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Abstract: This work presents the design and assessment of four control schemes for the monitoring
and regulation of joint trajectories applied in the dynamic model of a SCORBOT-ER V plus robot,
which includes the dynamics of the actuators, and the estimation of the friction forces present within
the joints. The two classical control strategies calculated torque and PID, and the two advanced control
strategies, fuzzy and predictive, are considered. In the latter case, a gravitational compensation stage
is incorporated, as well as the inverse models of the motors and the transmissions of belt movement
for each joint. Computational tests are performed by applying an external step-type disturbance
to the third joint of the robot. Finally, an evaluation of the results obtained is presented through
trajectory curves, joint errors, and the three performance indexes residual mean square, residual
standard deviation, and index of agreement.

Keywords: tracking; regulation; dynamic model; SCORBOT; computed torque; PID; fuzzy controller;
predictive controller; gravity compensation; performance indexes

1. Introduction

Industrial robots have become the preferred automated tools for boosting production
and decreasing expenses, largely due to two of their most vital capabilities: their ability
to consistently execute repetitive physical tasks and their ability to accelerate procedures
where meticulous accuracy is imperative.

In order for a manipulator robot to carry out a desired motion, it necessitates a
controller capable of guiding the robot through the completion of the task. However,
despite the central importance of manipulator control, it remains a domain filled with many
practical and theoretical difficulties, stemming from the intricate dynamics governing
these robots’ behavior, as well as the need for extremely precise trajectory planning when
operating at high velocities under shifting loads [1].

As nonlinear, multivariable dynamic systems, manipulator robots pose substantial
mathematical modeling challenges that complicate controller design and application. Exact
representations demand precise link mass, inertia, and length data. Furthermore, practical
uncertainties abound, from internal friction to external disturbances. Myriad control
strategies attempt to handle such issues. Proportional-integral-derivative (PID) approaches
prove hugely popular in industrial settings, owing to their conceptual simplicity and
robustness across varying conditions. PID controllers successfully minimize manipulators’
steady-state errors, but remain sensitive to parametric and environmental uncertainty [2,3].
Alternative advanced methods may prove more resilient by accounting for robot dynamics
and inevitable real-world variation. Still, PID’s virtues ensure widespread reliance, if almost
always in conjunction with additional nonlinear controllers to fully stabilize performance.
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Following classic PID, the Computed Torque Controller scheme (CTC) is the most used
in the industry for the control of manipulator robots. Since the robot model is contained
by the control law, CTC cancels the non-linearities of the robot’s dynamic model. This
controller usually presents a better performance than PID, under the assumption that
the dynamic parameters of the manipulator robot are known with relative accuracy [4,5].
Furthermore, CTC combines linear PD control and feedback dynamics, calculating it using
real speed and the desired acceleration signals. This characteristic improves trajectory
tracking and disturbance rejection. However, it presents two main shortcomings. Dynamic
compensation is calculated based on a model with invariable dynamic parameters, i.e.,
the parameters vary during trajectory tracking, and uses linear PD with proportional and
derivative constants to remove the tracking error [6,7].

As an expert system-based approach, fuzzy control has garnered substantial popular-
ity by sidestepping the need to model certain systems with precise mathematical equations.
Instead, it rapidly analyzes information using continuous truth values between “com-
pletely true” and “completely false”, yet still produces quick and accurate outputs. In this
way, fuzzy control overcomes modeling complexity issues that can easily plague other
techniques. Furthermore, fuzzy control is generally robust and tolerates inaccuracies and
noise in the input data. Its logic programming is rule oriented. The order of these rules is
arbitrary and allows for modifying both the type of membership functions and the number
of rules [8,9]. Fuzzy logic lends itself well to controlling intricate processes that prove
troublesome to model analytically. The challenges may stem from lacking comprehensive
knowledge regarding the system’s mechanisms or stem from difficulties obtaining an accu-
rate experimental identification [10]. Regardless of the root cause, fuzzy approaches can
circumvent the need for precise models for processes that are too complex, nonlinear, or
vague to characterize via conventional means.

