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Abstract: The control of deformable linear objects (DLOs) such as cables presents a significant
challenge for robotic systems due to their unpredictable behavior during manipulation. This paper
introduces a novel approach for cable shape control using dual robotic arms on a two–dimensional
plane. A discrete point model is utilized for the cable, and a path generation algorithm is developed
to define intermediate cable shapes, facilitating the transformation of the cable into the desired
profile through a formulated optimization problem. The problem aims to minimize the discrepancy
between the cable configuration and the targeted shape to ensure an accurate and stable deformation
process. Moreover, a cable dynamic model is developed in which the manipulation approach is
validated using this model. Additionally, the approach is tested in a simulation environment in which
a framework of two manipulators grasps a cable. The results demonstrate the feasibility and accuracy
of the proposed method, offering a promising direction for robotic manipulation of cables.

Keywords: robotic manipulation; shape control; optimization control problem; simulation; deformable
linear objects

1. Introduction

Cables, wires, and other deformable linear objects (DLOs) are integral to a wide
range of everyday applications, encompassing tasks such as wiring in the automotive
industry [1–3], belt assembly [4], and surgical suturing [5,6]. However, robotizing the
DLOs–related tasks is still an open challenge in the robotics community due to the inherent
complexity and the multitude of ways in which DLOs can deform [7]. Thus, the manipula-
tion of these objects has gained a significant amount of interest, and many researchers have
proposed approaches to the handling of DLOs either by stationary single–manipulator
systems [3], stationary multi–manipulator systems [8], or mobile robots [9]. A significant
domain of DLO manipulation is the shape control of cables and other DLOs, which are
presented in various practical applications. For example, in industry, two robots bend a
long cable harness to fit into the car chassis, and, in minimally invasive surgery in medicine,
where tiny cables are used within flexible endoscopes or surgical instruments, a robotic
system could be utilized to shape the cable precisely to navigate through the body.

Recent research has made significant strides in this shape control domain, with ap-
proaches ranging from model–based methodologies to innovative learning–based strategies.
Herein, we discuss the current state–of–the–art techniques, highlighting key contributions
and identifying the limitations and advancements that shape this field of study. Li et al. [10]
proposed a model–based methodology for guiding a cable by a robotic manipulator. Their
method models the cable as a set of discrete points, which are manipulated sequentially
toward predetermined reference points. Based on the discrete elastic rod, Lv et al. devel-
oped a dynamic control scheme, facilitating the shape control of cables with a singular
manipulator [11] and then with coordinated dual manipulators [12]. The main limitations
of this model–based approach are how accurately the DLO is modeled and the complexity
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of the model, which increases the computation cost. Further advancements in the field
have seen the adoption of online estimation techniques, where a slight change in a DLO
is proportionate to a small robot displacement, inferred by a locally derived Jacobian
matrix [13–15]. This matrix is refined continually through data collected during the ma-
nipulation task. A notable development by Yu et al. [16] integrates offline data–driven
Jacobian estimation with online neural network adaptations, thereby enhancing the adapt-
ability of shape control schemes. Based on DLO kinematics and the diminishing rigidity
property, some works have defined an approximate model mapping between the robot
end–effectors and the DLO [17–19]. Although these approaches have real–time perfor-
mances, they are suitable only for local and simple deformation tasks. Nair et al. [20],
Tang et al. [21], and Yan et al. [22] pioneered learning–based methodologies for DLO ma-
nipulation. These methodologies enable robots to learn from observing how a human
expert manipulates a DLO and, subsequently, attempts to replicate these actions to achieve
a similar manipulation of the DLO. Additionally, the use of reinforcement learning (RL)
represents a significant advancement in robotic learning capabilities. In RL, a robot is
trained to perform tasks by following a policy shaped by rewards received for successful
interactions with its environment. This kind of learning is not just about imitation but
about understanding the consequences of actions and adapting to achieve specific goals.
Laezza et al. [23] and Zakaria et al. [24] have made substantial contributions in this area by
developing RL policies that guide robots to deform these objects effectively. Although these
learning and RL approaches show solid performances, they require a significant amount of
resources and data. The shape perception of DLOs is a crucial stack in shape control tasks
to ensure accurate tracking of the object. Currently, sensor–based shape perception studies
offer a promising direction for addressing challenges in this domain and present practical
applications [25–27].

