
Citation: Esmaiel, H.; Zhao, G.;

Qasem, Z.A.H.; Qi, J.; Sun, H.

Double-Layer RRT* Objective Bias

Anytime Motion Planning Algorithm.

Robotics 2024, 13, 41. https://doi.org/

10.3390/robotics13030041

Academic Editor: Marco Ceccarelli

Received: 13 January 2024

Revised: 11 February 2024

Accepted: 13 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Double-Layer RRT* Objective Bias Anytime Motion Planning
Algorithm
Hamada Esmaiel 1,2 , Guolin Zhao 3 , Zeyad A. H. Qasem 4, Jie Qi 3,* and Haixin Sun 5

1 Department of Electronics and Communication Engineering, College of Engineering, A’Sharqiyah University,
Ibra 400, Oman; hamada.esmaiel@asu.edu.om or h.esmaiel@aswu.edu.eg

2 Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
3 College of Electronic Science and Technology, Xiamen University, Xiamen 361005, China;

glzhao@stu.xmu.edu.cn
4 School of Electronic and Computer Engineering, Peking University, Shenzhen 518005, China;

zeyadqasem@pku.edu.cn
5 Department of Information and Communication, School of Informatics, Xiamen University, Xiamen 316005,

China; hxsun@xmu.edu.cn
* Correspondence: qijie@xmu.edu.cn

Abstract: This paper proposes a double-layer structure RRT* algorithm based on objective bias called
DOB-RRT*. The algorithm adopts an initial path with an online optimization structure for motion
planning. The first layer of RRT* introduces a feedback-based objective bias strategy with segment
forward pruning processing to quickly obtain a smooth initial path. The second layer of RRT* uses
the heuristics of the initial tree structure to optimize the path by using reverse maintenance strategies.
Compared with conventional RRT and RRT* algorithms, the proposed algorithm can obtain the
initial path with high quality, and it can quickly converge to the progressive optimal path during the
optimization process. The performance of the proposed algorithm is effectively evaluated and tested
in real experiments on an actual wheeled robotic vehicle running ROS Kinetic in a real environment.

Keywords: motion planning; objective bias; online optimization; rapidly exploring random tree
(RRT)

1. Introduction

Planning is often applied to determine how to move along; the solution should be
provided in a way that complies with the mechanical limitations of autonomous systems,
such as robotics [1,2], graphic animation [3], manufacturing [4], and minimally invasive
surgical procedures [5]. In the state space, the problem of robot motion planning [6–8]
involves starting in some initial state and trying to arrive at a specified goal instead of goal
states to minimize resource consumption, such as energy or time.

Rapidly exploring random tree (RRT) [9] is one of the most popular approaches applied
to handle nonholonomic problems of path planning in a high-dimensional configuration
space. RRT’s unique advantage is that it does not require any connections between con-
figurations in pairs of states; hence, it can directly be applied to nonholonomic and Kino
dynamic planning [10–17]. In robot navigation problems, RRT addresses the path planning
problem by creating a random extended tree to find a suitable path, but, unfortunately,
the RRT-suggested path can be a non-optimal one. To handle this issue, a modified RRT
algorithm called RRT* has been proposed by Karaman and Frazzoli [18]. The RRT* algo-
rithm tries to obtain the shortest path, whether by distance or other metrics. The modified
RRT algorithm RRT* improves the path quality by introducing the major features of tree
rewiring and a best neighbor search. However, it obtains asymptotic optimality at the
expense of the execution time and convergence rate.

The RRT*-variant-based scheme has been proposed as an anytime scheme [19,20]. The
main feature of the anytime scheme is that the planned time is unknown in advance, and

Robotics 2024, 13, 41. https://doi.org/10.3390/robotics13030041 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13030041
https://doi.org/10.3390/robotics13030041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-7317-8908
https://orcid.org/0000-0002-8891-1938
https://orcid.org/0000-0001-8249-1197
https://doi.org/10.3390/robotics13030041
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics13030041?type=check_update&version=1

Robotics 2024, 13, 41 2 of 15

it can be terminated at any time. When time permits, any solution should be obtained as
soon as possible, and then the chosen solution should be updated to be more conventional.
The RRT*-variant anytime algorithm’s [19,20] criteria are to firstly and quickly obtain some
motion plans; these plans are not necessarily optimal but feasible. Then, RRT* is used
to improve the path quality online over time. The lower bound tree-RRT (LBT-RRT) [21]
allows continuous interpolation between RRT, RRT*, and RRG and achieves high-quality
anytime motion planning by maintaining two roadmaps at the same time. The RRRX

proposed in [22] first obtains the initial plan and refines it to be the best solution through
continuous repair. In [23], a doubletree RRT* (DT-RRT*) has been proposed based on a
dual-tree structure to separate the expansion process from the optimization process. DT-
RRT* initiates the path through the expansion process and the shortcut principle is used
for optimization. However, unfortunately, the current anytime algorithms cannot support
the new generation of unmanned driving systems due to the long latency time, in addition
to inaccurate path selection metrics as the smoothing path quality is not considered in
these schemes.

To cope with the new generation of unmanned driving systems’ requirements, this
paper proposes a real-time anytime planning algorithm suitable for unmanned driving
systems. To address the drawbacks of the current anytime motion planning schemes,
the proposed anytime planning algorithm adopts the initial path and online-optimized
double-layer structure for motion planning, considering the latency time in addition to the
selected path smoothing level. In the proposed scheme, the first layer of the RRT* scheme
uses a feedback-based biased sampling strategy to obtain the initial path and uses segment
forward pruning processing to evaluate the smoothing level of the selected initial path. The
second layer in the RRT* scheme performs the online optimization of the selected initial
path, which adopts the reverse maintenance spanning-tree scheme. In summary, the main
contributions of this paper are as follows.

(1) This paper proposes a double-layer RRT* tree structure. In the first layer, initial path
information is provided. In the second layer, an iterative optimization process is used
to update the selected path and improve the path selection accuracy.

(2) A new feedback-based objective bias strategy is used to obtain the initial path, and
the initial path is smoothed by removing redundant processing through segmentation
forward pruning.

(3) The second layer of the RRT* scheme optimizes the selected path using the heuristic
information provided by the spanning tree structure of the initial path.

Compared to the conventional RRT and RRT*, the proposed algorithm can allow the
path to gradually approach the optimal solution while ensuring the running speed.

The rest of the paper is as follows. In Section 2, the problem of motion planning is
stated. In Section 3, the initial path generation algorithm is described in detail. In Section 4,
the optimization algorithm is described in detail. In Sections 5 and 6, the performance of
the proposed scheme is assessed in an experiment in a real environment. Finally, the paper
is concluded in Section 7.

2. Motion Planning Problem Statements
2.1. Robot Model and Control Input

The two-wheel differential robot model discussed in this paper is shown in Figure 1.
The dynamic models of the two-wheel model are described as follows.

.
x =


.
x
.
y
.
θ

 =

cos θ 0
sin θ 0

0 1

[ur
ul

]
, (1)

where
.
x =

(.
x,

.
x, θ

)
is the state vector, which is used as the control input of the robot. This

state vector is determined by the Cartesian coordinate system (x, y), the operation θ, and

Robotics 2024, 13, 41 3 of 15

the dynamic constraints ur and ul . In addition, two-wheeled differential robots generally
have no backward motion and can support rotation in place.

Robotics 2024, 13, x FOR PEER REVIEW 3 of 16

Figure 1. The schematic diagram of the differential motion model.

𝐱ሶ = ൥𝑥ሶ𝑦ሶ𝜃ሶ ൩ = ൥cos 𝜃 0sin 𝜃 00 1൩ ቂ𝑢௥𝑢௟ ቃ, (1)

where 𝐱ሶ = (𝑥ሶ , 𝑥ሶ , 𝜃) is the state vector, which is used as the control input of the robot. This
state vector is determined by the Cartesian coordinate system (𝑥, 𝑦), the operation 𝜃, and
the dynamic constraints 𝑢௥ and 𝑢௟. In addition, two-wheeled differential robots generally
have no backward motion and can support rotation in place.