The generic notion of model predictive control (MPC) was introduced through the
petrochemical industry in the late 70s. From its beginnings, MPC has revolutionized
control engineering, providing solutions to processes with complex dynamic behavior [11].
MPC also describes schemes that use a process model for two specific tasks: the explicit
prediction of future behavior and the calculation of a corrective action for control, which
are both required to direct the predicted output to values as close as possible to the
desired objectives [12]. In essence, the predictive control technique employs an internal
mathematical model and an optimization strategy to predict the system outputs within a
time interval denominated prediction horizon. After determining a series of future control
variables through optimization, MPC uses the error detected between the real output
and the output predicted by the model to correct feedback. Therefore, it prevents the
deviation of the controlled plant status from ideal values due the incompatibility of the
model or environmental interference [13]. Operations close to the restrictions and the
physical limitations of the actuators are among the main advantages of MPC. However,
the formulation on which the algorithm is based implies high computational costs and,
consequently, this strategy has to be implemented in computers that facilitate and support
challenging matrix calculations [14,15].

This paper delineates the formulation, simulation, and performance analysis of four
distinct control approaches to enable accurate multi-joint trajectory tracking for a 3-DoF
(Degrees of Freedom) SCORBOT manipulator experiencing external perturbations. A
classic PID scheme, a fuzzy logic controller that includes acceleration in its linguistic
variables (differently from most methods), a torque control scheme that comprises of the
inverse dynamic models of both actuators and transmission, and a predictive controller
that incorporates gravity compensation are proposed.

2. Manipulator Kinematics and Dynamics: Foundational Models

The manipulator robot considered in this study corresponds to a SCORBOT-ER V plus.
Three Degrees of Freedom, which allow for establishing its position in the (x,y,z) space,
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are employed in its design. Figure 1 shows a picture of the SCORBOT-ER V plus robot,
together with its diagram.
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Figure 1. SCORBOT-ER V plus robot and its diagram.

Figure 2 shows the diagram of the robot under study. To model its kinematics and
dynamics, the coordinate axis and centroid systems consider q1, q2, q3 and l1, l2, l3 as
generalized coordinates and lengths of the first, second, and third links, respectively. In
turn, lc1, lc2, and lc3 represent the lengths of the first, second, and third links from origin
to centroid.
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The kinematic model (direct and inverse) is obtained via applying the Denavit–
Hartemberg and geometrical methods, respectively [16,17]. Using the cosine theorem,
and considering the lengths of the three links, it is possible to calculate the angle θ3. Then,
from the angle θ3 and the spatial position (x,y,z), the angle θ2 can be obtained. The results
are presented in Equations (1)–(4):

T =


c2−3c1 −s2−3c1 s1 (l2c2 + l3c2−3)c1
c2−3s1 −s2−3s1 −c1 (l2c2 + l3c2−3)s1
s2−3 c2−3 0 l1 + l2s2 + l3s2−3

0 0 0 1

 (1)
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2 − l2

3
2l2l3

(4)

where: s1 = sinθ1, s2 = sin θ2, c1 = cos θ1, c2 = cos θ2, s2−3 = sin(θ2 − θ3), and c2−3 = cos(θ2 − θ3).
This kinematic model is required to establish the Cartesian trajectory of the robot’s

end effector within its workspace. Based on the model, the desired joint path that each joint
of the manipulator must follow can be determined.

The dynamics governing the manipulator behavior derive from Lagrange’s seminal
formulation, which elegantly extends Euler’s foundational work using the energy-based
Equation (5) [18]. This powerful approach yields rich dynamic models by exploiting deep
connections between system kinetics and kinematics.