The simulation and modeling of DLOs play a pivotal role in various technological
fields, including virtual reality, machine learning, control and manipulation process val-
idation, and identification of the physical parameters of real DLOs. Unlike their rigid
counterparts, DLOs pose a unique challenge. This challenge lies in accurately obtaining
physical properties, which can differ significantly from one object to another, thereby mak-
ing theoretical predictions quite complex. To address this modeling challenge, various
techniques have been developed and refined. For instance, the mass–spring model, as dis-
cussed by Lv et al. [28], captures the interplay between mass and elasticity. The multi–body
model proposed by Servin et al. [29] considers the DLO to be a series of interconnected
rigid bodies, while the position–based dynamics model presented by Xu et al. [30] focuses
on the real–time dynamics of DLOs. The elastic rod model by Linn et al. [31] provides
insights into the behavior of a flexible cable, and the dynamic spline model developed
by Valentini et al. [32] offers a way to simulate DLOs using a series of connected splines
that approximates their dynamic properties. Some researchers utilize the finite element
analysis to model cables when a high accuracy of the cable behavior is required [33]. The
comprehensive reviews by Yin et al. [34] and Lv et al. [35] offer detailed overviews of these
models. These reviews not only cover the modeling of linear DLOs but also explore the
broader spectrum of deformable objects, providing invaluable resources for researchers and
practitioners in the field. Through these collective efforts, there is a clearer understanding
of how DLOs behave, which is essential for advancing applications that rely on the precise
manipulation and control of these complex objects.

In this paper, first, we tackle the intricate challenge of planar shape control of cables
with dual manipulators. We introduce an innovative manipulation planning framework
that plans the cable’s transformation from its initial state to a desired final state. A central
element of our method is an algorithm engineered to create intermediate profiles that artic-
ulate the path for the cable. We address the control challenge through a novel optimization
problem. Figure 1 represents the structure of the developed approach. Then, we introduce
a cable mass–spring model used in the approach validation. The efficacy of our approach
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is rigorously tested through a series of simulations demonstrating its potential in various
shapes. The main contributions of this paper are:

1. We propose an innovative approach for controlling the shape of cables with dual
robotic arms. This approach handles the large deformation tasks by decomposing the
task into multiple simple ones.

2. We define the robot’s motion planning as an optimization problem to minimize the
shape error between the cable configuration and the targeted shape, ensuring accurate
and stable deformation.

3. We introduce a cable dynamic model, which is used for validating the manipulation
approach.

4. The approach is validated in two simulation environments proving its potential for
applications that require precise control of cables and other DLOs.

Figure 1. Overview of the proposed cable shape control methodology. In the Cable sampling, the
cable (black) and desired shape (green) each is represented as a set of N points. The Cable path
planning generates the path as a set of intermediate profiles (Cyan). The Robots motion planning
generates the control signal to the robots to guide the cable along the intermediate profiles toward
the desired shape.

The structure of the remainder of the paper is outlined as follows: The forthcom-
ing section formulates the problem we aim to address and establishes the notations used
throughout the paper. In Section 3, we propose a new manipulation methodology. Section 4
describes the mass–spring model of cables. The simulation studies’ outcomes are thor-
oughly examined in Section 5. In Section 6, we highlight the approach´s strengths, limita-
tions, and areas for improvement. Finally, we conclude and propose directions for future
research in Section 7.

2. Problem Formulation

Consider two robotic arms rigidly grasping a cable at its two ends. The robots cooper-
atively manipulate the cable on a 2D plane to deform it from an initial to a desired shape.
The cable and the desired shape are each represented by N points uniformly distributed
along the cable length, where the distance between each two adjacent points is the constant
ls. Figure 2 shows a schematic of a cable grasped by two end–effectors along with the
desired shape. Let c = [c1, c2, · · · , cN ]

T and t = [t1, t2, · · · , tN ]
T ∈ R2N×1 be arrays

of cable point coordinates and the desired shape point coordinates, respectively; where
ci = [cix, ciy]

T and ti = [tix, tiy]
T , for i = 1, 2, · · · , N. The configurations of the robots’

end–effectors are defined by the vector g = [g1, g2]
T ∈ R6×1; where gm = [gmx, gmy, gmϕ]T .
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Figure 2. A schematic illustration of a cable (red) grasped by two end–effectors and the desired
shapes (green).

This work addresses the task of cable shape control. The key problem of this task is to
formulate the behavior of the robots to guide the cable toward its desired shape. In this
regard, we propose a new approach to generating a path: the robots’ end–effectors guide
the cable through toward the desired shape, and the end–effectors’ configurations are
updated based on an optimization problem to minimize the deflection between the cable
shape and the desired shape. Differing from the previous work in the literature, we aim
to introduce a cable manipulation approach that does not require prior knowledge of the
cable’s dynamic parameters, similar to the model–based approaches; it is resource– and
computationally efficient compared to the RL and learning–based approaches and suitable
for complex deformation tasks by decomposing these tasks into a set of simple sequential
ones, outperforming the Jacobian–based approaches, which also do not need to collect data
and online tuning.

