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Abstract: Robotic agents are spreading, incarnated as embodied entities, exploring the 

tangible world and interacting with us, or as virtual agents crawling over the web, parsing 

and generating data. In both cases, they require: (i) processes to acquire information;  

(ii) structures to model and store information as usable knowledge; (iii) reasoning systems 

to interpret the information; and (iv) finally, ways to express their interpretations. The 

H5W (How, Why, What, Where, When, Who) framework is a conceptualization of the 

problems faced by any agent situated in a social environment, which has defined several 

robotic studies. We introduce the H5W framework, through a description of its underlying 

neuroscience and the psychological considerations it embodies, we then demonstrate a 

specific implementation of the framework. We will focus on the motivation and 

implication of the pragmatic decisions we have taken. We report the numerous studies that 

have relied upon this technical implementation as a proof of its robustness and 

polyvalence; moreover, we conduct an additional validation of its applicability to the 

natural language domain by designing an information exchange task as a benchmark. 

Keywords: knowledge representation; human robot interaction; communication; natural 

language processing; perception action loop; artificial cognitive architecture 
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1. Introduction 

We have reached the age of information. Inhabitants of developed countries are carrying with them 

devices that embed a large collection of sensors and which constantly send and receive information. 

For most people they currently take the form of smartphones and of wearable devices for early 

technology adopters. However, the Internet of Things community [1–3] forecasts an acceleration of the 

distribution of connected objects. These devices will sense the world, adding to the global data deluge, 

but at the same time interpreting this globally available information to provide end-users with the 

essential details they are looking for. One of the challenges of such an ecosystem lies in the analysis of this 

“big data” [4–6], and the mainstream approach that seems to be on the side of brute force, by joining 

large computational power and improved, but still not fully understood, connectionist learning 

algorithms, such as deep learning [7]. However, the recent success of this method, applied to multiple 

perceptual modalities (e.g., image recognition [8], speech recognition [9,10]), only demonstrate one 

thing: we do not have a generic, formal, and well understood architecture for representing knowledge 

in artificial systems. Indeed, among the extensive number of smart objects developed, the most 

advanced instances of those objects embed both sensors and actuators, they gather data, but they are 

also situated in the world and act on it with their bodies: They are robots. 

The previously mentioned machine learning systems partially solve one of the large problems artificial 

intelligence and robotic research is yet to overcome, namely the symbol grounding or anchoring  

problem [11–13], which asks how to relate sensor data to symbolic representations. For example, 

displaying a rectangle and a label around a cat in an image, or generating a string representation from a 

sound wave are not enough for a robot to become an ‘intelligent machine’. Being able to segment and 

classify sensory streams is a given, but is not enough for an agent to autonomously act in the world. 

Indeed, living beings monitor the world so that they can make decisions that will directly affect them, 

with the ultimate purpose of optimizing their own fitness. Robots are much like living machines in this 

respect: They need not only to perceive the world, but to understand it as a coherent scene that they are 

part of and that they can alter on the basis of their own goals [14]. In order to do so, a consideration of 

the dynamics of the world is required, through recognition of objects and agents in the scene, as well 

as how they act and interact. Formalizing the content and evolution of a scene requires the combination 

of perceptual, symbolic and rule based reasoning in a single unified framework and is a topic of 

increasing interest [15]. Such processes will generate information about who is acting, what they are 

doing, where and when it happens, and this will give cues about why it is happening. Those five 

interrogative words (who, what, where, when, why), together with “how”, which describes the action 

itself, have been argued to be the main questions any conscious being has to answer in order to survive 

in the world [16,17]. They form the theoretic problem known as H5W, which is an elegant framework 

for modeling the knowledge generated by the scene-understanding processes. The Distributed 

Adaptive Control architecture (DAC) is a biologically and psychologically grounded cognitive 

architecture that intrinsically solves the H5W problem [14,18,19]. 

DAC, in a very specific way, organizes the different perceptual, emotional, cognitive and motor 

processes of a situated embodied agent interacting with the world; it provides a control system for 

these agents and, at the same time, gives insight in biological cognition using the principles of 

convergent validation and synthesis [20]. The former states that we gain validity of models by seeing 
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them as lenses through which data from different sources convergence, i.e., anatomy, physiology and 

behavior, while the latter can be interpreted as seeing the embodied models we construct as theories in 

their own right [14]. 

DAC and H5W have been widely applied to a range of robotic modeling aspects, such as insects 

(e.g., ants, locusts and moths) and mammals (e.g., rodents and primates). The models interacts with the 

physical world by replicating robot foraging and the social world by looking at dyadic interaction. 

Here we look in particular at the question of whether the DAC architecture can be generalized to the 

control of the dyadic social interaction of a humanoid robot [21]. The core of this new implementation 

is a formalized knowledge representation, specifically tailored to answer the H5W problem. The whole 

architecture in this case is a complex distributed collection of modules dealing with the interpretation 

of multiple sensors, reasoning and motor control planning in an attempt to model the complete  

perception-action loop. By relying on this global machinery, we have been able to give a robot the 

ability to autonomously sense and interpret an environment and to be able to react and adapt to it 

accordingly. At the same time, the architecture provides useful insight into the robots internal state and 

motivations, which is due to the careful design the knowledge representation. Our implementation of 

the architecture has already been presented and validated in several previous studies [21–23]; In 

particular we have investigated the impact of how different robot behaviors are perceived by a human 

observer or partner. 