τ = M(q)
..
q + C

(
q,

.
q
)
+ G(q) + F

( .
q
)

(5)

In the above dynamic formulation, τ denotes the (n × 1) generalized force vector, M
refers to the (n × n) inertia matrix, C constitutes an (n × 1) vector of centrifugal and Coriolis
forces, q represents joint position coordinates,

.
q stands for corresponding joint velocity

terms, G signifies the (n × 1) gravitational force vector,
..
q refers to joint accelerations as an

(n × 1) vector, F encapsulates frictional forces in an (n × 1) format, and n corresponds to
the number of Degrees of Freedom.

For a mechanical structure composed of links coupled through rotational joints to
move and incorporate the position of its end effector to a determined joint trajectory,
the inertial forces present in each link due to acceleration needs to be overcome. The
physical interaction between the rotational links also requires compensation for centrifugal
and Coriolis forces. To vertically position the centers of mass of each coupled link, the
gravitational action, both upward and downward, has to be overcome, depending on
the direction of the movement. Furthermore, the resistance forces that act in a direction
opposite to the direction of movement of each link of the mechanical structure (static
and dynamic friction) need compensation. Due to the characteristics of this behavior,
torques should be applied in each joint via actuators in order to compensate these forces, as
indicated in Equation (5).

The derived dynamic model motion equations governing the manipulator’s behavior
are detailed in the Appendix A under Dynamic Model. This dynamic model is necessary to
link forces and torques, which are required to be applied in each joint, with the actuation
elements and the movement of the robot. The actuation elements correspond to PITTMAN
brand DC motors and GM9413A models for the first three joints [19–21].

This information allows for conducting simulations of the robot’s movement to design
and test the controllers that are discussed in the next section. In this way, the neces-
sary assessments and corrections will be carried out to obtain the best control algorithm
performance.

The values of the parameters considered for the manipulator robot are shown in
Table 1 [16].
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Table 1. Manipulator Specifications.

Symbol Link 1 Link 2 Link 3 Unit

l 0.32 0.22 0.22 [m]
lc 0 0.052 0.1376 [m]
m 7.1402 2.2483 1.957 [kg]
Izz 0.04624 0.02595 0.03616 [kg·m2]
Fv 0.025 0.025 0.025 [N·m/rad]

Feca 0.05 0.05 0.05 [N·m]
Fecb 0.05 0.05 0.05 [N·m]

3. Controller Designs
3.1. Computed Torque Controller

The algorithm consists of the application of a torque to compensate the centrifugal and
Coriolis effects, as well as the gravitational and friction effects, as indicated in (6) [22,23].

τ = M̂(q)
( ..
qd + Kv

.
e + Kpe

)
+ Ĉ

(
q,

..
q
)
+ Ĝ(q) + F̂

( .
q
)

(6)

where M̂ is the estimation of the inertia matrix (n × n), Ĉ is the estimation of the centrifugal
and Coriolis force vector (n × 1), Ĝ is the estimation of the gravitational force vector (n × 1),
F̂ is the estimation of the friction force vector (n × 1),

..
qd is the joint desired acceleration

vector (n × 1), Kv is a definite positive diagonal matrix (n × n), and Kp is a definite positive
diagonal matrix (n × n). Finally, in terms of the joint coordinates of the manipulator robot,
e corresponds to the position error vector and

.
e to the speed error vector. To make the

terms in Equations (5) and (6) equal, we can use the following equation:

M̂(q)
( ..
qd + Kv

.
e + Kpe

)
= M(q)

..
q (7)

Since M is a definite positive matrix that consequently can be inverted, Equation (7) is
reduced to Equation (8):

..
e + Kv

.
e + Kpe ≈ 0 (8)

The proposed method for the computed torque controller, besides the revised control
law, includes the dynamic model of the robot actuators (direct current motors) together
with the movement transmission ratio (belt). This has the objective of simulating a system
much closer to the real one. The diagram of its design is observed in Figure 3.
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The Kp and Kv gains incorporated within the control law are enumerated in Table 2.
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Table 2. Gains of the computed torque controller.