3. Methodology
3.1. Path Generation

One of the main challenges during cable manipulation is overstretching and unpre-
dictable cable deformation, especially in large deformation tasks in which there is the
potential for large displacement. We tackle these issues by breaking down the deformation
task into several stages as intermediate profiles, where the cable deforms gradually towards
its desired shape. These profiles form the path through which the cable will move.

To generate these profiles, we compute the differential vector ∆, which captures the
positional difference between the target configuration t and the initial shape c0. Within this
vector, the value ∆max stands out as the maximum distance and the maximum absolute
value in ∆. Using this, we introduce λ, which is a user–defined scalar representing the
maximum allowable step size between two stages. From this, the total number of stages in
the deformation process is given by:

κ = ⌈∆max

λ
⌉ (1)

Then, we obtain the step-size of each cable point, δ, as follows:

δ = ∆/κ (2)

Considering that the cable at stage κ is the desired shape of cκ = t, the intermediate
profiles are computed backwards, where cκ = cκ+1 − δ, for κ = κ − 1 to 1. For each cκ , we
compute the angle between each two adjacent points, ϑ = [ϑ1, ϑ2, ..., ϑi, ..., ϑN−1], where
ϑi is given by:

ϑi = atan2
(

c(i+1)y − ciy, c(i+1)x − cix

)
(3)
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The algorithm checks the distance between every two adjacent points. If this distance
diverges from the expected segment length ls, the cable point cκ

i+1 is updated as follows:

cκ
i+1 = cκ

i +
[
ls cos ϑi ls sin ϑi

]T (4)

Algorithm 1 illustrates the proposed path generation approach. The algorithm outputs a
series of feasible intermediate shapes, allowing smooth manipulation of the cable from its
starting shape to the target shape sequentially while consistently adhering to its length
constraints.

Algorithm 1 Cable Path Generation Algorithm

Input:
c0: Cable initial shape.
t: Desired shape.
ls: Segment length.
N: Number of cable points.
Begin:
∆ = t− c0

∆max = max(|∆|)
λ = 0.5 · ls
κ = ⌈λ−1 · ∆max⌉
δ = ∆/κ
for κ ← κ − 1 to 1 do

cκ = cκ+1 − δ
for i = 1 to N − 1 do

ϑi = atan2
(

c(i+1)y − ciy, c(i+1)x − cix

)
end for
for i = 1 to N − 1 do

ρi = ∥cκ
i+1 − cκ

i ∥
if |ρi − ls| > 0 then

cκ
i+1 = cκ

i +
[
ls cos ϑi ls sin ϑi

]T

end if
end for

end for
Output:
c ∈ RN×2×κ : Set of intermediate shapes representing the cable path.

3.2. Robot Motion Planning

Once the path of the cable has been generated, the end–effectors’ configurations are
controlled accordingly to guide the cable along the path. The control problem is formulated
as the following optimization problem:

∀κ ∈ {1, 2, . . . ,κ} :

min
g

{
(cκ − c)TQ(cκ − c) + α

N−1

∑
i=1

(li − ls)

}
s.t. |ġ| ≤ η

(5)

where the first term of the objective function represents the error between the cable shape
and the desired one, and the second term is defined to constrain the cable and avoid
over-stretching and compression during the manipulation. li = ∥ci+1 − ci∥; Q is a 2N× 2N
diagonal positive definite matrix; and α is a positive scalar. The constraint |ġ| ≤ η is to limit
the displacement to maintain the quasi-static manipulation condition, where η is a vector
of the linear and angular maximum velocities. Based on the defined objective function,
the control points will be updated to minimize the error between the DLO shape and the
desired shape while holding the length constraint.
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The end–effectors’ configurations g1 and g2 are mapped into the objective function by
substituting the first and last two cable points as follows:

c1 =

[
g1x
g1y

]
, c2 =

[
g1x
g1y

]
+

[
ls cos(g1ϕ)
ls sin(g1ϕ)

]
(6)

cN =

[
g2x
g2y

]
, cN−1 =

[
g2x
g2y

]
−
[

ls cos(g2ϕ)
ls sin(g2ϕ)

]
(7)

Thus, the motion planning method will generate the required end–effectors’ config-
urations that minimize the cable shape error sequentially to the final desired shape. We
consider the mean error emean, the error standard deviation estd, and the maximum error
emax as the metrics to evaluate the approach´s performance.

emax = max(
∣∣cκ − c

∣∣) (8)

emean =
1
N

N

∑
i=1

∥∥cκi − ci
∥∥ (9)

estd =

√√√√ 1
N

N

∑
i=1

(ci − eκmean)
2 (10)

where
∣∣•∣∣ is the element-wise absolute value.