2.2. Problem Statement
The motion planning problem is used to calculate a continuous path from the initial

configuration 𝑞௦௧௔௥௧ to the goal state 𝑞௚௢௔௟, avoiding collision with existing obstacles. As-
suming that the environment and the geometry of the robot are described in an 𝑛-dimen-
sional state space, the motion plan can be expressed as a path in the state space. Let 𝑞 ⊆𝑅௡ 𝑛-dimensional configuration space 𝐶 [24] and 𝐶௢௕௦ is the obstacle region. Therefore, 𝐶௙௥௘௘ = 𝐶 𝐶௢௕௦⁄ can be used to represent the free region of the configuration space. In the
RRT algorithm, the spanning tree is represented as 𝑇 = (𝑉, 𝐸), where 𝑉 is the set of ver-
tices of the spanning tree in the configuration space and 𝐸 is the set of edges between
vertices. RRT expands the spanning tree 𝑇 by searching for random samples in the con-
figuration space. The goal of the exercise plan is to return the trajectory 𝜏(𝑡) ∶ ሾ0, 𝑠ሿ → 𝐶௙௥௘௘, where 𝜏(0) = 𝑞௦௧௔௥௧, 𝜏(𝑠) = 𝑞௚௢௔௟, corresponding to the control input causing the ro-
bot to move from 𝑞௦௧௔௥௧ to 𝑞௚௢௔௟.
3. Initial Path Generation Algorithm

In this section, we introduce and discuss the proposed initial path acquisition algo-
rithm using an objective bias strategy and segmented forward pruning.

3.1. Initial Path Generation
Before navigation, the initial path is generated by the first layer in RRT*. Algorithm

1 shows the overall flow of the proposed initial path generation algorithm. The input pa-
rameters of the algorithm include the binary map of the environment 𝑚𝑎𝑝, the initial point 𝑞௦௧௔௥௧, and the goal point 𝑞௚௢௔௟. The following terms are used to describe the algorithm. 𝑂𝑏𝑗𝐵𝑖𝑎𝑠𝑆𝑎𝑚𝑝𝑙𝑒(): returns the random node 𝑞௥௔௡ௗ(𝑥, 𝑦) in the free configuration. 𝐹𝑖𝑛𝑑𝑄𝑁𝑒𝑎𝑟𝑒𝑠𝑡(𝑞, 𝑉): finds the nearest node to 𝑞௥௔௡ௗ(𝑥, 𝑦) from the current spanning
tree by Euclidean distance. 𝐹𝑖𝑛𝑑𝑄𝑁𝑒𝑎𝑟𝑆𝑒𝑡𝑠(𝑞, 𝑉): returns the set of all nodes within 𝑟 range near 𝑞௥௔௡ௗ from the
current spanning tree. 𝑆𝑡𝑒𝑒𝑟(𝑞ଵ, 𝑞ଶ): a partial path from 𝑞ଵ to 𝑞ଶ.

Figure 1. The schematic diagram of the differential motion model.

2.2. Problem Statement

The motion planning problem is used to calculate a continuous path from the ini-
tial configuration qstart to the goal state qgoal , avoiding collision with existing obstacles.
Assuming that the environment and the geometry of the robot are described in an n-
dimensional state space, the motion plan can be expressed as a path in the state space. Let
q ⊆ Rn n-dimensional configuration space C [24] and Cobs is the obstacle region. Therefore,
C f ree = C/Cobs can be used to represent the free region of the configuration space. In the
RRT algorithm, the spanning tree is represented as T = (V, E), where V is the set of vertices
of the spanning tree in the configuration space and E is the set of edges between vertices.
RRT expands the spanning tree T by searching for random samples in the configuration
space. The goal of the exercise plan is to return the trajectory τ(t) : [0, s] → C f ree, where
τ(0) = qstart, τ(s) = qgoal , corresponding to the control input causing the robot to move
from qstart to qgoal .

3. Initial Path Generation Algorithm

In this section, we introduce and discuss the proposed initial path acquisition algo-
rithm using an objective bias strategy and segmented forward pruning.

3.1. Initial Path Generation

Before navigation, the initial path is generated by the first layer in RRT*. Algorithm
1 shows the overall flow of the proposed initial path generation algorithm. The input
parameters of the algorithm include the binary map of the environment map, the initial
point qstart, and the goal point qgoal . The following terms are used to describe the algorithm.

ObjBiasSample(): returns the random node qrand(x, y) in the free configuration.
FindQNearest(q, V): finds the nearest node to qrand(x, y) from the current spanning

tree by Euclidean distance.
FindQNearSets(q, V): returns the set of all nodes within r range near qrand from the

current spanning tree.
Steer(q1, q2): a partial path from q1 to q2.
CollisionDetection (q1, q2): connects q1 and q2 and judges whether the connection has

an intersection with the obstacle.
ChooseParent (q1, q2): finds the nearest neighbors within a defined radius around the

node q1 as a candidate to replace the parent node of q2.
Rewire (q1, q2): after reselecting the parent node for q1, performs rewiring to ensure

that the cost of the connection between the random tree nodes is as small as possible.

Robotics 2024, 13, 41 4 of 15

Cost(q): returns the cost value of the path from the root nodes of the spanning tree
to q.

DistanceCost(q1, q2): returns the cost value of the path between q1 and q2.
PathPruning(V, E): uses the segment forward pruning strategy to optimize the path.

Algorithm 1. T = Build Initial Path
(

map, qstart, qgoal

)
.

1: V ← qstart; E = ∅; T = (V, E);
2: for i from 0 to K do
3: qrand ← ObjBiasSample();
4: qnear ← FindQNearest(V, qrand) ;
5: qnew ← Steer(qnear, qrand) ;
6: if CollisionDetection (qnear, qnew) then
7: qnew = qtemp;
8: else
9: Continue;
10: end if
11: Qnear ← FindQNearSets(qnew, V, r) ;
12: for qnear ∈ Qnear do
13: T ← ChooseParent(qnear, qnear) ;
14: T ← Rewire(qnear, qnear) ;
15: end for
16: Ccur ← Cost(T) ;
17: if Distance

(
qnew, qgoal

)
≤ dmin then

18: return T = (V, E);
19: end if
20: end for
21: T ← PathPruning(V, E) ;

The difference between the proposed initial path generation algorithm and the con-
ventional RRT* algorithm is mainly in the method of selecting sampling points and adding
post-prune processing. ObjBiasSample() in the third line of Algorithm 1 is the objective-
biased sampling strategy. After qnew is added to the tree at the minimum cost, the rewire
optimization process is performed. First, obtain the set Qnear, which is the node within the
distance r around qnew. Then, calculate the cost for each qnear in the set Qnear and select the
node with the smallest cost as the parent node of qnew. Finally, check whether qnew can be
the parent node of each qnear; if yes, connect the new line. As the tree expands to qgoal , the
algorithm returns the path node. Because of the existence of multiple redundant nodes on
this path, a segmented forward pruning strategy is proposed for optimization, as shown in
the 14th line of Algorithm 1.

3.2. Objective-Biased Sampling Strategy

Figure 2 shows the node expansion strategy of the conventional RRT*; the node qstart
is the initial position, and the node qnear is a node that has been added to the spanning
tree. As shown in Figure 2a, the node qrand is a random sampling point in C f ree. The new
node qnew in Figure 2b is generated by RRT* to the random sampling point qrand with an
appropriate extension length. Due to the global randomness of the points taken by the
conventional RRT*, it often leads to an excessive search on the map.