While the H5W architecture itself is the well-defined collection and interaction of hardware and 

software components, the representation of knowledge in the system is a more vaporous and 

unreported concept. All the modules in the architecture rely on this representation of knowledge to 

communicate and exchange information and its role is therefore central in the success of the system. 

Despite the care taken in formalizing and implementing the ontology in our system (i.e., the H5W 

framework), the relative lack of experimental methods available to test the efficiency of knowledge 

representations has led to an absence of reporting on this particular aspect. We believe that this is a 

common issue faced by robotic systems used for human robot interaction (HRI), as the focus is more 

about the interaction itself, i.e., how it is generated, rather than about the representation which sustains 

this interaction. We demonstrate the importance of knowledge representation in robotic system and so 

we hope that this Special Issue will in part address the current lack of reporting on knowledge 

representation. In this paper, we firstly give a short overview of the DAC architecture and then we 

present an implementation of the H5W framework, to represent the situated knowledge of a robot in 

the context of social interaction. Additionally, we will consider and benchmark how the represented 

knowledge can be expressed in natural language form, therefore allowing it to be transferred between 

agents. We will focus not only on the knowledge representation per se, but also on how this 

representation can support the processes of gathering and sharing the information between the machine 

and a human. 

2. DAC Overview 

The Distributed Adaptive Control architecture (DAC) is the biologically and psychologically 

grounded cognitive architecture that we used as an engine to solve the H5W problem. This section aim 

is to provide an overview of the organization of DAC, which is graphically described in Figure 1.  
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Figure 1. Graphical representation of the Distributed Adaptive Control (DAC) theory of 

mind and brain. See text for further information. (Adapted from [24]). 

Figure 1 Left: Highly abstract representation of the DAC architecture. DAC proposes that the brain 

is organized as a three-layered control structure with tight coupling within and between these layers 

distinguishing: The Soma (SL) and the Reactive (RL), Adaptive (AL) and Contextual (CL) layers. 

Across these layers a columnar organization exists, that deals with the processing of states of the world 

or exteroception (left, red column), the self or interoception (middle, blue) and action (right, green 

column) that mediates between the first two. The soma designates the body with its sensors, organs 

and actuators. The Reactive Layer (RL) comprises dedicated Behavior Systems (BS) that combine 

predefined sensorimotor mappings with drive reduction mechanisms that are predicated on the needs 

of the body (SL).  

Figure 1 Right lower panel: Each BS follows homeostatic principles supporting the Self Essential 

Functions (SEF) of the body (SL). In order to map needs into behaviors, the essential variables served 

by the BSs have a specific distribution in space called an ‘affordance gradient’. In this example we 

consider the (internally represented) “attractive force” of the home position supporting the Security 

SEF or of open space defining an Exploration SEF. The values of the respective SEFs are defined by 

the difference between the sensed value of the affordance gradient (red) and its desired value given the 
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prevailing needs (blue). The regulator of each BS defines the next action as to perform a gradient 

ascent on the SEF. An integration and action selection process across the different BSs and forces a 

strict winner-take-all decision selection that defines the specific behavior emitted. The allostatic 

controller of the RL regulates the internal homeostatic dynamics of the BSs to set priorities defined by 

needs and environmental opportunities through the modulation of the affordance gradients, desired 

values of SEFs and/or the integration process. The Adaptive Layer (AL) acquires a state space of the 

agent-environment interaction and shapes action. The learning dynamics of AL is constrained by the 

SEFs of the RL that define value. The AL crucially contributes to exosensing by allowing the 

processing of states of distal sensors, e.g., vision and audition, which are not predefined but rather are 

tuned in somatic time to properties of the interaction with the environment. Acquired sensor and motor 

states are in turn associated through the valence states signaled by the RL. The AL is modeled after the 

paradigm of classical conditioning and the acquisition of the sensory-motor state space is based on 

predictive mechanisms, in order to optimize encoding and counteract biases due to behavioral 

feedback. The AL has been mapped to the cerebellum, amygdala, cortex and hippocampus. The 

contextual layer (CL) is divided between a world and a self-model. The CL expands the time horizon 

in which the agent can operate through the use of sequential short and long-term memory systems 

(STM and LTM respectively). These memory systems operate on the integrated sensorimotor 

representations that are generated by the AL and acquire, retain and express goal-oriented action 

regulated by the RL.  

Figure 1 Right upper panel: The CL comprises a number of interlocked processes: a: When the 

error between predicted and encountered sensory states falls below a STM acquisition threshold, the 

perceptual predictions (red circle) and motor activity (green rectangle) generated by AL are stored in 

STM as (a), so called, segment. The STM acquisition threshold is defined by the time averaged 

reconstruction error of the perceptual learning system of AL. (b): If a goal state (blue flag) is reached, 

e.g., reward or punishment, the content of STM is retained in LTM as a sequence conserving its order, 

goal state and valence marker, e.g., aversive or appetitive, and STM is reset so new sequences can be 

acquired. Every sequence is thus defined through sensorimotor states and labeled with respect to the 

specific goal it pertains to and its valence marker. (c): If the outputs generated by the RL and AL to 

Action Selection are sub-threshold, the CL realizes its executive control and perceptual predictions 

generated by AL are matched against those stored in LTM. (d): The CL selected action is defined as a 

weighted sum over the segments of LTM. (e): The contribution of LTM segments to decision-making 

depends on four factors: Perceptual evidence, memory chaining, the distance to the goal state, and 

valence. The working memory (WM) of the CL is defined by the memory dynamics that represents 

these factors. Active segments in WM that contributed to the selected action are associated with those 

that were previously active establishing rules for future chaining. The core features of CL have been 

mapped to the prefrontal cortex. The self-model component of the CL monitors task performance and 

develops (re)descriptions of task dynamics anchored in the Self. In this way the system generates  

meta-representational knowledge that forms autobiographical memory. 
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3. Ontology of H5W 

3.1. H5W Definition: How, Who, What, When, Where, Why? 

Humans have always been elaborating ways to represent, save and share their mental constructs. 