Joint Kp Kv

Base 4000 0.800
Shoulder 12,000 0.200

Elbow 16,000 0.200

3.2. Predictive Controller

Predictive control is based on a weighted sum of squared errors and control efforts. At
any time instant t, an optimal control problem is solved for a finite and future N horizon,
where a J function is minimized. Such a function has restrictions, as indicated in (9), and
quantifies the difference between the plant output (y) and the reference (r), as well as the
control effort (u) [13,24].

ymin ≤ y ≤ ymax, umin ≤ u ≤ umax, ∆umin ≤ u ≤ ∆umax (9)

In general, within the considered horizon, the future output is expected to follow
a specific reference signal while penalizing the control effort required for this task. The
general equation of such an objective function has the shape indicated in (10):

J(N1, N2, Nu) =
N2

∑
j=N1

δ(j)[ŷ(t + j|t)− w(t + j)]2 +
Nu

∑
j=1

λ(j)[∆u(t + j − 1)]2 (10)

where ŷ(t + j|t) is the optimal prediction or future output that is j steps forward from
the process output (with known data until instant t), and w(t + j) is the future reference
trajectory. N1 and N2 define the prediction horizon. The variation of the control action
∆u(t + j − 1) corresponds to the control effort. The control horizon is Nu, while δ(j), λ(j)
are weighting sequences or weights. In the objective function, δ(j) and λ(j) specifically
represent the relative weights of the importance of each component of the error in the
output and control effort, respectively. Usually, these parameters do not vary with time
and are thus considered constant values.

As observed in Figure 4, a predictive controller based on the model was, which
incorporated gravity compensation (MPC + G) for each designed joint, in order to reduce
the effect of the external disturbance.
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Table 3 indicates the values of the parameters used for the tuning of the predictive
controllers with gravity control. These parameters were the sampling time, prediction
horizon, and control horizon. This compensation accounts for more than simply the
manipulator’s gravitational forces G by further incorporating the inverse dynamics of both
the actuators and transmission system. These models were obtained via the training of
neural networks with inverse modeling.

Table 3. Gains of the predictive controller.

Joint Sampling Time: Ts
[s]

Prediction Horizon
[Ts] Control Horizon [Ts]

Base 0.001 38 8
Shoulder 0.001 14 3

Elbow 0.001 16 4

3.3. Fuzzy Logic Controller

As an expert system methodology, fuzzy control uniquely enables handling complex
dynamic systems without reliance on precise mathematical models. Instead, as depicted in
the generic schema in Figure 5, fuzzy controllers employ linguistic variables and rule-based
inferences to map the inputs to the desired outputs. This grants fuzzy approaches great
flexibility in tackling control challenges that lack analytical system representations or that
have vague, qualitative dynamics.
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vo

Figure 5. Modular formulation of a fuzzy logic controller.

Broadly speaking, fuzzy control algorithms derive their outputs from joint positional
details and velocity measurements furnished by proprioceptive sensors like encoders or
tachometers which are situated on the manipulator links [25,26]. Several research efforts
integrate fuzzy techniques for processing positions and velocity sensor data, including
hybrid force/motion and force/position schemes, fuzzy PID approaches, obstacle-avoidant
adaptive designs, fractional-order fuzzy control, and PID-guided adaptive laws for highly
linear industrial processes facing substantial parameter fluctuations, noise, and instabil-
ity [27,28]. This work, unlike the examples above, deals with the design and simulation
of three fuzzy controllers—one per robot joint—that include the second derivative of the
joint position as one of its linguistic variables. As shown in Figure 6, each controller has
three inputs: error, speed, and position acceleration. Its output is the voltage entering the
actuators of each joint.
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Table 4 enumerates the specific linguistic variables underlying each controller, detailing
the universes of discourse (U) and membership function terms (T). All implementations
utilize the classical Mamdani inference methodology.

Table 4. Gains of the predictive controller.