The feedback-based biased sampling strategy proposed in this paper uses the probabil-
ity P to refer to the node qprev that is added to RRT* as a reference and reduces the sampling
area of qrand by qprev for a relative position and the goal state, enhancing the inspiration of
the goal state. The relationship between qprev and the goal state qbias is used as a reference
for the next selected point, as shown in Figure 3. At this time, qbias is located in the upper
right corner of qprev, choosing a quarter-circle area with qprev as the center. The distance
between qprev and qbias is considered as the radius of the sampling point selection area.
By this method, under the premise of ensuring random sampling, there is a probability

Robotics 2024, 13, 41 5 of 15

P of obtaining biased sampling points, avoiding unnecessary or excessive searches and
speeding up the acquisition of the initial path.

Robotics 2024, 13, x FOR PEER REVIEW 5 of 16

appropriate extension length. Due to the global randomness of the points taken by the
conventional RRT*, it often leads to an excessive search on the map.

(a) (b)

Figure 2. The schematic diagram for the node expansion of the convolutional RRT* scheme. (a) The
robot at the nearest position 𝑞௡௘௔௥ (b) the new position of the robot generated by RRT* to move from
the nearest position 𝑞௡௘௔௥ to the random sampling point 𝑞௥௔௡ௗ.

The feedback-based biased sampling strategy proposed in this paper uses the prob-
ability 𝑃 to refer to the node 𝑞௣௥௘௩ that is added to RRT* as a reference and reduces the
sampling area of 𝑞௥௔௡ௗ by 𝑞௣௥௘௩ for a relative position and the goal state, enhancing the
inspiration of the goal state. The relationship between 𝑞௣௥௘௩ and the goal state 𝑞௕௜௔௦ is used
as a reference for the next selected point, as shown in Figure 3. At this time, 𝑞௕௜௔௦ is located
in the upper right corner of 𝑞௣௥௘௩, choosing a quarter-circle area with 𝑞௣௥௘௩ as the center.
The distance between 𝑞௣௥௘௩ and 𝑞௕௜௔௦ is considered as the radius of the sampling point se-
lection area. By this method, under the premise of ensuring random sampling, there is a
probability 𝑃 of obtaining biased sampling points, avoiding unnecessary or excessive
searches and speeding up the acquisition of the initial path.

(a) (b)

Figure 3. The schematic diagram of the objective-biased sampling strategy and choosing a quarter-
circle area with 𝑞௣௥௘௩ as the center. (a) The robot at the nearest point to the previous position (b) The
random position for a robot RRT* used as a random sampling point 𝑞௥௔௡ௗ in the quarter-circle.

3.3. Segmented Forward Pruning
Under normal circumstances, the paths obtained through the RRT* and RRT*-variant

algorithms are generally more complicated and tortuous paths, including more unneces-
sary and redundant nodes. To ensure the high-speed navigation of the robot, the gener-
ated path must remove as many nodes as necessary under the premise of ensuring no
collision. The algorithm uses pruning to obtain a shorter and less tortuous initial path. The
short-cutting approach [25] has been widely used to eliminate the pruning operation of
redundant nodes. In Figure 4, let 𝑞ଵ be the starting point, 𝑞ଽ the endpoint, and the dotted
line segment as the initial path. The short-cutting approach starts from 𝑞ଵ to connect other
nodes in sequence, i.e., connect 𝑞ଵ to 𝑞ଷ first and judge whether the connection is legal. If
there is no intersection with the obstacle, delete the other nodes between 𝑞ଵ and 𝑞ଷ. Until
the line collides, i.e., 𝑞ଵ and 𝑞ସ intersect with the obstacle, repeat the above operation with 𝑞ଷ as a new starting point until finally reaching the goal state 𝑞ଽ. The resulting path is
shown in the blue line in Figure 4a. An obvious defect of this pruning method is that the
current connection stops prematurely. For example, if 𝑞ଵ and 𝑞ସ cannot be connected, the
connection to the next starting point 𝑞ଷ is entered. However, we can see that 𝑞ଵ and 𝑞ହ can

Figure 2. The schematic diagram for the node expansion of the convolutional RRT* scheme. (a) The
robot at the nearest position qnear; (b) the new position of the robot generated by RRT* to move from
the nearest position qnear to the random sampling point qrand.

Robotics 2024, 13, x FOR PEER REVIEW 5 of 16

appropriate extension length. Due to the global randomness of the points taken by the
conventional RRT*, it often leads to an excessive search on the map.

(a) (b)

Figure 2. The schematic diagram for the node expansion of the convolutional RRT* scheme. (a) The
robot at the nearest position 𝑞௡௘௔௥ (b) the new position of the robot generated by RRT* to move from
the nearest position 𝑞௡௘௔௥ to the random sampling point 𝑞௥௔௡ௗ.

The feedback-based biased sampling strategy proposed in this paper uses the prob-
ability 𝑃 to refer to the node 𝑞௣௥௘௩ that is added to RRT* as a reference and reduces the
sampling area of 𝑞௥௔௡ௗ by 𝑞௣௥௘௩ for a relative position and the goal state, enhancing the
inspiration of the goal state. The relationship between 𝑞௣௥௘௩ and the goal state 𝑞௕௜௔௦ is used
as a reference for the next selected point, as shown in Figure 3. At this time, 𝑞௕௜௔௦ is located
in the upper right corner of 𝑞௣௥௘௩, choosing a quarter-circle area with 𝑞௣௥௘௩ as the center.
The distance between 𝑞௣௥௘௩ and 𝑞௕௜௔௦ is considered as the radius of the sampling point se-
lection area. By this method, under the premise of ensuring random sampling, there is a
probability 𝑃 of obtaining biased sampling points, avoiding unnecessary or excessive
searches and speeding up the acquisition of the initial path.

(a) (b)

Figure 3. The schematic diagram of the objective-biased sampling strategy and choosing a quarter-
circle area with 𝑞௣௥௘௩ as the center. (a) The robot at the nearest point to the previous position (b) The
random position for a robot RRT* used as a random sampling point 𝑞௥௔௡ௗ in the quarter-circle.

3.3. Segmented Forward Pruning
Under normal circumstances, the paths obtained through the RRT* and RRT*-variant

algorithms are generally more complicated and tortuous paths, including more unneces-
sary and redundant nodes. To ensure the high-speed navigation of the robot, the gener-
ated path must remove as many nodes as necessary under the premise of ensuring no
collision. The algorithm uses pruning to obtain a shorter and less tortuous initial path. The
short-cutting approach [25] has been widely used to eliminate the pruning operation of
redundant nodes. In Figure 4, let 𝑞ଵ be the starting point, 𝑞ଽ the endpoint, and the dotted
line segment as the initial path. The short-cutting approach starts from 𝑞ଵ to connect other
nodes in sequence, i.e., connect 𝑞ଵ to 𝑞ଷ first and judge whether the connection is legal. If
there is no intersection with the obstacle, delete the other nodes between 𝑞ଵ and 𝑞ଷ. Until
the line collides, i.e., 𝑞ଵ and 𝑞ସ intersect with the obstacle, repeat the above operation with 𝑞ଷ as a new starting point until finally reaching the goal state 𝑞ଽ. The resulting path is
shown in the blue line in Figure 4a. An obvious defect of this pruning method is that the
current connection stops prematurely. For example, if 𝑞ଵ and 𝑞ସ cannot be connected, the
connection to the next starting point 𝑞ଷ is entered. However, we can see that 𝑞ଵ and 𝑞ହ can

Figure 3. The schematic diagram of the objective-biased sampling strategy and choosing a quarter-
circle area with qprev as the center. (a) The robot at the nearest point to the previous position; (b) The
random position for a robot RRT* used as a random sampling point qrand in the quarter-circle.