Through drawing, then through spoken language and writing we have been trying to crystalize our 

experience of the world as to communicate it with others. Philosophers back to Plato and Aristotle 

have been studying our knowledge, how it is created and how it links to the world, in an effort to 

understand the nature of reality. This philosophical branch, known as ontology, led to one of the main 

ways of formalizing the human knowledge through the establishment of entities and relations among 

them. More concretely, the World Wide Web Consortium (W3C) issued a recommendation (Web 

Ontology Language (OWL) [25]) and several databases representing various domains of knowledge 

are available [26–29]. As a result, ontologies appears to be a representation of choice for robots as they 

are systems which should reason about facts and using some knowledge base, take decisions. This 

approach has been quite successful in certain cases such as symbolic reasoning and planning [30,31], 

or in the generation of a limited dialog between a machine and a human [32]. However, in most cases 

ontology is considered as a tool, a collection of recipes that a robot can browse in order to achieve a 

given task. In the context of a community of robots connected to the same ontology, this is a very 

efficient way of representing a common knowledge base that can grow fast as each robot can 

contribute its own experience [33]. The main concern with the traditional ontological approach lies in 

its claims to solve the knowledge representation problem from a pure symbolic standpoint: While 

being a very efficient tool to represent symbolic knowledge, it is far from solving the anchoring 

problem. 

Robots which operate in the physical world do not need only to reason about symbols and express 

statements about them: They need to perceive the sensory representation that those symbols represent, 

and they need to be able to act upon them. Providing this full variety of skills, from anchoring 

perception, to generating actions, is the purpose of the many cognitive architectures that have been 

developed for robotics over the last decades [34]. A pure ontological representation could lead to the illusion 

of world understanding, but it would still suffer the caveat pointed by Searle in his famous Chinese room 

example [35]. However, if a robot was to build its own ontological representation, grounded in the 

sensorimotor experience of reality, it would approach a more human-like representation of the world. 

Doing so requires that the machine experiences the physical world. It needs to perceive the world, to 

act and, through time, to understand the consequences of its actions so it can start to reason about its 

goals and how to achieve them [36]. Moreover, it requires an intrinsic motivation to act, some primary 

force that would drive its actions in a reactive way even before any knowledge is acquired from 

experience. Different communities have different, but not incompatible, views on what could be the 

source of agents motivation ranging from the innate desire to learn [37] to hierarchies of drives 

inherited from survival and evolution [38,39]. For an overview of the different approaches, refer to a 

recent survey on the specific topic of motivation in artificial systems [40]. Once given some 

motivation and basic exploratory behaviors, the agent will start experiencing the world and its sensory-

motor contingencies. As a result, it will witness a scene of agents, including itself, and objects 
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interacting in various manners, times and places. It will start to ask and answer six fundamental 

questions about its surrounding environment: 

 Who is there? (subject) 

 What is there? (object) 

 How they behave? (action/verb) 

 When it happens? (time) 

 When it take place? (place) 

 Why do they behave like this? (motivation/causality) 

Taken together, those six questions form the H5W problem which has been introduced and 

discussed by Verschure as the main concerns that live beings are facing when trying to survive in a 

world filled with other agents [41]. Indeed, the immediate knowledge of agents situated in the world 

gravitates around those questions as they provide a generic way of describing any event in a scene. From 

a pragmatic point of view, they also form a constrained type of ontology by linking several symbols 

through multiple semantic relationships. Additionally, they have a direct mapping to language through 

the obvious link with the grammar of an English sentence. For those reasons, the H5W problem is well 

suited for defining the knowledge representation of a robot by grounding a powerful symbolic 

formalism (ontology) within the reality faced by an embodied machine. In the following section, we 

will demonstrate a simple way of representing the entities which populate the world as well as the 

relations among them, therefore providing the core representation of a much larger cognitive 

architecture. 

3.2. The H5W Data-Structures 

As stated before, any ontology tries to establish the links (relations) between a set of terms, or 

entities. Entities are the possible concepts being manipulated and therefore represent the core material 

of the knowledge, while the relations define how those concepts relate to each other. The most 

common relation in traditional ontologies is “is-a”, which defines an inheritance between two entities 

(e.g., “water is-a liquid”) and therefore split the terms into a hierarchy of classes. Our representation 

takes a similar approach by considering that all concepts are “entities”, and that a specific situation or 

fact is described by a set of relations between those entities. We adopted the substrate of a software 

library (C++) for modeling the H5W framework; we therefore took advantage of the object oriented 

aspect of the language to incorporate directly the ontology representation into the programing method 

(see the class diagram in Figure 2). Concretely, this means that the user of the library can define 

objects of the class “Entity” which represent the concepts that the artificial can manipulate. Another 

class, the “Relation”, allows linking several instances of “Entity” together, therefore implementing the 

traditional ontology model. However, as we are to model the knowledge representation of a situated 

agent, we included additional constraints given by the structure of the world. We therefore defined a 
priori strongly subtyped entities (Figure 2) which hold noticeable properties and ground the knowledge 

domain in the context of a cognitive agent development. The following sections will give details about 

the “Relation” data structure and the different subclasses of “Entity” we chose to impose. We will 

focus on their specifics and the reasons behind our choices. 
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Figure 2. Class diagram of the H5W implementation. The H5W per se is defined by the 

class Relation, which aggregate a set of entities. Those entities can be of specific types, 

including the Agent type which in turn can aggregate a list of Relation to model its beliefs. 

