tether force. 

As seen in next section, a real-time display on the surface with joystick control involving man-in-the-loop 

will be included into the control system to provide certain robustness in the event of fault and other 

unforeseen conditions. 

 

Figure 15. Sea current disturbance on AUVDH position ( o45,5 m,3  ddd mzy  ). 
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Figure 16. Sea current disturbance on AUVDH velocity ( o45,5 m,3  ddd mzy  ). 

4. AUVDH GUI Test Platform 

A graphical user interface (GUI) is seen as an essential requirement for enhanced operator dexterity. 

Tele-presence systems have been investigated as a means of realizing highly dexterous and intuitive 

systems for AUVDH. The AUVDH GUI control system panel consists of two primary functions: send 

control commands to control the thrusters manually and automatically; and display sensors and thrusters’ 

status in real-time. The actual layout of the GUI control panel is shown in Figure 17. 

 

Figure 17. AUVDH GUI control panel layout. 
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software development, an integrated development environment (IDE) consisting of a source code editor, 

build automation tools, and a debugger are needed. Since Python and Qt were chosen, the IDE written 

in Python, and based on the cross platform Qt GUI toolkit, integrating a flexible editor control is highly 

desired. Thus, the Eric4Python IDE written in Python and based on the Qt GUI was selected. It includes 

a plugin system, which allows easy extension of the IDE functionality with plugins downloadable from 

the Internet. In this project, the GUI control panel was designed using PyQt4, Python 2.7, and the 

Eric4Python IDE as the integrated development environment. 

A brief overall view of the software packages used in the project is described. Qt brings flexibility to 

embedded development, allowing engineers to create high-performing and modern user-interfaces and 

applications with built-in productivity-enhancing tools for fast, easy, fully-integrated embedded device 

application development. The pre-configured embedded development environment, pre-built Qt 

optimized software stack for immediate deployment to ATHENA III embedded board allows users to 

get running, and have a working embedded project prototype. The QtGui module contains the graphical 

components and related classes. These include for example buttons, windows, status bars, toolbars, 

sliders, bitmaps, colours and fonts. The module enables seamless integration of the Qt GUI library and 

the OpenGL library. The QtSql module provides classes for working with databases. There are six 

function modules for the AUVDH GUI. They are namely, control mode, switch control of docking hoop, 

network connection, thruster readout, and video image display. 

5. Results and Discussion 

The ROV was tested in a water tank as shown in Figure 18a. A few tests were conducted on the  

open-loop AUVDH system for sensor fusion and closed loop control. The AUVDH is a tethered and 

remotely-operated underwater robot as shown in Figure 18b. The AUVDH is powered by a 230VAC 

power supply. The mass of the vehicle is approximately 135 kg and its dimensions are 1.5 m long × 1 m 

wide × 1.7 m high. The exterior components consist of a docking hoop to dock the AUV, six thrusters, 

DVL, altimeter, IMU, floater, and aluminium casing to house the electronics. The heading and position 

of the AUVDH are actively controlled, and the vehicle is passively stable in both pitch and roll motion. 

The actuation is provided by six 24VDC brushless electric thrusters. The AUVDH is equipped for 

position and velocity measurement using DVL, altimeter and IMU. 

  

(a) (b) 

Figure 18. Experimental test setup of AUVDH (a) near water tank (b) on ground after test. 
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Few trials in the commanded heave and yaw directions were conducted, as seen in the test images 

shown in Figure 19. During the experiments, the performance of the open-loop guidance and  

closed-loop control systems using the sliding-mode controller were fully assessed. Figures 20 and 21 are 

a small sample of the large amounts of experimental data that were obtained during the tests. Figure 20 

show commanded and measured depth and heading, respectively. Figure 21 shows that the roll and pitch 

angle are self-stabilizable by design. In the results observed, the AUVDH positioning system relied on 

data provided by IMU and DVL. This creates errors in the calculated position after the double 

integrations on the acceleration data from the IMU. The dead-reckoning method (the process of 

calculating one’s current position by using a previously determined position and advancing that position 

based upon known or estimated speeds over elapsed time) with a Butterworth high-pass filter to remove 

the bias are used to identify whether the AUVDH moves or remains stationary before performing the 

integration. The Extended Kalman Filtering (EKF) thread will then be used to estimate the position and 

velocity of the AUVDH. As shown in the depth measurement, there is a bias of 0.3 m due to the 

installation of the depth sensor. This was removed to reflect the actual operating depth from the surface. 

The test results show that the AUVDH is able to perform the station-keeping at a fixed yaw and heave 

command under the external disturbances. 

 

 

Figure 19. Experimental test image (yaw then heave) during test in water tank. 

  

(a) (b) 

Figure 20. Simulated and measured responses of AUVDH (a) heading response (b) heave 

response. 
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(a) (b) 

Figure 21. Simulated and measured response of AUVDH. (a) roll angle response (b) pitch response 

6. Conclusions 

This paper has reported a preliminary experimental evaluation of a model-based sliding-mode 

controller for a low-speed manoeuvring of an actuated remotely-operated vehicle (ROV) named AUV 

docking hoop (AUVDH). We considered the simple case of an AUVDH plant dynamics model 

employing constant added mass, buoyancy, linear and quadratic drag, and thrust input. Dynamic 

modelling and simulation of AUVDH during launch and recovery of the AUV were performed. The 

tether model was modelled using the backpropagation neural network.  The control strategy from launch 

to recovery in 2D and 3D was simulated using MATLAB™ and Simulink™ prior to actual 

implementation. The control simulation using a sliding mode controller (SMC) was proposed to control 

the surge, sway, heave, and yaw positions and velocities of the AUVDH under the sea wave, current and 

tether forces. In summary, the proposed SMC scheme is able to control the AUVDH during launch and 

recovery of the AUV under the external disturbances. The experiment tests conducted in water tank 

shown that the SMC is able to control the depth and yaw position of the AUVDH with small roll and 

pitch angles. However, the experiments do not demonstrate the effects of variations in controller gains 

or change due to the thruster configuration matrix and inertia matrix for the closed-hoop condition. The 

identification and closed-loop comparison with other controllers needs to be performed. We hope to 

report an experimental evaluation of these conditions on the performance of these controllers in the sea 

trial. 
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