3.3. Segmented Forward Pruning

Under normal circumstances, the paths obtained through the RRT* and RRT*-variant
algorithms are generally more complicated and tortuous paths, including more unnecessary
and redundant nodes. To ensure the high-speed navigation of the robot, the generated path
must remove as many nodes as necessary under the premise of ensuring no collision. The
algorithm uses pruning to obtain a shorter and less tortuous initial path. The short-cutting
approach [25] has been widely used to eliminate the pruning operation of redundant nodes.
In Figure 4, let q1 be the starting point, q9 the endpoint, and the dotted line segment as the
initial path. The short-cutting approach starts from q1 to connect other nodes in sequence,
i.e., connect q1 to q3 first and judge whether the connection is legal. If there is no intersection
with the obstacle, delete the other nodes between q1 and q3. Until the line collides, i.e., q1
and q4 intersect with the obstacle, repeat the above operation with q3 as a new starting
point until finally reaching the goal state q9. The resulting path is shown in the blue line in
Figure 4a. An obvious defect of this pruning method is that the current connection stops
prematurely. For example, if q1 and q4 cannot be connected, the connection to the next
starting point q3 is entered. However, we can see that q1 and q5 can be connected. Such
a result will lead to poor pruning. We modify the short-cutting approach and propose a
segmented forward pruning approach. As shown in Figure 4b, the node at the midpoint is
selected to divide the path into two segments, i.e., one segment from the start point to the
midpoint and one segment from the midpoint to the endpoint. The sequential connection
is changed to the reversed connection, i.e., we first determine whether q1 and q6 can be
connected. If the connection is illegal, the search will continue to determine the connection
between q1 and q5, and so on. This method can effectively avoid the situation in which the
redundancy removal of the traditional pruning method is not thorough enough.

Robotics 2024, 13, 41 6 of 15

Robotics 2024, 13, x FOR PEER REVIEW 6 of 16

be connected. Such a result will lead to poor pruning. We modify the short-cutting ap-
proach and propose a segmented forward pruning approach. As shown in Figure 4b, the
node at the midpoint is selected to divide the path into two segments, i.e., one segment
from the start point to the midpoint and one segment from the midpoint to the endpoint.
The sequential connection is changed to the reversed connection, i.e., we first determine
whether 𝑞ଵ and 𝑞଺ can be connected. If the connection is illegal, the search will continue
to determine the connection between 𝑞ଵ and 𝑞ହ, and so on. This method can effectively
avoid the situation in which the redundancy removal of the traditional pruning method
is not thorough enough.

(a) Short-cutting approach. (b) Segmented forward pruning approach.

Figure 4. The schematic diagram for the path-pruned approach. (a) The selected robot path from
the start point to end point based on the short-cutting approach starts (b) The selected robot path
from the start point to end point by using segmented forward pruning approach.

4. Optimization Algorithm
In this section, we introduce the proposed path optimization algorithm using a re-

verse maintenance strategy.

4.1. Optimization Algorithm
After submitting the initial path, the robot obtains an initial motion plan. Since only

one path is solved, the path cannot guarantee the optimal solution. Therefore, we make
the path asymptotically optimal through the optimization algorithm, which uses a reverse
maintenance strategy. The optimization process will continue until the robot reaches the
goal state. Algorithm 2 shows the overall flow of the optimization algorithm. The algo-
rithm initializes by 𝑞௚௢௔௟ as the root node 𝑞௥௢௢௧; then, in the fourth line, 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛()
updates the robot position; in the fifth line, 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑆𝑎𝑚𝑝𝑙𝑒() uses the heuristic infor-
mation provided by the initial path for sampling; and the eighteenth line calculates the
cost of the current path.

Algorithm 2. 𝑇 = Optimization ൫𝑚𝑎𝑝, 𝑇ூ௡௜௧௜௔௟, 𝑞௚௢௔௟൯.
1: 𝑇 ← 𝑇ூ௡௜௧௜௔௟; 𝑞௥௢௢௧ ← 𝑞௚௢௔௟;
2: 𝐶௠௜௡ ← 𝐶𝑜𝑠𝑡(𝑇);
3: while 𝑁𝑜𝑡𝑟𝑒𝑎𝑐ℎ𝐺𝑜𝑎𝑙 do
4: 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛();
5: 𝑞௥௔௡ௗ ← 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑆𝑎𝑚𝑝𝑙𝑒();
6: 𝑞௡௘௔௥ ← 𝐹𝑖𝑛𝑑𝑄𝑁𝑒𝑎𝑟𝑒𝑠𝑡(𝑉, 𝑞௥௔௡ௗ);
7: 𝑞௧௘௠௣ = 𝑆𝑡𝑒𝑒𝑟(𝑞௡௘௔௥, 𝑞௥௔௡ௗ);
8: if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑞௡௘௔௥, 𝑞௡௘௪) then
9: 𝑞௡௘௪ = 𝑞௧௘௠௣;
10: else
11: 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒;
12: end if
13: 𝑄௡௘௔௥ ← 𝐹𝑖𝑛𝑑𝑄𝑁𝑒𝑎𝑟𝑆𝑒𝑡𝑠(𝑞௡௘௪, 𝑉, 𝑟);

Figure 4. The schematic diagram for the path-pruned approach. (a) The selected robot path from the
start point to end point based on the short-cutting approach starts; (b) The selected robot path from
the start point to end point by using segmented forward pruning approach.

4. Optimization Algorithm

In this section, we introduce the proposed path optimization algorithm using a reverse
maintenance strategy.

4.1. Optimization Algorithm

After submitting the initial path, the robot obtains an initial motion plan. Since only
one path is solved, the path cannot guarantee the optimal solution. Therefore, we make
the path asymptotically optimal through the optimization algorithm, which uses a reverse
maintenance strategy. The optimization process will continue until the robot reaches
the goal state. Algorithm 2 shows the overall flow of the optimization algorithm. The
algorithm initializes by qgoal as the root node qroot; then, in the fourth line, UpdateLocation()
updates the robot position; in the fifth line, HeuristicSample() uses the heuristic information
provided by the initial path for sampling; and the eighteenth line calculates the cost of the
current path.

Algorithm 2. T = Optimization
(

map, TInitial , qgoal

)
.

1: T ← TInitial ; qroot ← qgoal ;
2: Cmin ← Cost(T) ;
3: while NotreachGoal do
4: UpdateLocation();
5: qrand ← HeuristicSample() ;
6: qnear ← FindQNearest(V, qrand) ;
7: qtemp = Steer(qnear, qrand);
8: if CollisionDetection(qnear, qnew) then
9: qnew = qtemp;
10: else
11: Continue;
12: end if
13: Qnear ← FindQNearSets(qnew, V, r) ;
14: for qnear ∈ Qnear do
15: T ← ChooseParent(qnew, qnear) ;
16: T ← Rewire(qnew, qnear) ;
17: end for
18: Ccur ← Cost(T) ;
19: if Ccur < Cmin then
20: Cmin ← Ccur ;
21: Trajectory← TractionBSpline(T) ;
22: end if
23: end while

Robotics 2024, 13, 41 7 of 15

4.2. Reverse Maintenance Strategy

The second layer of the RRT* scheme is a reverse maintenance strategy, i.e., using qgoal
as a root node of DOB-RRT* to expand, which makes it easy for the planner to calculate
CostToGo() and obtain the residual path cost. In the proposed DOB-RRT* scheme, the
heuristic information provided by the initial path will be used with a certain probability P
based on the initial path node and reference node qre f . The sampling points are obtained
through the relative positions of qre f and qstart, and the sampling area selection will be
consistent with the selection method explained in Section 3.

In the proposed DOB-RRT* scheme, the cost function is modified to consider the
Euclidean distance and trajectory angle to improve the rationality of the cost function.
In practical applications, the path generated by the algorithm needs to be as smooth as
possible, which can reduce the speed change of the mobile robot and increase the execution
speed. Therefore, the optimal path not only needs to consider the path length but also the
smoothness of the path. As depicted in Figure 5, in the selection process of the parent node
and after a new node qnew is obtained, the candidate parent nodes are q1 and q2, and the
extension paths from the root node qroot to qnew are e1 and e2, respectively. If we consider
the Euclidean distance and trajectory angle to select q2 as a parent node of qnew, this means
that although the path length of e1 is shorter than that of e2, the path of e2 is smoother than
that of e1.