In the next section, we introduce a cable dynamic model that is used to test and
evaluate the approach in the simulation.

4. Cable Mass–Spring Model

The mass–spring model is a practical and easily understandable physical modeling of
deformable objects. It is also efficient when it comes to computation and resource costs [35].
Due to these advantages, this model finds widespread use in simulating deformable objects,
such as cables [28], clothing [36], and tissue [37].

In this study, we utilize the mass–spring model to assess our manipulation approach.
In this model, the cable is broken down into a series of N mass points. The positions of
these mass points determine the shape of the cable, while they are connected by N-1 stiff
linear springs to maintain the cable’s length. Additionally, the model incorporates N-2
torsion springs located at the mass points (excluding the endpoints), which account for the
cable’s elastic bending behavior. The springs are assumed to be massless. Figure 3 depicts
the cable model, including the springs.

Figure 3. Schematic representation of the cable mass–spring model used in the study.

The motion of the mass points is expressed by Newton’s second law:

c̈ = M−1[ f l(c) + f b(c) + f d(c, ċ) ] (11)

where ċ and c̈ are the first and second derivatives of the mass points, respectively; M is a
diagonal matrix of the mass points; f l(c) is the length preservation force exerted by the
linear springs; f b(c) is the internal bending force exerted by the torsion springs; f d(c, ċ) is
the damping forces’ vector, preventing excessive vibration of the mass points.
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Equation (11) can be formulated as two coupled equations:[
ċ
v̇c

]
=

[
vc

M−1( f (c, vc) )

]
(12)

where vc = ċ and f (c, vc) = f l(c) + f b(c) + f d(c, ċ)
To handle the time step issue resulting from the stiff linear and torsion springs in the

simulation, we use the backward Euler method for a time step h:[
c(t+h)

vc(t+h)

]
=

[
c(t)

vc(t)

]
+ h

[
vc(t+h)

M−1( f (c(t+h), vc(t+h)) )

]
(13)

Taking the first-order Taylor series of f :

f (c(t+h), vc(t+h)) = f (c(t), vc(t)) +
∂f
∂c

∆c +
∂f
∂vc

∆vc (14)

where ∆c and ∆vc are the position and velocity changes from a time step t to t+ h, respectively:

∆c = c(t+h)− c(t) (15)

∆vc = vc(t+h)− vc(t) (16)

Substituting Equation (14) into (13), the model equation can be written in the following
linear form:

A ∆vc = b (17)

where
A =

[
M − h ∂f

∂vc
|vc(t) − h2 ∂f

∂c |c(t)

]
(18)

and
b = h

[
f (c(t), vc(t)) + h ∂f

∂c |vc(t)vc(t)

]
(19)

Then, the new states of the cable points are obtained as follows:

vc(t+h) = vc(t) + ∆vc (20)

c(t+h) = c(t) + h vc(t+h) (21)

The following subsections discuss the forces’ formulations and their derivatives.

4.1. Length Preservation Force

The length preservation force, f l , is derived from the potential energy of the linear
springs, which is given by:

El =
N

∑
i=2

kl
2
(∥ci − ci−1∥ − ls)

2 (22)

where kl is the stiffness parameter of the linear spring.
Then, the force fl acting on the point ci is derived from the first derivative of Equation (22):

f li
=− ∂El

∂ci
= −

(
∂Eli
∂ci

+
∂Eli+1

∂ci

)
=− kl

[(
1− ls
∥ci − ci−1∥

)
(ci − ci−1)

−
(

1− ls
∥ci+1 − ci∥

)
(ci+1 − ci)

] (23)
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The derivative of Equation (23) for all cable points yields a diagonal matrix in the form:

∂f l
∂c

=



∂f l1
∂c1

∂f l1
∂c2

0 0 · · · 0 0 0 0
∂f l2
∂c1

∂f l2
∂c2

∂f l2
∂c3

0 · · · 0 0 0 0

0
∂f l3
∂c2

∂f l3
∂c3

∂f l3
∂c4

· · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0
∂f lN−1
∂cN−2

∂f lN−1
∂cN−1

∂f lN−1
∂cN

0 0 0 0 · · · 0 0
∂f lN

∂cN−1

∂f lN
∂cN


(24)