Joint Parameter Error Speed Acceleration Voltage

Base
U [−0.15 0.15] [−2 2] [−10 10] [−19.1 19.1]
T NB, NS, Z, PS, PB LVF, LF, S, RF, RVF N, Z, P LB, LS, Z, RS, RB

Shoulder
U [−2 2] [−5 5] [−2 2] [−19.1 19.1]
T NB, NS, Z, PS, PB LVF, LF, S, RF, RVF N, Z, P LB, LS, Z, RS, RB

Elbow
U [−0.15 0.15] [−2 2] [−1 1] [−19.1 19.1]
T NB, NS, Z, PS, PB LVF, LF, S, RF, RVF N, Z, P LB, LS, Z, RS, RB

The terms NB, NS, Z, PS, and PB correspond to Negative Big, Negative Small, Zero,
Positive Small, and Positive Big, respectively. Likewise, LVF, LF, S, RF, and RVF represent
Left Very Fast, Left Fast, Slow, Right Fast, and Right Very Fast; N, Z, and P correspond to
Negative, Zero, and Positive, and LB, LS, Z, RS, and RB correspond to Left Big, Left Small,
Zero, Right Small, and Right Big, respectively.

The rule base of each controller is a combination of the terms defined, which uses
sentences with the structure if . . . else, together with the logical operator and.

3.4. PID Controller with Anti-Windup

The first control scheme implemented for the manipulator is an anti-windup PID ap-
proach, independently tuned for each joint using iterative empirical parameter adjustments
to balance trajectory accuracy and rapidity. The controller diagram in Figure 7 displays
the overflow prevention structure that improves performance by negating the integrator
windup in the event of control saturation [29–31].
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The PID controller’s discrete-time step output u(k) is formulized according to (11)
as follows:

u(k) = u(k − 1) + Kp

[(
1 +

T
Ti

+
Td
T

)
e(k)

]
+ Kp

[
−
(

1 + 2
Td
T

)
e(k − 1) +

Td
T

e(k − 2)
]

. . .+KTTes(k) (11)

The variables in (11) consist of the proportional gain Kp; the integral time constant Ti;
the derivative time constant Td; the sampling period T; the integral gain KT ; the position
error e as the difference between setpoint and observed values; and the saturated error
es, defined as the discrepancy between clipped and raw controller error signals. The
parameterized constants underlying the implemented anti-windup PID appear in Table 5.

Table 5. Gains of the PID controller.

Joint Kp [−] Ti [s] Td [s] KT [s−1]

Base 140 0.170 0.220 2.018
Shoulder 110 0.200 0.182 1.401

Elbow 80.0 0.200 0.200 2.062

4. Results

In this section, the results of each control strategy are shown. With this purpose, a
desired Cartesian trajectory is defined within the workspace of the robot, as indicated in
Figure 8. Through inverse kinematics, qd the desired joint trajectory—composed of qdn with
n = 1, 2, 3—is obtained considering a total duration of 24 s, as shown in Figure 9.
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The manipulator attempts to track the reference joint trajectory under each control
approach, enabling comparative assessment based on quantified performance metrics,
specifically residual mean square (RMS), residual standard deviation (RSD) and the index
of agreement (IA) coefficient [32].

4.1. Results with External Disturbance

Trajectory tracking and regulation results for the computed torque, predictive with
gravity compensation, and the fuzzy and PID control are presented in Figures 10–13. The
external disturbance of the tests consists of a 2 N·m torque step that is applied to joint 3
(elbow) thirteen seconds after the robot starts moving. In each figure, the simulated joint
trajectory is expressed by q (composed of qn, with n = 1, 2, 3).
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4.2. Joint Error Results

To determine the performance indexes for each controller and Degree of Freedom, the
joint error curves are presented according to algorithm, i.e., computed torque, predictive
with gravity compensation, and the fuzzy and PID control, from Figures 14–17. In each
figure, the resulting joint error e (composed of en, with n = 1, 2, 3.) is calculated as the
difference between the desired joint trajectory qd and the resulting simulated trajectory q.
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4.3. Performance Indexes

The indexes considered to assess the performance of the controllers correspond to
an RMS, RSD, and IA, which are mathematically expressed Equations (12)–(14), respec-
tively [32].