3.2.1. Relation 

The Relation idea is the core of the H5W framework. It links together up to 5 entities and assigns 

them with semantic roles to form a solution to the H5W problem. The common way of representing 

relations in ontology is an edge linking two terms/nodes; it allows consideration of ontology as a 

graph, therefore allows the powerful algorithms of graph theory to be applied. However, it is rather 

limiting as more complex relations involving multiple nodes would require additional meta-data such 

as edge labeling. An alternative to the simple graph-oriented approach is to consider multiplex  

graphs [42] that allows us to define a relation as a set of edges with roles. If we consider the 

knowledge of our agent as a set of entities representing the concepts it knows (i.e., the object, agents, 

actions and more generally any word), then those entities can be modeled as the nodes of a graph. We 

define a Relation as a set of 5 edges connecting those nodes in a directed and labeled manner. The 

labels of those edges are chosen so that the Relation models a typical sentence from the English 

grammar of the form: Relation → Subject Verb [Object] [Place] [Time] 
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The brackets indicate that the complements are facultative; the minimal relation is therefore 

composed of two entities representing a subject and a verb. In this respect, our framework assumes that 

verbs have a strictly positive valency (i.e., they have a least one argument which is their subject) and 

does not account for languages with avalent verbs such as Mandarin Chinese. Considering that we 

want to represent the interaction between agents and their environment and that our focus is more on 

the representation of meaning than on the linguistic expression of it, we consider this assumption as 

acceptable, moreover the reason of this choice is also pragmatic: We consider a relation without a 

subject as an imperative form, it therefore describes an order (see Section 4. The H5W acquisition and 

transfer through dialog). We also impose a constraint on the specific types of entity (defined below) 

which can fill each role: The verb has to be an Action while the other roles have to be anything but an 

Action. 

 

Figure 3. Graphical view of the multiplex graph representation of the knowledge. Each 

node is an Entity, edges of different colors represent different relations, the type of line 

represent the semantic role of connected entities in the relation. We used only simple 

relations of the form (subject, verb, object) for clarity. Although multiplex graph layout is 

quickly messy, they can be used to capture complex semantic links between concepts. In 

this example the relations are R (iCub, be, robot), R (John, be, human), R (robot, like, toy), 
R (human, like, candy), R (iCub, hold, candy), R (John, be, sad). Such a description of the 

situation can easily be used by any expert system or planner (e.g in this case the robot 

could decide to make John happy by giving him the candy). 

By linking those entities and binding them with roles within a relation, we create a powerful way to 

define a fact which describes the world state or its evolution (e.g., a state: “iCub, be, robot”; an event: 

“iCub, push, ball”; a more complex event: “iCub crash, null, laboratory, yesterday”). By defining 



Robotics 2015, 4 178 

 

 

several relations over the same set of entities, we build the knowledge of the agent as a multiplex graph 

which represents the various semantic links among entities (see Figure 3). The case of the “Why” 

question is a bit more complex, as the causality of a given statement can refer to a complex collection 

of conditions, the approach we have taken so far is to consider that the “why” of a relation, if specified, 

is a pointer to set of other relations (e.g., “John, be, sad” is a consequence of “John, like, candy” and 

“iCub, hold, candy”). It is harder to conceptualize within graph theory, even considering multiplex 

graphs as it would mean that a relation (which is a set of edges) would point to other set of edges. 

Instead, we can build up another graph representation in which case relations act as nodes, and the 

“why” part of the relations are edges within this graph (see Figure 4). Using this standpoint, forward 

and backward chaining processes of planning algorithms generate a path of connected relations along 

this graph. 

 

Figure 4. Graphical expression of the causality among relations. The “why” problem is 

answered by having relations refering to other relations. In this case the example presented 

refers to the knowledge represented in Figure 3: John is sad because he likes candy and the 

holder of the candy is the iCub. 

3.2.2. Object 

As human beings and visually dominated animals, we tend to split the world into independent 

elements based on their fundamental physical properties such as their unity through motion, their 

relative non deformability and the behavior they have when put in contact among each other [43]. Our 

first specification of entities are those which hold a physical reality, which are units of matter 

positioned and oriented in the physical world. Those are objects, their parts cannot move 

independently; they can be experienced through the haptic sense and perceived as a whole. While the 
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abstract “Entity type” is defined only by a name, the “Object type” holds vectors defining a position, 

an orientation and some dimensions (i.e., bounding box). Moreover, at the sensor level, an object is 

also by its sensory description (e.g., visual template, point cloud, 3D model, etc.), this link allows us to 

solve the anchoring problem by grounding directly the sensory-specific percept with the symbolic 

representation. As the same object can have very different descriptions for different sensors, it is more 

ecologic to have this description defined by the sensor (or its driver) itself and to increment it with 

every new sensor. 