Robotics 2024, 13, x FOR PEER REVIEW 7 of 16

14: for 𝑞௡௘௔௥ ∈ 𝑄௡௘௔௥ do
15: 𝑇 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑞௡௘௪, 𝑞௡௘௔௥);
16: 𝑇 ← 𝑅𝑒𝑤𝑖𝑟𝑒(𝑞௡௘௪, 𝑞௡௘௔௥);
17: end for
18: 𝐶௖௨௥ ← 𝐶𝑜𝑠𝑡(𝑇);
19: if 𝐶௖௨௥ < 𝐶௠௜௡ then
20: 𝐶௠௜௡ ← 𝐶௖௨௥;
21: 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 ← 𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝐵𝑆𝑝𝑙𝑖𝑛𝑒(𝑇);
22: end if
23: end while

4.2. Reverse Maintenance Strategy
The second layer of the RRT* scheme is a reverse maintenance strategy, i.e., using 𝑞௚௢௔௟ as a root node of DOB-RRT* to expand, which makes it easy for the planner to cal-

culate 𝐶𝑜𝑠𝑡𝑇𝑜𝐺𝑜() and obtain the residual path cost. In the proposed DOB-RRT* scheme,
the heuristic information provided by the initial path will be used with a certain probabil-
ity 𝑃 based on the initial path node and reference node 𝑞௥௘௙. The sampling points are ob-
tained through the relative positions of 𝑞௥௘௙ and 𝑞௦௧௔௥௧, and the sampling area selection
will be consistent with the selection method explained in Section 3.

In the proposed DOB-RRT* scheme, the cost function is modified to consider the 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 distance and trajectory angle to improve the rationality of the cost function. In
practical applications, the path generated by the algorithm needs to be as smooth as pos-
sible, which can reduce the speed change of the mobile robot and increase the execution
speed. Therefore, the optimal path not only needs to consider the path length but also the
smoothness of the path. As depicted in Figure 5, in the selection process of the parent node
and after a new node 𝑞௡௘௪ is obtained, the candidate parent nodes are 𝑞ଵ and 𝑞ଶ, and the
extension paths from the root node 𝑞௥௢௢௧ to 𝑞௡௘௪ are 𝑒ଵ and 𝑒ଶ, respectively. If we consider
the 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 distance and trajectory angle to select 𝑞ଶ as a parent node of 𝑞௡௘௪ , this
means that although the path length of 𝑒ଵ is shorter than that of 𝑒ଶ , the path of 𝑒ଶ is
smoother than that of 𝑒ଵ.

(a) (b)

Figure 5. The schematic diagram for selection of the parent node. (a) Selection process of the par-
ent node (parent nodes are 𝑞ଵ and 𝑞ଶ). (b) The extension paths from the root node 𝑞ଶ to 𝑞௡௘௪
through the extension path 𝑒ଶ (𝑒ଶ is selected as its smoother).

Hence, the path of 𝑒ଶ will reduce the speed change of the robot in practical applica-
tions. Because the distance and angle are different types of data, they need to be normal-
ized before comprehensive consideration. The cost function is defined as

Figure 5. The schematic diagram for selection of the parent node. (a) Selection process of the parent
node (parent nodes are q1 and q2); (b) The extension paths from the root node q2 to qnew through the
extension path e2 (e2 is selected as its smoother).

Hence, the path of e2 will reduce the speed change of the robot in practical applications.
Because the distance and angle are different types of data, they need to be normalized
before comprehensive consideration. The cost function is defined as

Cost(qnew, qi) = λd
d(qnew, qi)− dmin

dmax − dmin
+ λθ

θ(qnew, qi)− θmin
θmax − θmin

, (2)

λd + λθ = 1 and λd, λθ ∈ [0, 1], (3)

where d(qnew, qi) is the Euclidean distance between the new node qnew and node qi, and
dmax, dmin represent the maximum and minimum distances between qnew and nearby
nodes, respectively. The angle value of the path between the new node qnew and node qi
is θ(qnew, qi), and the maximum and minimum distances of the angle value of the path
between qnew and nearby nodes are expressed as θmax and θmin, respectively. The weights
of the distance and angle in the cost function are λd and λθ , respectively. The cost function
can be adapted to different requirements by modifying the weights of the distance and

Robotics 2024, 13, 41 8 of 15

angle. The substitute value of each node is a cumulative sum of the costs from the current
node to the root node.

5. Simulation and Experimental Results

In this section, we conduct some numerical simulations to test the effectiveness of
our proposed motion planning algorithm. The first simulation compares the initial path
generation method with the RRT algorithm, and the other simulation verifies the feasibility
of the DOB-RRT* algorithm. The simulation is performed in MATLAB 2020a, and the
computer used is an i7-8700 CPU with 16G memory.

5.1. Initial Path Generation Simulation

First, we verify the effectiveness of the initial path generated by DOB-RRT* and select
RRT and RRT* for comparison. We choose two maps for simulation. One is a map with
dense obstacles and the other is a map with only two obstacles, and the size of both maps is
500× 500. In addition, the initial path generated by DOB-RRT* uses a segmented forward
pruning strategy to optimize the path length. To achieve the contrast effect, we also perform
the same pruning process on the paths generated by RRT and RRT*.

Figure 6 illustrates the paths generated by 10 simulations for each algorithm.
Tables 1 and 2 show the result statistics of 100 simulations for each algorithm, includ-
ing the time required to generate the path and the quality of the selected path, which is
represented by the length of the path. The simulation results show that RRT takes the
smallest amount of time to generate a path, but RRT cannot guarantee the path quality.
RRT* can guarantee the path quality better than RRT, but it takes a long time. Although
DOB-RRT* requires slightly more time to generate a path than RRT, it is better than the
conventional RRT scheme in terms of path quality. Compared with RRT*, the proposed
DOB-RRT* is better than RRT* in terms of the time required to generate the path, while
the path quality is similar to that of RRT*. In addition, DOB-RRT* has better stability in
maps with dense obstacles. In summary, these results show that DOB-RRT* is intermediate
between RRT and RRT* and it is feasible to obtain high-quality initial paths within an
acceptable latency time.

Table 1. Two obstacles: map planning results.

Mean Min Max

RRT
Path Time (s) 0.23 0.13 0.41
Plan Length 749.52 697.15 958.43

RRT*
Path Time (s) 3.81 1.51 9.22
Plan Length 694.15 673.88 888.41

DOB-RRT*
Path Time (s) 0.42 0.26 1.13
Plan Length 697.91 674.29 892.13

Table 2. Dense obstacles: map planning results.

Mean Min Max

RRT
Path Time (s) 0.48 0.26 0.98
Plan Length 711.71 656.1 811.21

RRT*
Path Time (s) 3.81 1.51 9.22
Plan Length 664.71 640.94 721.05

DOB-RRT*
Path Time (s) 0.68 0.44 1.24
Plan Length 660.21 642.47 726.72

Robotics 2024, 13, 41 9 of 15

Robotics 2024, 13, x FOR PEER REVIEW 9 of 16

Table 2. Dense obstacles: map planning results.

 Mean Min Max

RRT
Path Time (s) 0.48 0.26 0.98
Plan Length 711.71 656.1 811.21

RRT*
Path Time (s) 3.81 1.51 9.22
Plan Length 664.71 640.94 721.05

DOB-RRT*
Path Time (s) 0.68 0.44 1.24
Plan Length 660.21 642.47 726.72

(a) (b)

(c) (d)

Robotics 2024, 13, x FOR PEER REVIEW 10 of 16

(e) (f)

Figure 6. The simulation results of the two maps; the red circle in the figure represents the initial
point, and the green area represents the goal area. (a,b) belong to the RRT scheme; (c,d) belong to
the RRT* scheme; (e,f) belong to the proposed DOB- RRT* scheme.