4.2. Bending Force

Similar to length preservation forces, bending forces are derived from the potential
energy of torsion springs. The potential energy of the torsion spring is:

Eb =
N−1

∑
i=2

kb
2

γ2
i

=
N−1

∑
i=2

kb
2

(
tan−1

(
∥αi × βi∥

αT
i βi

))2 (25)

where kb is the stiffness parameter of the torsion spring; γi is the angle between two links
connected to the point ci, shown in Figure 3; and:

αi = (ci+1 − ci) βi = (ci − ci−1) (26)

The bending force f b acting on the point ci is given as the first derivative of Equation (25):

f bi
=− ∂Eb

∂c
= −

(
∂Ebi−1

∂ci
+

∂Ebi

∂ci
+

∂Ebi+1

∂ci

)
=−

∂Ebi−1

∂αi−1
+

∂Ebi

∂αi
−

∂Ebi

∂βi
+

∂Ebi+1

∂βi+1

=kb

[
−γi−1

∂γi−1

∂αi−1
+ γi

∂γi
∂αi

−γi
∂γi
∂βi

+ γi+1
∂γi+1

∂βi+1

]
(27)

where
∂γi
∂αi

=
αi

αT
i αi
× (αi × βi)

∥αi × βi∥
(28)

and
∂γi
∂βi

=
βi

βT
i βi
× (βi × αi)

∥βi × αi∥
(29)
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Then, we compute the partial derivatives of Equation (27) for all points:

∂f b
∂c

=



∂f b1
∂c1

∂f b1
∂c2

∂f b1
∂c3

0 0 · · · 0 0 0 0
∂f b2
∂c1

∂f b2
∂c2

∂f b2
∂c3

∂f b2
∂c4

0 · · · 0 0 0 0
∂f b3
∂c1

∂f b3
∂c2

∂f b3
∂c3

∂f b3
∂c4

∂f b3
∂c4

· · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 · · ·
∂f bN−1
∂cN−3

∂f bN−1
∂cN−2

∂f bN−1
∂cN−1

∂f bN−1
∂cN

0 0 0 0 0 · · · 0
∂f lN

∂cN−2

∂f lN
∂cN−1

∂f lN
∂cN


(30)

4.3. Damping Force

The damping force is derived as the time derivative of the linear spring force:

f di
=− kd(ci − ci−1)

(ci − ci−1)
T(vci − vci−1

)
∥ci − ci−1∥2

+ kd(ci+1 − ci)
(ci+1 − ci)

T(vci+1 − vci

)
∥ci+1 − ci∥2

(31)

where kd is the damping coefficient.
Then, we compute the partial derivatives of Equation (31) with respect to the position

and velocities:

∂f d
∂c

=



∂f d1
∂c1

∂f d1
∂c2

0 0 · · · 0 0 0 0
∂f d2
∂c1

∂f d2
∂c2

∂f d2
∂c3

0 · · · 0 0 0 0

0
∂f d3
∂c2

∂f d3
∂c3

∂f d3
∂c4

· · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0
∂f dN−1
∂cN−2

∂f dN−1
∂cN−1

∂f dN−1
∂cN

0 0 0 0 · · · 0 0
∂f dN

∂cN−1

∂f dN
∂cN


(32)

∂f d
∂vc

=



∂f d1
∂c1

∂f d1
∂c2

0 0 · · · 0 0 0 0
∂f d2
∂c1

∂f d2
∂c2

∂f d2
∂c3

0 · · · 0 0 0 0

0
∂f d3
∂vc2

∂f d3
∂vc3

∂f d3
∂vc4

· · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0
∂f dN−1
∂vcN−2

∂f dN−1
∂vcN−1

∂f dN−1
∂vcN

0 0 0 0 · · · 0 0
∂f dN

∂vcN−1

∂f dN
∂vcN


(33)

Once we calculate the forces and their derivatives, we substitute their values into
Equation (17) and obtain ∆vc using the conjugate gradient (CG) method. Then, the cable
points’ states are obtained accordingly using Equations (20) and (21). More details on the
force derivatives are discussed in [28,38].