RMS =

√
1
n

n

∑
i=1

(oi − pi)
2 (12)

RSD =

√
n

∑
i=1

(oi − pi)
2 / n

∑
i=1

o2
i (13)

IA = 1 −
n

∑
i=1

(oi − pi)
2 / n

∑
i=1

(∣∣o′i∣∣− ∣∣p′i∣∣)2 (14)

where n corresponds to the total number of observations, oi denotes the observed values,
and pi indicates the predicted values. Additionally, p′i = pi − om, and o′i = oi − om, where
om is the mean value of the observations.

The performance metrics quantified for each control scheme include RMS, RSD, and
IA, graphed per joint in Figures 18–20 across the single, dual, and triple joint configurations
incorporating the base, shoulder, and elbow (1, 2, and 3).
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According to the results obtained, it is observed that, although the test disturbance
was applied only to joint 3, the greatest errors occur in joint 1 in terms of regulation, which
corresponds to the rotational base of the robot. This rotational base is not affected by gravi-
tational effects, and therefore such results seem contradictory. However, approximately at
10–14 s of the trajectory, the largest slope is detected at joint 1. This means that the effects of
the test disturbance are added to the torque limitations of the joint 1 actuator, according to
the requirement of excessive speed in the indicated section.

However, in the predictive controller, more gravity compensation presents the least
joint peak deviation, as indicated in Figures 11 and 15. In this context, the calculated
torque controller shows considerable difficulty in facing the demands of speed and torque
limitations, in addition to the test disturbance, as shown in Figure 10.

It should be noted that, in the first design stage, the predictive controller without
gravity compensation was considered. However, its performance to compensate for the
effects of the test disturbance was not satisfactory, particularly for joints 2 and 3. Thus,
it was decided to incorporate a gravitational compensation section based directly on
Equations (24) and (25). The result was again not satisfactory, as the fact that this com-
pensation was applied directly as a voltage supply signal to the actuators resulted in it
being very aggressive. Therefore, it was decided to reduce gravitational compensation
through the inverse models of the belt motion transmissions and the PITTMAN motors,
as shown in Figure 4. In the latter case, the models were obtained through the training of
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artificial neural networks by an inverse model. However, an important limitation regarding
the predictive controller with gravity compensation, unlike the other controllers analyzed,
refers to the fact that it presented a higher computational cost in terms of the execution
times of the simulations. This disadvantage can be explained by the iteration requirements
to solve an optimization problem [13]. Such a characteristic can be decisive when making a
real practical implementation without having high-performance processors.

In terms of tracking (before the application of the test disturbance), the resulting joint
trajectories that more closely approximate the desired joint trajectory correspond to those
provided by the predictive with gravity compensation and diffuse controllers, as seen in
Figures 11 and 12, respectively. Regarding the performance of the PID controllers and
calculated torque, the latter presents higher tracking accuracy than PID and notably lower
joint errors, as shown in Figures 14 and 17. This result relates to the precise knowledge of
the dynamic parameters that characterize the robot [5]. However, since these results are
obtained through computational simulations, similar results cannot be ensured in a real
practical implementation.

When analyzing joint 1, the predictive controller with gravity compensation yielded
the smallest RMS and RDS errors, as well as an IA value closest to 1. These values were
0.0010, 0.0115, and 0.9998, respectively. In turn, for the same joint, the computed torque
controller presents the highest RMS and RDS errors, as well as the IA value farthest from 1.
Such values are 0.0402, 0.0475, and 0.9992, respectively.

Regarding joint 2, the predictive controller with gravity compensation exhibits an
excellent performance, characterized by an RMS error equal to 0.0019, an RDS value of
0.0046, and an IA index of 1.0000. Conversely, it must be noted that the highest RMS and
RDS errors, together with the IA value farthest from 1, correspond to the PID controller,
whose respective values for the three indexes are 0.0168, 0.0393, and 0.9996.