5.2. Optimization Simulation
We choose a map with dense obstacles as an environment for the online optimization

simulation with a map size of 500 × 500 (pixels). Considering the simulated robot as a
point, the maximum linear velocity of the robot is set to be 1 m s⁄ , and the maximum ac-
celeration is set to be 0.5 m sଶ⁄ . The planner first needs to find a feasible path from the
initial point shown by the red dot in the upper left corner of the environment to the goal
area shown as a green area. From our simulation and verification of the effectiveness of
the proposed DOB-RRT* in online optimization, we select RRT* for comparison.

The simulation result of the proposed DOB-RRT* in real-time optimization is shown
in Figure 7. The yellow dot in Figure 7 represents the current position of the robot, and
the blue line represents the currently executed plan. Figure 7a shows the initial path and
state tree structure, allowing the robot to travel along a relatively expensive path. When
the robot starts to execute the plan, the number of states optimized online obtains a lower-
cost route; see Figure 7b. The process of online optimization will continue until the robot
reaches the goal area. We compare the proposed DOB-RRT* scheme with the conventional
RRT* in terms of the generated path; the simulation results of the online optimization
based on RRT* are shown in Figure 8. The simulation results of each algorithm are listed
in Table 3. 𝑇௜ represents the time required to calculate the initial path, and 𝑇௢ represents
the average time required for online optimization.

Figure 6. The simulation results of the two maps; the red circle in the figure represents the initial
point, and the green area represents the goal area. (a,b) belong to the RRT scheme; (c,d) belong to the
RRT* scheme; (e,f) belong to the proposed DOB- RRT* scheme.

5.2. Optimization Simulation

We choose a map with dense obstacles as an environment for the online optimization
simulation with a map size of 500× 500 (pixels). Considering the simulated robot as a point,
the maximum linear velocity of the robot is set to be 1 m/s, and the maximum acceleration

Robotics 2024, 13, 41 10 of 15

is set to be 0.5 m/s2. The planner first needs to find a feasible path from the initial point
shown by the red dot in the upper left corner of the environment to the goal area shown
as a green area. From our simulation and verification of the effectiveness of the proposed
DOB-RRT* in online optimization, we select RRT* for comparison.

The simulation result of the proposed DOB-RRT* in real-time optimization is shown
in Figure 7. The yellow dot in Figure 7 represents the current position of the robot, and the
blue line represents the currently executed plan. Figure 7a shows the initial path and state
tree structure, allowing the robot to travel along a relatively expensive path. When the
robot starts to execute the plan, the number of states optimized online obtains a lower-cost
route; see Figure 7b. The process of online optimization will continue until the robot reaches
the goal area. We compare the proposed DOB-RRT* scheme with the conventional RRT*
in terms of the generated path; the simulation results of the online optimization based on
RRT* are shown in Figure 8. The simulation results of each algorithm are listed in Table 3.
Ti represents the time required to calculate the initial path, and To represents the average
time required for online optimization.

Robotics 2024, 13, x FOR PEER REVIEW 11 of 16

(a) (b)

(c) (d)

Figure 7. The DOB-RRT* simulation results. (a) The initial path and state tree structure; (b) the first
online-optimized lower-cost route before 100 pixels; (c) the online-optimized lower-cost route
within 100~200 pixels; (d) the online-optimized lower-cost route at 300 pixels.

(a) (b)

Figure 7. The DOB-RRT* simulation results. (a) The initial path and state tree structure; (b) the first
online-optimized lower-cost route before 100 pixels; (c) the online-optimized lower-cost route within
100~200 pixels; (d) the online-optimized lower-cost route at 300 pixels.

Robotics 2024, 13, 41 11 of 15

Robotics 2024, 13, x FOR PEER REVIEW 11 of 16

(a) (b)

(c) (d)

Figure 7. The DOB-RRT* simulation results. (a) The initial path and state tree structure; (b) the first
online-optimized lower-cost route before 100 pixels; (c) the online-optimized lower-cost route
within 100~200 pixels; (d) the online-optimized lower-cost route at 300 pixels.

(a) (b)

Robotics 2024, 13, x FOR PEER REVIEW 12 of 16

(c) (d)

Figure 8. The simulation results of the anytime algorithm based on the RRT* scheme. (a) The initial
path and the selected path; (b) the robot in the selected path before 100 pixels; (c) the robot in the
selected path within 100~200 pixels; (d) the robot in the selected path at 300 pixels.

Table 3. Planning results of optimization simulation.

 𝑻𝒊(𝒔) 𝑻𝒐(𝒔)

RRT* 2.71 2.33
DOB-RRT* 0.53 0.38

From the simulation results, we can see that a shorter time is required by the pro-
posed DOB-RRT* to obtain the initial path compared to the conventional RRT* scheme
and it can converge to the asymptotically optimal path faster. As the RRT* online optimi-
zation calculation time is longer, the robot has already executed some of the costlier paths.
DOB-RRT*’s online optimization solution can optimize the tree structure using the execu-
tion plan time and improve the path quality, including the path length and smoothness.
The optimization of the proposed DOB-RRT* scheme allows it to find the path faster than
the conventional RRT* scheme by 400 ms. This search time reduction in the proposed
DOB-RRT* scheme proves that it can be effective in online optimization and is suitable for
unmanned driving systems.

6. DOB-RRT* Evaluations in Real Environment
6.1. Experimental Environment Configuration

To prove the validity of the proposed path-tracking algorithm in a real environment,
a real experiment is performed. The tracked robot used in this experiment is shown in
Figure 9a. The vehicle size is 270 mm × 222 mm with a 229 mm wheelbase. An industrial
computer with an i7-7500U processor (the yellow lined area in Figure 9b) and running the
Kinetic robot operating system (ROS) is used in these experiments. The mapping package
supported by the ROS is used to build the environment map. The adaptive Monte Carlo
Positioning (AMCL) package is used for robot self-positioning and updates the real-time
position. The STM32F103 (the red-lined area in Figure 9b) is used to communicate with
the ROS software and control the robot motor. In this experiment, the maximum linear
velocity of the robot is set to 0.5 m/s, with 0.2 m sଶ⁄ maximum acceleration. When the ro-
bot is less than 5 cm from the goal state, we consider the robot to have reached the goal
state.

Figure 8. The simulation results of the anytime algorithm based on the RRT* scheme. (a) The initial
path and the selected path; (b) the robot in the selected path before 100 pixels; (c) the robot in the
selected path within 100~200 pixels; (d) the robot in the selected path at 300 pixels.

Table 3. Planning results of optimization simulation.

Ti(s) To(s)

RRT* 2.71 2.33

DOB-RRT* 0.53 0.38

From the simulation results, we can see that a shorter time is required by the proposed
DOB-RRT* to obtain the initial path compared to the conventional RRT* scheme and it
can converge to the asymptotically optimal path faster. As the RRT* online optimization
calculation time is longer, the robot has already executed some of the costlier paths. DOB-
RRT*’s online optimization solution can optimize the tree structure using the execution
plan time and improve the path quality, including the path length and smoothness. The
optimization of the proposed DOB-RRT* scheme allows it to find the path faster than
the conventional RRT* scheme by 400 ms. This search time reduction in the proposed
DOB-RRT* scheme proves that it can be effective in online optimization and is suitable for
unmanned driving systems.

Robotics 2024, 13, 41 12 of 15

6. DOB-RRT* Evaluations in Real Environment
6.1. Experimental Environment Configuration

To prove the validity of the proposed path-tracking algorithm in a real environment,
a real experiment is performed. The tracked robot used in this experiment is shown in
Figure 9a. The vehicle size is 270 mm× 222 mm with a 229 mm wheelbase. An industrial
computer with an i7-7500U processor (the yellow lined area in Figure 9b) and running the
Kinetic robot operating system (ROS) is used in these experiments. The mapping package
supported by the ROS is used to build the environment map. The adaptive Monte Carlo
Positioning (AMCL) package is used for robot self-positioning and updates the real-time
position. The STM32F103 (the red-lined area in Figure 9b) is used to communicate with the
ROS software and control the robot motor. In this experiment, the maximum linear velocity
of the robot is set to 0.5 m/s, with 0.2 m/s2 maximum acceleration. When the robot is less
than 5 cm from the goal state, we consider the robot to have reached the goal state.