3.2.3. Manipulable Objects 

Modeling software frequently describes the world in terms of named and positioned boxes or 

meshes. In the case of an embodied agent, whose goal it is to interact with the world, it is useful to 

distinguish among those objects the ones that are static and the ones that could be interacted with and 

displaced. In particular, some objects can be manipulated by the agent and therefore can be augmented 

with properties that define how to handle them. This type of information, named affordance [44,45], is 

computed using visual and/or tactile information during an exploratory process and thereafter are used 

in manipulation tasks. It can refer to various aspect of the manipulation process including the type of 

object (e.g., configuration of the hand and the contact points) and how the object can change the 

kinematic chain, for example to be used as a tool. Formalizing and extracting this information from the 

sensory stream in robots is a research topic on its own [46–48], but it is clear that it is a crucial 

property that some objects should be embedded with. In our implementation, we adopted the simple yet 

generic approach of a unique identifier, assigned and used by the motor control subsystems of the 

architecture, to define the affordances. 

3.2.4. Agent 

Some objects demonstrate self-motion compared to the passivity of most of the world, we attribute 

them with agency [49] and eventually as goal motivated entities [50]. Agents are the active elements in 

a scene, they are the subjects which act on the other entities and their actions are motivated not only by 

external causes but also by an invisible internal state which give them some goal. The way humans 

represent others is deeply influenced by the way they represent themselves, leading to the attribution of 

human traits to animals, physical or virtual artifacts [51]. Despite abilities of perspective taking, we 

tend to reason that the dynamics of others mental states are similar to ours, and that environmental 

stimuli would affect them the same way they affect us. The crucial aspect when representing an agent, 

is to represent everything that is hidden from the sensors: Its internal state, which is the engine driving 

its behavior. The representation of agent we adopt here is based on the cognitive architecture model we 

have used, therefore making the representation of self and others similar in many points. While 

describing the whole architecture is not in the scope of this paper (refer to [21] for an extensive 

description), we can extract two crucial aspects: (1) the agent’s behavior is guided by a hierarchy of 

drives and emotions; (2) the representation of the world maintained by the agent is the collection of 

beliefs formalized following the H5W framework. The resulting structure contains all the necessary 

information to represent the self of the cognitive architecture as well as to represent others. 
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As stated before, an agent needs an intrinsic motivation to act. Actions can be formed at different 

levels, such as uncontrollable reactions to a sensory signal (reflexes), adapted to a given situation and 

internal needs (e.g., foraging) or planned in the long term based on past experience (e.g., storing food 

for winter). The DAC architecture [14,18], through its different layers, captures all the described 

levels, especially that which is of interest to us here: The immediate satisfaction of the internal 

homeostasis. Part of the internal model of the agent is defined by a set of needs. Those are abstract 

models of the effects of biochemical variables such as leptin, which is a hormone inhibiting the desire 

to consume food [52], or complex physiological equilibriums aiming at homeostasis such as the 

temperature regulatory system. Each need represents a variable that the agent aims at maintaining in a 

given range. When the variable’s value becomes too low or too high, corresponding actions are taken 

in order to bring it back within its ideal regime. This phenomenon is called homeostasis and can be 

observed at the levels of physiology, behavior or at the interface between the two (i.e., the animal 

engages a specific behavior that will lead to the regulation of a physiological state). It has been a 

relatively popular and successful approach in the design of autonomous artificial systems, especially 

robots [22,39,53] as it produces ethologically realist behaviors. A tightly linked concept is the notion 

of emotion: Although they are not consensually modeled, it is agreed that humans are subject to 

internal state which shape and affect globally the way they behave [54–56]. Emotions are reflected 

through facial expressions [57], which act as cues for others to perceive our internal state. Where the 

drives are responsible for triggering a specific behavior, the emotions seem to have a shaping role, defining 

the stance of this behavior. Taken as a whole, the couple of drives and emotions gives a relatively complete 

structure that acts as a motivational engine, pushing an organism towards actions that should maintain a 

stable state (e.g., to survive). Those considerations led us to implement the notions of drives and emotions 

within the “Agent” type as two sets of homeostatic variables. 

The second addition to the “Agent” entity models the beliefs about the world held by the agent. 

Depending on prior knowledge and on the events witnessed, different agents may represent the same 

reality differently. The ability to represent beliefs of others, to update them based on the situations they 

witness and to reason about how people should reason based on their own knowledge, is often 

considered to be a major component of theory of mind (ToM). The ability to represent this discrepancy 

among one’s and others’ beliefs has long been adopted as a standard test (Sally-Anne) for testing for 

ToM, especially in relation with autism [58,59]. However, it is now argued that the ability to represent 

false beliefs and the ToM are two different things [60]. In an effort to embed robots with a ToM, the 

Sally-Anne Test has been replicated and successfully passed by several robots or artificial intelligence 

systems [61,62]. In our implementation, the beliefs employ again the “Relation concept”: Each belief 

is a specific relation and the whole agent’s knowledge is simply a list of beliefs. Interestingly, 

representing the beliefs of another agent is technically the same thing as representing the beliefs of the 

self; we therefore embed every agent data structure with a distinct ontology, which represent this 

agent’s beliefs, attributed by the observer agent. The case of the “Self” is just the specific “Agent” 

instance that is containing all other representations. It is the agents list of beliefs that represents its 

perceived state of the world (SOW), and it may in turn include other agents, which will have their own 

SOW. To avoid the recursivity issue (i.e., “You believe that I believe that you believe…”) the 

cognitive architecture is responsible for the level of beliefs propagation, although the data structure can 

theoretically deal with any number of recursions. Consequently this means that whenever an event is 
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observed, the architecture updates its self-beliefs, but also updates the beliefs of all the agents’ able 

witness the same event. 