According to the tracking and regulation results of joint 3, the fuzzy controller exhibits
the lowest RMS (0.0031) and RSD (0.0025) errors. However, the IA value closest to 1 is
presented by the predictive controller with gravity compensation, which has a 0.9999 value.
In this context, the PID controller shows the lowest performance, with values for the RMS,
RSD, and IA indexes being equal to 0.0204, 0.0169, and 0.9933, respectively.

Table 6 aggregates the RMS, RSD, and IA metrics quantified per controller for the
single, dual, and three joint configurations encompassing the base, shoulder, and elbow
manipulator links.

Table 6. Performance indexes.

Controller PID Fuzzy Predictive + G Computed Torque

Index RMS RSD IA RMS RSD IA RMS RSD IA RMS RSD IA
Base 0.0316 0.0357 0.9997 0.0243 0.0280 0.9997 0.0010 0.0115 0.9998 0.0402 0.0475 0.9992

Shoulder 0.0168 0.0393 0.9996 0.0045 0.0107 0.9999 0.0019 0.0046 1.0000 0.0051 0.0115 0.9999
Elbow 0.0204 0.0169 0.9933 0.0031 0.0025 0.9991 0.0063 0.0052 0.9999 0.0044 0.0036 0.9977

Optimally, RMS and RSD values approach 0, indicating negligible tracking errors,
while the IA nears 1, conveying a high correlation between the reference and measured
joint trajectories.

In general terms, according to the calculated performance indices, the performances
of the Fuzzy, Predictive + G, and Computed Torque controllers are similar. However, when
analyzing the performance in terms of the disturbance rejection, it is possible to highlight
that the Predictive + G controller takes considerably less time (than the other controllers)
to compensate for the disturbance projected on the base and shoulder of the robot, with
times of 0.45 and 0.14 s, respectively. On the other hand, the disturbance compensation
time at the robot’s elbow is approximately similar for the three aforementioned controllers.
This can be explained by the fact that the disturbance was applied directly to the robot’s
elbow, and the correction speed is conditioned by the torque limitations of the PITTMAN
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actuators. The presented results were obtained through the use of various tests, including
making modifications to the parameters of each controller until the best possible result
for each of them was obtained. In this way, it is possible to affirm that the performance
of the controllers must depend on the tuning parameters. Table 7 shows the disturbance
compensation times.

Table 7. Disturbance compensation times.

Controller PID [s] Fuzzy [s] Predictive + G [s] Computed Torque [s]

Base 1.15 1.28 0.45 1.7
Shoulder 0.99 0.35 0.14 0.47

Elbow 1.02 0.44 0.42 0.46

5. Conclusions

This work dealt with the design and assessment of four joint controllers, namely
computed torque, predictive with gravity compensation, fuzzy, and PID controllers. Such
control strategies are applied to the dynamic model of a SCORBOT-ER V plus robot for
trajectory tracking and regulation. The robot was subject to an external disturbance on
its elbow, which is consistent with a 2 N·m torque step, thirteen minutes after the robot
started moving.

The manipulator’s nonlinear dynamics derive from a Euler–Lagrange formulation,
harnessing energy balancing to the encapsulate actuator kinetics and friction phenomena
innate to joint articulation, yielding a rich representation.

A series of control algorithm simulations were conducted through a complete sim-
ulation environment created with the tools of the MatLab/Simulink software R2022A,
developed by MathWorks, Portola Valley, CA, United States.

Comparative control assessment employed three metrics to quantify the trajectory
tracking accuracy—RMS, RSD, and IA coefficient—with superior performances exhibiting
diminishing error-based indices and unity agreement.

The parameters of each controller were successively empirically adjusted until the
best results were obtained; these results were presented in this work. A particular case
corresponds to the predictive controller, since it was not able to correct the errors in
joints 2 and 3, which were affected by the gravitational force. In this case, the tracking
and regulation response is achieved with joint errors close to zero by incorporating a
gravitational compensation, weighted by the inverse models of the motors and the motion
transmission belts of each joint. However, a higher computational cost was also observed in
terms of the execution times of the simulations, unlike with the other controllers analyzed.
This disadvantage can be decisive when making a real practical implementation without
having high-performance processors.