Robotics 2024, 13, x FOR PEER REVIEW 13 of 16

(a) (b)

Figure 9. The mobile robot used in the real experiment; (a) the tracked robot used in this experiment;
(b) the robot operating system (ROS).

6.2. Mobile Robot Applications
To further verify the effectiveness of the algorithm in the actual environment, we

conduct indoor experiments. The experiment is carried out using a crawler robot, as
shown in Figure 9. We implement our motion planning algorithm in the ROS environ-
ment. Motion planning algorithms can also be transplanted to other robots running ROS.
The experimental environment is shown in Figure 10. As illustrated in Figure 10a, in the
beginning, and based on the surrounding environment, using a laser point, the robot can
generate a laser point cloud map. This cloud map is stored as its recognized map. The
initial path generated by the first layer of RRT* is shown in Figure 11a, and the optimized
path obtained by the second layer of RRT* is shown in Figure 11b. The time required for
the robot to complete the navigation is 3.26 s, and the values of the linear velocity and
angular velocity during navigation are shown in Figure 12. The detailed data of the oper-
ation are shown in Table 4. Based on these detailed data collected from the real experi-
ment, the robot can quickly find the initial path based on the proposed DOB-RRT* algo-
rithm and use the online optimization plan to improve the path quality during the execu-
tion of the plan. From the experimental results, we can see the strong similarity between
the data obtained from the real experiment and the data obtained from the simulation
results.

(a) (b)

Figure 9. The mobile robot used in the real experiment; (a) the tracked robot used in this experiment;
(b) the robot operating system (ROS).

6.2. Mobile Robot Applications

To further verify the effectiveness of the algorithm in the actual environment, we
conduct indoor experiments. The experiment is carried out using a crawler robot, as
shown in Figure 9. We implement our motion planning algorithm in the ROS environment.
Motion planning algorithms can also be transplanted to other robots running ROS. The
experimental environment is shown in Figure 10. As illustrated in Figure 10a, in the
beginning, and based on the surrounding environment, using a laser point, the robot can
generate a laser point cloud map. This cloud map is stored as its recognized map. The
initial path generated by the first layer of RRT* is shown in Figure 11a, and the optimized
path obtained by the second layer of RRT* is shown in Figure 11b. The time required for the
robot to complete the navigation is 3.26 s, and the values of the linear velocity and angular
velocity during navigation are shown in Figure 12. The detailed data of the operation are
shown in Table 4. Based on these detailed data collected from the real experiment, the
robot can quickly find the initial path based on the proposed DOB-RRT* algorithm and use
the online optimization plan to improve the path quality during the execution of the plan.
From the experimental results, we can see the strong similarity between the data obtained
from the real experiment and the data obtained from the simulation results.

Robotics 2024, 13, 41 13 of 15

Robotics 2024, 13, x FOR PEER REVIEW 13 of 16

(a) (b)

Figure 9. The mobile robot used in the real experiment; (a) the tracked robot used in this experiment;
(b) the robot operating system (ROS).

6.2. Mobile Robot Applications
To further verify the effectiveness of the algorithm in the actual environment, we

conduct indoor experiments. The experiment is carried out using a crawler robot, as
shown in Figure 9. We implement our motion planning algorithm in the ROS environ-
ment. Motion planning algorithms can also be transplanted to other robots running ROS.
The experimental environment is shown in Figure 10. As illustrated in Figure 10a, in the
beginning, and based on the surrounding environment, using a laser point, the robot can
generate a laser point cloud map. This cloud map is stored as its recognized map. The
initial path generated by the first layer of RRT* is shown in Figure 11a, and the optimized
path obtained by the second layer of RRT* is shown in Figure 11b. The time required for
the robot to complete the navigation is 3.26 s, and the values of the linear velocity and
angular velocity during navigation are shown in Figure 12. The detailed data of the oper-
ation are shown in Table 4. Based on these detailed data collected from the real experi-
ment, the robot can quickly find the initial path based on the proposed DOB-RRT* algo-
rithm and use the online optimization plan to improve the path quality during the execu-
tion of the plan. From the experimental results, we can see the strong similarity between
the data obtained from the real experiment and the data obtained from the simulation
results.

(a) (b)

Figure 10. Experimental environments: (a) the real surrounding environment; (b) the stored recog-
nized map.

Robotics 2024, 13, x FOR PEER REVIEW 14 of 16

Figure 10. Experimental environments: (a) the real surrounding environment; (b) the stored recog-
nized map.

(a) (b)

Figure 11. Trajectories of the tracked robot: the mobile robot started from the green point and tar-
geted the red point. (a) The initial path generated by the first layer of RRT*; (b) the path generated
by the second RRT* layer.

(a) (b)

Figure 12. The values of linear velocity and angular velocity during robot navigation (velocity pro-
files): (a) linear velocity; (b) angular velocity.

Table 4. Summary of the mobile robot real experiment.

Plan Time (s) Path Length (m) 𝑻𝒊(𝒔) 𝑻𝒐(𝒔)
0.34 2.57 2.24 3.26

7. Conclusions
This paper studies the problem of motion planning in an anytime motion scenario,

focusing on the online solving and real-time optimization of motion planning problems.
To achieve this goal, a double-layer RRT* algorithm is proposed. The proposed DOB-RRT*
algorithm uses one tree to explore the initial path and another tree to optimize and update
the selected path. The performance of the proposed DOB-RRT* algorithm is evaluated in
a simulation and real experiments. The simulation results show that the proposed DOB-
RRT* algorithm can reduce the calculation cost of the planned path. The proposed DOB-
RRT* is superior to other reference algorithms in terms of its stability, path length, and
smoothness. Through practical applications, we verify the effectiveness of the DOB-RRT*

Figure 11. Trajectories of the tracked robot: the mobile robot started from the green point and targeted
the red point. (a) The initial path generated by the first layer of RRT*; (b) the path generated by the
second RRT* layer.

Robotics 2024, 13, x FOR PEER REVIEW 14 of 16

Figure 10. Experimental environments: (a) the real surrounding environment; (b) the stored recog-
nized map.

(a) (b)

Figure 11. Trajectories of the tracked robot: the mobile robot started from the green point and tar-
geted the red point. (a) The initial path generated by the first layer of RRT*; (b) the path generated
by the second RRT* layer.

(a) (b)

Figure 12. The values of linear velocity and angular velocity during robot navigation (velocity pro-
files): (a) linear velocity; (b) angular velocity.

Table 4. Summary of the mobile robot real experiment.

Plan Time (s) Path Length (m) 𝑻𝒊(𝒔) 𝑻𝒐(𝒔)
0.34 2.57 2.24 3.26

7. Conclusions
This paper studies the problem of motion planning in an anytime motion scenario,

focusing on the online solving and real-time optimization of motion planning problems.
To achieve this goal, a double-layer RRT* algorithm is proposed. The proposed DOB-RRT*
algorithm uses one tree to explore the initial path and another tree to optimize and update
the selected path. The performance of the proposed DOB-RRT* algorithm is evaluated in
a simulation and real experiments. The simulation results show that the proposed DOB-
RRT* algorithm can reduce the calculation cost of the planned path. The proposed DOB-
RRT* is superior to other reference algorithms in terms of its stability, path length, and
smoothness. Through practical applications, we verify the effectiveness of the DOB-RRT*

Figure 12. The values of linear velocity and angular velocity during robot navigation (velocity
profiles): (a) linear velocity; (b) angular velocity.