5. Results

To evaluate the proposed algorithm, various simulations are conducted based on the
cable model discussed in Section 4. The simulations are carried out in MATLAB running on
the Windows 10 operating system on a computer equipped with an Intel Core i7–10510U
CPU that runs at 1.8 GHz and 16 GB of RAM.
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The desired shape is discretized based on the cable parameters N and L. The number
of cable points N and the segment length ls are determined by the cable total length L and
the cable harness [28]. In our case, we obtained a satisfactory performance for ls ≃ 10%L.
Table 1 presents the parameter values used in the simulation. The linear and torsion springs’
stiffness parameters are computed by the formulas proposed in [28] as:

kl = Y · (π · d2/4)/ls (34)

kb = 3 ·Y · (π · d4/64)/ls (35)

where Y is Young’s modulus and d is the cable diameter.
Remark: In real–life experiments, the cable can be segmented into a set of points

either by adding marks on the cable [16] or by virtually generating these points [19].

Table 1. Simulation parameters.

Time step h 0.01 s

Number of points N 10

Cable length L 0.70 m (UIDeform and BIDeform)
0.50 m (BMDeform)

Cable diameter d 4.0 mm

Cable Young’s
modulus Y 100 MPa

Damping coefficient kd 25 Ns/m

Controller parameters

Q diag(100, 100, . . . , 100)N×N

alpha 0.5

η [0.03 m/s, 0.03 m/s, 0.08 rad, 0.03 m/s, 0.03 m/s, 0.08 rad]T

Two simulation studies are conducted. The first study compares the performance of
the proposed approach for two setups:

• Unilateral in–place deformation (UIDeform), where one cable end is fixed, and the
deformation is carried out by one robot grasping the other cable end.

• Bilateral in–place deformation (BIDeform), where the cable is fixed at one end and
being deformed by two robot end–effectors.

This type of deformation can be found in quality control for electronic components,
where robots are used to test the flexibility and durability of cables. One end of the cable
is rigidly clamped, and the robot grips the other end of the cable with a specialized end
effector designed to mimic the actions of plugging and unplugging or bending that the
cable might experience in actual use. The robot then moves in predetermined patterns that
simulate the real–world bending that the cable might undergo during its lifecycle. The
second simulation set studies the performance of the approach where the cable initially is
far from the desired shape, and the robots should deform and translate it. This emulates the
cable assembly task in the automotive industry where two robots deform a cable harness to
place it into the chassis of a car. We refer to the setup of this study as Bilateral manipulation
and deformation (BMDeform). Figure 4 illustrates these setups and the degree of freedom
of each robot for each setup.
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Figure 4. The cable’s initial shape (red) and desired shape (green) in the suggested setups for testing
the proposed approach. (a) UIDeform: the first end–effector is completely fixed, (b) BIDeform: the
first end–effector can only rotate; in both UIDeform and BIDeform the second end–effector has 3DOF
(2 translations and a rotation). (c) BMDeform: both end–effectors have 3DOF (2 translations and
a rotation).

5.1. UIDeform vs. BIDeform

In this study, we validate the co–manipulation setup compared to the single–robot
manipulation for the same conditions. The cable is fixed at one end, and it is deformed
to the desired shape by one manipulator in UIDeform and by dual arms cooperatively
working together in BIDeform.

Figure 5 shows six Test Cases (TCs) with different levels of complexity. In TC1,
Figure 5a, the initial and desired shapes slightly diverge from each other, representing a
straightforward task. TC2, Figure 5b, presents a more challenging scenario in which the
initial shape has a relatively high negative slope compared to the desired positive slope.
In TC3, Figure 5c, the initial and desired shapes are distinctly different: the initial shape
has no vertical displacement, while the desired shape has a positive slope until about the
midpoint of the X–axis, after which it becomes horizontal. TC4, Figure 5d, introduces a
more complex scenario in which the second half of the cable, the part of the cable closer
to the end–effector g2, is downwardly concave in the initial shape and upwardly in the
desired shape. TC5, Figure 5e, shows a gentle, smooth curve in the desired shape with a
slight initial deviation at the start, suggesting a less complex control task for the system.
Finally, TC6, Figure 5f, resembles TC4, however, the concavity of the initial and desired
shapes differs in the first half of the cable, which is the part of the cable that is closer to the
end–effector g1.

Figure 6 depicts the final cable shapes after the deformation tasks in both the UIDeform
and BIDeform setups across the considered Test Cases. For the simple Test Cases (TC1,
TC3, and TC5), both setups achieve the task with minimal deviation from the desired shape.
This indicates that, for tasks involving more linear shapes, the efficiency of the approach in
both single– and dual–robot systems is comparable.