The controllers that presented the lowest computational cost were the PID controllers
and the calculated torque. The latter had a tracking accuracy superior to that of PID.
However, it should be noted that these results were obtained via computer simulations. In
this way, a similar performance cannot be ensured in a real implementation if the precise
dynamic parameters that characterize the robot are not available.

Broadly, the designed and assessed controllers demonstrate adequate setpoint tracking,
with near-zero residuals and a unity agreement indicating excellent reference trajectory
reproduction. However, after a meticulous analysis that considers the external disturbance,
the predictive control scheme with gravity compensation achieved a higher accuracy in the
tracking and regulation of the SCORBOT robot joint trajectory.

In particular, the predictive controller with gravity compensation exhibited an IA
equal to 1 in the case of joint 2. In this same scenario, the highest error was found in the
computed torque and PID controllers. Furthermore, the performance of the fuzzy controller
obtained the lowest tracking and regulation errors in joint 3.
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6. Future Work and Limitations

One of the main limitations of this work is that results have only been obtained
at the level of computational simulations. In turn, the predictive controller has a high
computational cost when solving an optimization problem. This requirement could become
more demanding if a gravitational compensation stage, along with the inverse models of
the belt drives and motors for each joint, is implemented, especially if the inverse models
are generated through artificial neural networks using an inverse model.

Future efforts will advance manipulator control research through continued analysis
and novel methodology development. This stage comprises the real practical implemen-
tation of such algorithms in real industrial robots to compare the real practical results
with those of computer simulations. In addition, the search for training mechanisms is
also considered, which would allow for reducing the dependence on parameter accuracy
required by the calculated torque controller, mainly when a real practical implementation
needs to be conducted.
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Appendix A. Dynamic Model

The dynamic model of the manipulator robot is obtained using the Euler–Lagrange for-
mulation [18]. From Equation (5), the dynamic model can be expressed through Equations
(A1)–(12) [17]:

M = [M11 M12 M13 ; M21 M22 M23 ; M31 M32 M33] (A1)

M11 =
1
2

m2l2
c2(c2·2 + 1) + m3(l2c2 + lc3c23)

2 + I1zz + I2zz + I3zz (A2)

M12 = M21 = I2zz + I3zz; M13 = M31 = I3zz (A3)

M22 = m2l2
c2 + m3

(
l2
2 + 2l2lc3 + l2

c3c3

)
+ I2zz + I3zz (A4)

M23 = M32 = I3zz + lc3m3(lc3 + l2c3); M33 = m3l2
c3 + I3zz (A5)

C =
[
C11 C21 C31

]T (A6)

C11 = −
(

l2
c2m2s2·2 + 2m3(l2c2 + lc3c23)(l2s2 + lc3s23)

) ·
θ1

·
θ2 − 2lc3m3s23(l2c2 + lc3c23)

·
θ1

·
θ3 (A7)

C21 =

(
1
2

l2
c2m2s2·2 + m3(l2s2 + lc3s23)(l2c2 + lc3c23)

) ·
θ

2

1 − l2lc3m3s3
·
θ3

2 − 2l2lc3m3s3
·
θ2

·
θ3 (A8)

C31 = lc3m3s23(l2c2 + lc3c23)
·
θ1

2
+ l2lc3m3s3

·
θ2

2 (A9)

G =
[
0 G21 lc3m3c23gz

]T (A10)

G21 = (lc2m2c2 + m3(l2c2 + lc3c23))gz (A11)
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F =
[
F11 F21 F31

]T (A12)

where c2·2 = cos(2θ2); s2·2 = sin(2θ2); m1, m2, and m3, represent the mass of the first, second,
and third links, respectively. In turn, l1zz, l2zz, and l3zz indicate the inertia moments of the
first, second, and third links with respect to the first z axis of their respective joints.
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