Robotics 2024, 13, 41 14 of 15

Table 4. Summary of the mobile robot real experiment.

Plan Time (s) Path Length (m) Ti(s) To(s)

0.34 2.57 2.24 3.26

7. Conclusions

This paper studies the problem of motion planning in an anytime motion scenario,
focusing on the online solving and real-time optimization of motion planning problems. To
achieve this goal, a double-layer RRT* algorithm is proposed. The proposed DOB-RRT*
algorithm uses one tree to explore the initial path and another tree to optimize and update
the selected path. The performance of the proposed DOB-RRT* algorithm is evaluated in a
simulation and real experiments. The simulation results show that the proposed DOB-RRT*
algorithm can reduce the calculation cost of the planned path. The proposed DOB-RRT* is
superior to other reference algorithms in terms of its stability, path length, and smoothness.
Through practical applications, we verify the effectiveness of the DOB-RRT* algorithm in
real environments. In future research, the construction of a motion planning algorithm for
multi-robot collaborative work will be conducted.

Author Contributions: Conceptualization, H.E. and G.Z.; methodology, H.E., G.Z. and Z.A.H.Q.;
software, H.E. and G.Z.; validation, J.Q., H.S. and H.E.; formal analysis, Z.A.H.Q. and H.S.; in-
vestigation, Z.A.H.Q. and J.Q.; resources, H.E., Z.A.H.Q. and G.Z.; data curation, H.E. and G.Z.;
writing—original draft preparation, H.E. and G.Z.; writing—review and editing, Z.A.H.Q., J.Q. and
H.S.; visualization, H.E., J.Q. and H.S.; supervision, J.Q. and H.S.; project administration, J.Q. and
H.S.; funding acquisition, J.Q. and H.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The authors declare that the data used to support the findings of this
study will be available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Latombe, J.-C. Motion planning: A journey of robots, molecules, digital actors, and other artifacts. Int. J. Robot. Res. 1999, 18,

1119–1128. [CrossRef]
2. Gao, H.; Hou, X.; Xu, J.; Guan, B. Quad-Rotor Unmanned Aerial Vehicle Path Planning Based on the Target Bias Extension and

Dynamic Step Size RRT* Algorithm. World Electr. Veh. J. 2024, 15, 29. [CrossRef]
3. Liu, Y.; Badler, N.I. Real-time reach planning for animated characters using hardware acceleration. In Proceedings of the 11th

IEEE International Workshop on Program Comprehension, New Brunswick, NJ, USA, 8–9 May 2003; pp. 86–93.
4. Thompson, B.; Yoon, H.-S. Efficient path planning algorithm for additive manufacturing systems. IEEE Trans. Compon. Packag.

Manuf. Technol. 2014, 4, 1555–1563. [CrossRef]
5. Chen, Y.; Xu, W.; Li, Z.; Song, S.; Lim, C.M.; Wang, Y.; Ren, H. Safety-enhanced motion planning for flexible surgical manipulator

using neural dynamics. IEEE Trans. Control Syst. Technol. 2016, 25, 1711–1723. [CrossRef]
6. LaValle, S. Planning Algorithms. Camb. Univ. Press Google Sch. 2006, 2, 3671–3678.
7. Huang, Y.; Lee, H.-H. Adaptive Informed RRT*: Asymptotically Optimal Path Planning With Elliptical Sampling Pools in Narrow

Passages. Int. J. Control Autom. Syst. 2024, 22, 241–251. [CrossRef]
8. Huang, Y.; Tsao, C.-T.; Lee, H.-H. Efficiency Improvement to Neural-Network-Driven Optimal Path Planning via Region and

Guideline Prediction. IEEE Robot. Autom. Lett. 2024, 9, 1851–1858. [CrossRef]
9. LaValle, S. Rapidly-exploring random trees: A new tool for path planning. Research Report 9811 1998.
10. Hsu, D.; Kindel, R.; Latombe, J.-C.; Rock, S. Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res.

2002, 21, 233–255. [CrossRef]
11. LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
12. Cheng, P. Sampling-Based Motion Planning with Differential Constraints; University of Illinois at Urbana-Champaign: Champaign,

IL, USA, 2005.
13. Iehl, R.; Cortés, J.; Simeon, T. Costmap planning in high dimensional configuration spaces. In Proceedings of the 2012 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan, 11–14 July 2012; pp. 166–172.
14. Shkolnik, A.; Walter, M.; Tedrake, R. Reachability-guided sampling for planning under differential constraints. In Proceedings of

the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 2–17 May 2009; pp. 2859–2865.

https://doi.org/10.1177/02783649922067753
https://doi.org/10.3390/wevj15010029
https://doi.org/10.1109/TCPMT.2014.2338791
https://doi.org/10.1109/TCST.2016.2628806
https://doi.org/10.1007/s12555-022-0834-9
https://doi.org/10.1109/LRA.2024.3350979
https://doi.org/10.1177/027836402320556421
https://doi.org/10.1177/02783640122067453

Robotics 2024, 13, 41 15 of 15

15. Yang, K.; Jung, D.; Sukkarieh, S. Continuous curvature path-smoothing algorithm using cubic B zier spiral curves for non-
holonomic robots. Adv. Robot. 2013, 27, 247–258. [CrossRef]

16. Yang, K.; Sukkarieh, S. An analytical continuous-curvature path-smoothing algorithm. IEEE Trans. Robot. 2010, 26, 561–568.
[CrossRef]

17. Elbanhawi, M.; Simic, M.; Jazar, R. Randomized bidirectional B-spline parameterization motion planning. IEEE Trans. Intell.
Transp. Syst. 2015, 17, 406–419. [CrossRef]

18. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
19. Karaman, S.; Walter, M.R.; Perez, A.; Frazzoli, E.; Teller, S. Anytime motion planning using the RRT. In Proceedings of the 2011

IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1478–1483.
20. Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A sampling-based algorithm for robot path planning in dynamic environment. IEEE Trans.

Ind. Electron. 2020, 68, 7244–7251. [CrossRef]
21. Salzman, O.; Halperin, D. Asymptotically near-optimal RRT for fast, high-quality motion planning. IEEE Trans. Robot. 2016, 32,

473–483. [CrossRef]
22. Otte, M.; Frazzoli, E. RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning. Int. J.

Robot. Res. 2016, 35, 797–822. [CrossRef]
23. Chen, L.; Shan, Y.; Tian, W.; Li, B.; Cao, D. A fast and efficient double-tree RRT*-like sampling-based planner applying on mobile

robotic systems. IEEE/ASME Trans. Mechatron. 2018, 23, 2568–2578. [CrossRef]
24. Merat, F. Introduction to robotics: Mechanics and control. IEEE J. Robot. Autom. 1987, 3, 166. [CrossRef]
25. Geraerts, R.; Overmars, M.H. Creating high-quality paths for motion planning. Int. J. Robot. Res. 2007, 26, 845–863. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/01691864.2013.755246
https://doi.org/10.1109/TRO.2010.2042990
https://doi.org/10.1109/TITS.2015.2477355
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/TIE.2020.2998740
https://doi.org/10.1109/TRO.2016.2539377
https://doi.org/10.1177/0278364915594679
https://doi.org/10.1109/TMECH.2018.2821767
https://doi.org/10.1109/JRA.1987.1087086
https://doi.org/10.1177/0278364907079280

	Introduction
	Motion Planning Problem Statements
	Robot Model and Control Input
	Problem Statement

	Initial Path Generation Algorithm
	Initial Path Generation
	Objective-Biased Sampling Strategy
	Segmented Forward Pruning

	Optimization Algorithm
	Optimization Algorithm
	Reverse Maintenance Strategy

	Simulation and Experimental Results
	Initial Path Generation Simulation
	Optimization Simulation

	DOB-RRT* Evaluations in Real Environment
	Experimental Environment Configuration
	Mobile Robot Applications

	Conclusions
	References