Conversely, in the more complex Test Cases (TC2, TC4, and TC6), the UIDeform setup,
which uses a single robot, fails to accomplish the desired shapes, highlighting its limitations
in handling complex deformations. In contrast, the BIDeform setup, which utilizes a dual–
robot system, shows a superior performance and successfully shapes the cable into the
desired configurations. This demonstrates the dual–robot system’s enhanced capability to
control the deformation of the cable, likely benefiting from coordinated manipulation and
increased control points that allow for more complex shape executions.
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The approach efficiency for both the UIDeform and BIDeform setups is illustrated in
Figure 7 and Table 2, represented by the error between the cable’s final shape and desired
shape. UIDeform and BIDeform successfully finished TC1, TC3, and TC5 with almost the
same error values. However, for TC2, TC4, and TC6, while UIDeform dramatically failed
to fit the cable into the desired shape and terminated with high error values, BIDeform
showed a high position accuracy and achieved these tasks similarly to the others.

Additionally, Figure 8 shows how the shape error converges during the task over time.
It compares the simulation times of UIDeform and BIDeform, excluding the failed cases
of UIDeform. It can be seen that although the approach handled Test Case 1 at the same
time for both systems, the UIDeform system needed more time than BIDeform as the task
complexity increased.

Comparing the two setups, BIDeform offers a more reliable performance in cable
shape manipulation, particularly in tasks that demand high fidelity to the desired shape.
The ability of BIDeform to more accurately align with the desired outcomes across all Test
Cases suggests potential advantages in employing a dual–robot system for complex shape
manipulation tasks in industrial or robotic applications where precision is paramount.

Figure 5. Cable initial and desired shapes of the Test Cases of UIDeform and BIDeform setups. (a) The
initial and desired shapes are slightly different, representing an easy task. (b) The initial shape has a
significant negative slope, contrasting with the desired positive slope. (c) Features distinctly different
initial and desired shapes; the initial shape is flat, while the desired shape slopes positively until the
midpoint and then becomes horizontal. (d) A complex scenario in which the latter half of the cable
(closer to end–effector g2) is initially downwardly concave but desired to be upwardly concave. (e) A
gentle control task, a smooth curve in the desired shape with a minor initial deviation. (f) Similar to
TC4 but with the concavity differences in the first half of the cable (closer to end–effector g1).
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Figure 6. The final cable shapes after deformation tasks in UIDeform and BIDeform setups.

Table 2. Comparison between the efficiency approach in UIDeform and BIDeform setups.

Test Case
UIDeform BIDeform

emax
(mm)

emean
(mm)

estd
(mm)

emax
(mm)

emean
(mm)

estd
(mm)

TC1 3.4 2.1 1.1 3.3 1.6 1.0

TC2 53.2 28.4 21.5 2.7 1.0 1.0

TC3 11.6 4.6 4.6 16.0 5.1 5.0

TC4 50.9 24.0 20.1 3.4 1.7 1.2

TC5 8.5 4.1 2.9 2.9 1.3 1.1

TC6 68.7 31.7 26.9 3.1 0.9 1.1

Figure 7. The approach efficiency represented by error box plots of each Test Case in UIDeform vs.
BIDeform setups.
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Figure 8. The error convergence during deformation for (a–c) in UIDeform and BIDeform setups.

5.2. BMDeform

Herein, the approach is validated for the cases where the initial shape is relatively
far from the desired shape and requires more manipulation to fit the cable into the de-
sired shape.

Figure 9 shows the initial and final shapes of the cable, along with the desired and
intermediate profiles for each test case in the BMDeform setup. The figure highlights the
path generation algorithm’s effectiveness in producing intermediate profiles that progres-
sively guide the cable from its initial state to the target configuration. This step–by–step
deformation process ensures local conditions are met and instability is avoided. It can be
observed that the approach successfully achieved the task and the cable’s final shape fits
the desired shape for all Test Cases. The systematic progression underscores the approach’s
precision in handling complex manipulations, adapting the cable’s shape incrementally to
achieve the final desired form.

Figure 9. Cable initial and final shapes of the Test Cases alongside desired and intermediate shapes
in BMDeform setup.

The box plots in Figure 10 and Table 3 illustrate the shape error for each Test Case in
the BMDeform setup. TC3 stands out with the highest maximum error and wider error
range, due to the coarse inflection in the desired shape, which leads to a higher difficulty
level in shape manipulation. The other Test Cases, particularly TC1 and TC5, exhibit tight
error distributions, reflecting a high degree of precision and reliability in achieving the
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desired cable configurations. These results suggest the method’s robustness and potential
for precise automated tasks in various applications.

Figure 10. The approach efficiency represented by error box plots of each test case in BMDeform
setups.

Table 3. The efficiency of the approach in BMDeform setup.