To summarize, the “Agent” data structure we define is an object (it has spatial location) which holds 

a set of drives, a set of emotions and a list of beliefs. A specific “root” instance of “Agent” is used to 

model the “Self” of the cognitive architecture, its drives and emotions, which are used to fuel the 

behavioral engine, while its list of beliefs is a representation of the perceived state of the world. Others 

are represented as elements in this list. 

3.2.5. Action 

The world is defined both in space and time; it is a dynamic collection of elements that are 

constantly modifying their spatial properties as a result of self-propulsion or of passive physical 

reaction to another element contact. This dynamic can be segmented as it is creating a transition 

between two relatively stable states and humans tend to label it, resulting in the concept of action. The 

theory of action is vast, spread across several fields of study and the definition of an action may vary 

greatly. The original study of the concept goes back to Aristotle and it refers to the description of the 

process ultimately leading a biological being to move (for review and broader considerations see [63]). 

In our framework, we consider a more general definition of action as a label which describes the 

transition from one state to another, a state referring to a stable dynamic of objects properties. This 

pragmatic definition is close to the conceptual spaces approach of Gardenfors which considers actions 

as patterns of forces [64]. Moreover, this definition is very useful in the domain of planning and 

teleological reasoning as it can be described as a state-action-state triplet. Another important property 

of action is the compositionality: An action is made of smaller actions, chained together in a 

continuous manner. Such composite constructs are sometime called plans, recipes or hierarchical 

actions [65–69], and all are based on the notion that a sequence of symbols can be folded to create 

another symbol. While some common approaches use a tree-like structure, we opt for a recursive  

data-structure. Any action embeds a list of sub-actions (which can be empty, in this case the action is 

called “atomic”); it also defines a list of pre-conditions and post-conditions. Pre-conditions refer to 

facts about the world state that must be verified before an action is considered executable;  

post-conditions are changes that will occur in the world state as a result of this action’s execution (i.e., 
a list of relations to be removed/added to the world state). In the composite case, the pre-conditions of 

an action are the union of the composite action itself and the pre-conditions of the first sub-action. The 

global post-conditions can be computed by the successive application of the post-conditions of every 

sub-action and those of the composite action itself. The action data structure implements a recursive 

unfolding method which linearizes it as a sequence of atomic executable actions; it also provides 

methods for calculating the global effects (post-conditions) by simulating the evolution of the world 

state throughout the execution. Within an action definition, the pre and post conditions refer to 

relations involving abstract arguments which are substituted to the effective ones during the execution 

(see Figure 5 for an example and [36,70,71] for an extensive description of the implementation). 
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Action name 

 take-from 

Sub-actions 

1. $subject open $complement_place 

2. $subject grasp $complement_object 

3. $subject close $complement_place 

Pre-Conditions 

1. $complement_place is present 

2. $complement_place contains $complement_object 

Post-Conditions 

 $complement_object is present 

 

Figure 5. The formal description of the composite action “take from”. Italic words refer to 

other actions, elements starting with a $ symbol means they are abstract arguments that 

will be substituted by the real ones during the action execution. An action is called through 

together with a relation that defines those arguments, for example (iCub, take-from, pen, 
drawer). 

Atomic actions when executed are interpreted by the cognitive architecture which typically calls the 

corresponding motor programs, although the representation presented can also be used to model non 

motor actions. Indeed our representation of action is as generic as possible so that it can have a 

mapping with the language concept of verb. 

Taken together, the classes we define allow representing properties and facts of the physical world 

by providing a careful specification of properties of objects, agents and actions. Those constraints 

ensure that a situated agent (i.e., a robot) will be able to take full advantage of the ontology in order to 

not only reason about a world state, but also to build it from perceptions and to act on it. However, 

through inheriting an abstract representation composed only of a single word (the “Entity”) we keep 

our model open to more generic ontology modeling and allow it to represent nonphysical concepts 

(e.g., “fatigue”, “blue”, etc.). Lastly, the “Relation” data-structure has direct mapping to sentences 

constructed in the English language, which is particularly of use in the context of human-robot 

interaction, as this is the most common way for humans to exchange knowledge, through spoken 

communication. 

4. The H5W Acquisition and Transfer through Dialog 

4.1. Mapping between Natural Language and H5W Semantic 

Any knowledge representation is devoid of sense if it cannot be scaled or consulted. The point in the 

H5W representation is to define and link concepts to enable a machine to interact with its environment. 
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The hook between the representations and the sensory data presented in earlier work [22,72], allows the 

agent to make use of a set of heterogeneous sensors to fill in the information regarding the spatial 

behavior and identity of the various physical elements in the world. However, one may want to teach 

the system about facts that are beyond the spatial reach of its sensors (e.g., “It is cold outside”); 

moreover, when it comes to more abstract or qualitative concepts the sensing approach quickly shows 

limits (e.g., “Freedom is good.”). An obvious source for this type of knowledge would be the endless 

collection of sensors, text corpus and ontologies available online; however our focus is the case of 

natural interaction with the environment. This environment includes agents who are potential sources 

of abstract knowledge, as is the case when considering the interaction of a toddler with his caregivers. 

In this context, the direct mapping of the H5W representation with speech turns the spoken dialog into 

a channel of choice for expanding or interrogating the knowledge of the artificial agent. Part of the 

platform we have developed around the H5W framework aimed at studying the social interaction 

between a humanoid robot (iCub) and a human partner therefore investigating the issue of spoken 

communication. As a result, we implemented a dialog interface based on the H5W representation and 

which uses speech recognition and synthesis to offer natural interaction. 

Despite much progression in the domain, open speech recognition (i.e., dictation) results are still 

very variable: The state of the art in this domain is provided by Google and is open for testing [73]. 

This variability is especially problematic in the case of a robot dealing with symbolic representations 

and the usual solution in robotic platforms is to use pre-specified grammar, pre-defining the possible 

commands available to the user. The fixed grammar approach enhances a lot the recognition quality 

but has two major drawbacks: (1) it needs the user to be aware of the grammar as it does not allow 

much variations on the user side; (2) it often requires the vocabulary to be defined before all the 

interactions. The H5W framework helps to overcome those limitations through the tight link it has 

with language. We developed an open source grammar based engine [74] that allows us to create, run 

and modify grammars at runtime as well as to keep track of vocabulary categories that can expand 

dynamically (the interlocutor can add a new word to vocabulary by switching to open recognition or 

spelling modes). Although this engine is independent from the H5W framework, it fits very well with 

the current representation as the different “Entity” categories can be mapped to given vocabularies 

(i.e., agents, objects, verbs, and concepts). In the case of situated interaction, the world state perceived 

by the robot directly defines the vocabularies by giving priority to the present physical entities (i.e., it 
is more likely to speak about the direct environment). Regarding the grammar aspect, we considered a 

relatively simple yet very generic form of dialog which allows an agent either to inform, question or 

give orders to another agent, about a H5W representation (Figure 6). 

By defining relations with some additional specifications, the major components of dialog can be 

formulated and interpreted by the system. Expressing a full relation represent an affirmation, therefore 

increasing the knowledge of the communication recipient. A partial relation with a special symbol “?” 

in place of one or more of the roles represent a question in which the filled roles represent some 

constraints to be verified (e.g., “(iCub, like, ?)” means “What does iCub like?”). The role being 

questioned directly defines the interrogative word that will start the sentence formulation (i.e.,  
Who = subject, What = object, When = complement of time, Where = complement of place,  

How = verb, Why = causal relations), therefore setting a specific path in the grammar. Finally an order 

is an “invalid” Relation that has no subject, in this condition the corresponding sentence is in the 
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imperative tense, therefore prompting the execution of the rest of the relation, with the interlocutor as 

the missing subject. The grammars used to transform a sentence into a H5W relation are relatively 

simple and available online as part of the WYSIWYD project [75]. The language system can be used 

bidirectionally: Speech recognition can be used as a way for the user to modify or query the robots 

knowledge, as well as to command it; and speech synthesis used by the robot to express in a spoken 

manner, all the concepts and relations that it is manipulating. While the H5W representation has been 

extensively used in the robot control domain for representing perceptual concepts, the direct mapping 

to natural language has never been tested in a systematic manner. In the following section, we assess 

the performance of the H5W representation as a way to support information exchange through natural 

language interaction. 

 

Figure 6. The dialog system. Through simple grammar, affirmative, interrogative and 

imperative sentences can be mapped to a semantic representation, using the H5W 

framework. The agent can either build this representation from speech recognition or use 

an existing representation and generate a sentence description. 
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4.2. Benchmarking H5W for Information Exchange 

The H5W framework offers a direct mapping between natural language and semantic content.  

In order to evaluate the quality and applicability of this link in the context of a dialog between a human 

and a machine, we designed a simple experiment about information exchange. The scenario is inspired 

by the popular board game “Cluedo”, in which characters are interacting in a house to solve a murder.  

The original game goal consists of uncovering the crime by finding the right combination of a suspect, 

weapon and place, through the exchange of information between the players. In our version, we have 

two players and we extend the representation to include an action and a time. The elements composing 

the situation are picked up from 6 characters, 5 actions, 6 objects, 9 places and 4 time periods, 

therefore allowing for 6480 combinations. Each player possesses a collection of 5 facts that are 

complete (e.g., “Miss Peacock hid the knife in the living room during the morning.”) as well as 5 other 

facts, which have some missing parts (e.g., “Colonel Mustard took _?_ in the kitchen during _?_”), 

taken together the two players share the same collection of 10 complete facts. In turns, each player 

asks a question to the other player in order to fill his missing knowledge. The goal is to fill all the 

missing gaps in the statements and the game ends when both players have completely filled in the 

missing parts. 

The setup consists of an audio headset (Microsoft LifeChat LX3000) connected to a computer with 

the screen turned off. One player is the subject wearing the headset and the second player is the 

computer. The only modality available for interaction is the audio communication, so the user can only 

send information to the system through the microphone and receive feedback through the headset. The 

subject is untrained and instructed to speak naturally to the system. Each subject performed the game 

twice, with different statements for the first and second game, as we wanted to assess the adaptability 

of the human user to the system. The subjects were also asked to fill in a questionnaire regarding 

demographic information, their familiarity with synthetic speech engine and their opinion about the 

interaction. The measures of familiarity and assessment of the interaction were self-reported on 5 point 

Likert scales. 