Test Case TC1 TC2 TC3 TC4 TC5 TC6

emax (mm) 2.0 2.3 8.7 2.3 1.8 2.0

emean (mm) 1.5 0.8 2.8 1.0 0.8 1.3

estd (mm) 0.3 0.7 3.2 0.7 0.6 0.3

The approach is further evaluated in a setup built in CoppeliaSim (V–rep) [39].
A framework is developed in which a cable is rigidly attached to two Kuka iiwa ma-
nipulators’ end–effectors, as shown in Figure 11 and the Supplementary Video. Differing
from the previous simulation studies, the cable in CoppeliaSim is modeled as a multi–body
model in which a set of rigid links are connected by spherical joints. Several experiments
are carried out in this framework. Figure 12 depicts the initial and final shapes and the
error convergence of some experiments. It can be seen that the robots successfully achieved
the tasks and deformed the cable accurately.

Figure 11. Experimental setup in CoppeliaSim for cable manipulation trials.
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Figure 12. Results of experiments conducted in the CoppeliaSim simulation environment.

To summarize, the approach has been evaluated in different Test Cases with different
complexity levels for both single–arm and dual–arm robotic systems. The outcomes show
the efficiency and accuracy of the developed method to control a dual–arm system for
handling cable shape control tasks. Moreover, it can control a single robot to accomplish
simple shape control tasks.

6. Discussion

In this paper, we present a novel methodology for cable shape control using dual
robotic arms. The key findings include:

• An innovative approach for controlling cable shape by decomposing large deformation
tasks into simpler ones.

• The formulation of robot motion planning as an optimization problem to minimize
shape error, ensuring precise and stable deformation.

The proposed approach is validated in two simulation environments, where, in the first
environment, the cable is modeled as a mass–spring model, and, in the second environ-
ment, it is modeled as a multi–body model. Moreover, the approach efficiency is tested for
single-robot (UIDeform) and dual–robot (BIDeform and BMDeform) setups. The successful
validation in the simulation environments exhibits the method’s feasibility and accuracy
for precise control of cables and deformable linear objects. Compared to existing methods,
the developed approach offers a more efficient and adaptable solution that does not require
prior knowledge of cable dynamics, such as the work proposed by Koessler et al. [40].
It is also resource–efficient compared to learning–based approaches [23,41]. Moreover,
it demonstrates versatility in managing various shape control tasks across different lev-
els of complexity. This adaptability marks a notable improvement over Jacobian–based
methods [13,19,42], which are limited to simple, local deformations and struggle with
slightly more complex tasks, as noted in [13]. Table 4 summarizes a qualitative comparison
between the proposed approach in this paper and other state–of–the–art approaches from
the literature.
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Table 4. A comparison between the developed approach and other recent methods.

Method Robotic System Task Complexity Intermediate Profiles Robot Motion Data Collection

Zhu et al., 2018 [13] dual–arm Simple No Jacobian–based Online

Zhu et al., 2021 [42] dual–arm Simple Yes Jacobian–based Online

Almaghout and Klimchik, 2022 [18] dual–arm Simple Yes Jacobian–based –

Wang et al., 2022 [41] dual–arm Complex No Data–driven Online and offline

Yu et al., 2022 [16] single– and dual–arm Complex No Data–driven Online and offline

The proposed approach single– and dual–arm Complex Yes Optimization problem -
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Although the validation results are promising, it is important to recognize certain
limitations and potential areas for enhancement. The approach is limited to 2D manipula-
tion and does not take into account the cable–overlapping scenarios. In the future, these
limitations can be tackled. Moreover, the system can be extended to work in a cluttered
environment and handle obstacle avoidance.

7. Conclusions

The paper addresses the complex issue of controlling the shape of a cable on a surface
when it is grasped at its ends by two robotic manipulators. The novel approach formulated
in the paper conceptualizes both the cable and the desired shape as a series of discrete
points, intending to guide the cable points to align with those of the desired configuration.
A significant innovation of this approach is the generation of intermediate profiles that
serve as waypoints for the shape transformation. The task of guiding the cable through
these intermediate states is encapsulated in an optimization problem, the goal of which is
to minimize the deflection in position and configuration between the cable and the desired
shape. The optimization loss function is specifically defined to assess this deflection.
The effectiveness and accuracy of the proposed method are confirmed through a series
of simulation experiments. Future work will extend the validation of this method to
real–life experiments and will consider a variety of cable types to further ascertain its
practical applicability. Additionally, more complex scenarios such as the cable shapes with
overlapping can be considered.

Supplementary Materials: Videos of the experiments held in CoppeliaSim can be found at this link:
https://youtu.be/6KeuGZoIoxg, accessed on 13 December 2023.
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