The sample consisted of 10 subjects (age: M = 24.1, SD = 5.8) from various nationalities and 

having various native languages, all of them could speak and understand professional English, albeit 

with strong accents. None of the subjects reported global expertise with synthetic speech systems (e.g., 

those used in GPS systems, the personal assistants like “Siri” or “Cortana”), with a mean reported 

dialog frequency of 1.8 (1 being “never”, 5 being “everyday”). We evaluated each subject in terms of 

the time taken to fill the knowledge gaps in the game and the number of errors of the human and 

system. We counted as an error any completed fact that differed from the original fact, known by the 

other player. We report (Figure 7) an outstanding performance (>90% of correct answers) when the 

system is answering a question from the user, and an above average performance (>63%) when the 

user is answering the questions of the system. The difference between the two conditions is explained 

by two factors. First, when the system answers a question (e.g., “Where did Miss Scarlet hide the 
knife?”) it formulates the answer using a complete sentence (e.g., “Miss Scarlet did hide the knife in 
the Kitchen.”). This allowed the user to spot any false recognition, while still using the statement of 

the system to fill his partial facts. Interestingly, some users did also adopt this way of answering after 
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several interactions with the system, while the system was perfectly able (and less error prone) to catch 

direct statements such as “In the kitchen”. 
 

 

Figure 7. Efficiency of the knowledge transfer, as percentage of correct answers retrieved 

from the partner. “Score Human” refers to the answers retrieved by the system asking the 

subject a question. “Score system” refers to the answers retrieved by the human, asking the 

system a question. 

The second reason that explains the difference between the two conditions (user’s question vs 

system’s question) is related to the synchronicity of the speaker and the recognition system. When the 

subjects asked a question, they generally had a relatively large mute time during which they were 

looking at their form and formulating the question silently, therefore allowing the recognition system 

to purge any previous noise and get steady for recognition. In the other condition (human answering 

questions from the system), the subjects were more prompt to answer, sometimes even while the 

system was still asking the question. This problem also produced a more chaotic interaction, as the 

system could not react quickly enough, often due to false recognition of some noise, therefore saying things 

like “Sorry I did not understand” before  the user spoke. On the other hand, the system could also have 

discarded the users answer as prior noise and therefore would wait for an answer, making the subject 

believe that the system was not responsive. The issue of synchronization of speakers and more generally of 

turn taking is a standard problem in the domain of human-robot interaction and one solution is to use non-

verbal clues to enforce the turn taking behavior [76]. Finally, we can also point to some weak correlation 

between the global level of stress reported by the subjects (1 = no stress, 5 = stress) and their scores on 

instructing the system (r = 0.68). The score obtained while listening to the system is not correlated with 
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the stress level (r = 0.4). Overall the subjects did not report being stressed neither while listening to the 

system (M = 2.4, STD = 1.26) nor while talking to the system (M = 2.8, STD = 1.55). 

Furthermore, we asked the subjects to rate several qualitative aspects of the interaction. Although 

this data is self-reported, the subjective perception of interactive artificial systems is a central point to 

assess before any deployment as a product. Our questionnaire pinpointed several important aspects of 

the spoken interaction. Overall the results are in favor of the system (Figure 8): The subjects felt that 

the system was listening to them, that it was using the information they provided and that it was 

answering adequately. Ultimately they reported an exchange of information with the system and more 

importantly they found that the system was easy to use. Together, those results allow use to claim the 

validity of the H5W framework as a way to represent, query and transfer semantic content through 

natural language.  

 

Figure 8. Self-reported appreciation of the system by the subjects using a Likert scale.  

A score of 5 means the subject agreed with the statement, a 1 means he disagreed. This 

data confirms that the successful exchange of information between the user and the 

artificial system was also perceived as a successful spoken interaction by the user. Please 

refer to the supplementary material for the exact formulation of the questionnaire. 
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5. Discussion 

Since its implementation as part of the DAC architecture, the H5W library has been intensively used 

as a tool to support other studies. In particular, it is the core implementation of multiple HRI scenarios 

such as the exploration of the effects of allostatic control on the human perception of the robot [22,23], 

or several studies about the effect of other’s representation in terms of empathy and ToM [21]. In 

developmental robotics, it has also been used as a way to maintain the working memory of the robot 

and served as a base for the development of long term autobiographical memory [77–79]. It has also 

supported perceptual representations in the context of language acquisition [80–82] and in this work 

we have strengthened the validity of the H5W framework in the context of natural language by 

assessing its ability to represent, query and share semantic information in a purely language based 

scenario. Through the definition of a few concepts (i.e., agents, objects, actions) which are the main 

elements of any interaction scenario, we manage to cover numerous situations and do not limit our 

knowledge representation to the scope of a single study. In addition, we kept the possibility of a 

complete abstract representation of entities which, together with an extended relational structure, 

allows compatibility with more traditional ontological models. An important contribution is the careful 

attention we have placed  have taken in defining the problem from a software engineering perspective 

and providing a concrete usable implementation of the notions defined. With the current report, we 

have intended to give a comprehensive insight into these definitions, which are at the core of the 

architecture and are used for other studies. We used concepts coming from ontology and software 

engineering domains in order to create a representation that is simple, yet generic and powerful enough 

to allow psychologists to implement genuine scenarios or roboticists to scale up existing cognitive 

architectures. By correctly conceptualizing the problems that are facing situated agents and turning this 

conceptualization into a robust software implementation, we have built the foundations for a long 

lasting representation of knowledge. 
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