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Abstract: Recently, with the in-depth development of Industry 4.0 worldwide, mobile robots have
become a research hotspot. Indoor localization has become a key component in many fields and the
basis for all actions of mobile robots. This paper screened 147 papers in the field of indoor positioning
of mobile robots from 2019 to 2021. First, 12 mainstream indoor positioning methods and related
positioning technologies for mobile robots are introduced and compared in detail. Then, the selected
papers were summarized. The common attributes and laws were discovered. The development trend
of indoor positioning of mobile robots is obtained.
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1. Introduction

With the continuous innovation of sensor technology and information control technol-
ogy and the impact of a new round of a world industrial revolution, indoor mobile robot
technology has developed rapidly. Mobile robots have produced huge economic benefits in
laboratories, industry, warehousing and logistics, transportation, shopping, entertainment,
and other fields [1]. They can replace manual tasks such as the transportation of goods,
monitoring patrols, dangerous operations, and repetitive labor. In addition, mobile robots
realize 24 h automation and unmanned operation of factories and laboratories [2]. The
question of how to achieve high-precision mobile robot positioning technology for these
functions has always been an urgent problem to be solved. Positioning refers to the esti-
mation of the position and the direction of a mobile robot in the motion area, which is a
prerequisite for robot navigation [3]. It is a difficulty in the field of mobile robots and is the
focus of researchers.

The positioning problem in the outdoor environment has been solved by the ubiqui-
tous global navigation satellite system (GNSS). However, due to the complex and diverse
environmental conditions (factories, laboratories, hospitals, shopping malls, etc.), signal
attenuation, multipath, and non-visual distance problems, the GNSS is no longer applicable
in the indoor environment [4]. Thus, many kinds of indoor positioning systems have
been proposed by researchers. In actual work, mobile robots usually need to move, pick
and place objects, patrol, pass through access control, and take elevators in the working
environment [5]. The high accuracy of indoor positioning is the premise to ensure that the
mobile robot can complete the task and ensure the safety of the human–machine environ-
ment. The demand to achieve a centimeter-level positioning accuracy of mobile robots
attracts researchers to continue to explore the positioning of indoor mobile robots. Cur-
rently, the mainstream indoor positioning technologies include Wi-Fi, Bluetooth, ZigBee,
Radio Frequency Identification (RFID), Ultra-Wide Band (UWB), Inertial Measurement
Unit (IMU), Visible Light Communication (VLC), Infrared (IR), Ultrasonic, Geomagnetic,
Light Detection and Ranging (LiDAR), and Computer Vision [6]. These technologies have
been maturely applied to the positioning of mobile robots.
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LiDAR and Computer Vision prefer Simultaneous Localization and Mapping (SLAM)
as the positioning technique. SLAM maps the surrounding environment in real-time through
a radar point cloud or image depth information without prior information and uses proba-
bilistic methods to estimate its position in real-time [7]. SLAM is the main method to solve
the problem of automatic navigation of mobile robots in unknown environments. It has
been more than 30 years since the SLAM method was proposed. From the development of
the algorithms and filters needed to solve the problem to the implementation of powerful
mobile robots, SLAM technology has great improvement. Various SLAM methods have been
proposed by researchers, such as LiDAR-based (EKF-SLAM, Core SLAM, Gmapping SLAM,
Hector SLAM, Cartographer SLAM, etc. [8]) or based on Computer Vision (MonoSLAM,
PTAM, ORB SLAM, LSD SLAM, SVO, DSO, etc. [9]). In addition, data such as wheel
encoders or IMUs are usually fused with SLAM-ranging information.

Radio frequency (RF) technology based on indoor positioning systems is the most
common, and Wi-Fi, Bluetooth, ZigBee, RFID, and UWB are all radio frequency tech-
nologies [10]. They are mature communication technologies that can provide positioning
functions with simple modifications. These methods are low-cost and practical. The dis-
advantage is that the accuracy is not high, and further optimization is required. Usually,
these optimization methods are based on filters [11] and machine learning [12]. Their
ranging techniques are mainly based on geometric algorithms such as TOA, AOA, TDOA,
or RSSI based on fingerprint algorithms [13]. These ranging techniques convert signal
characteristics into distances and angles and then infer the pose of the mobile robot carrying
the transmitter based on the known receiver location.

Although radio frequency technology is common, it cannot be applied in areas where
the radio is restricted, such as hospitals, airports, etc. [14]. IR and VLC are more private
and only propagate under Line of Sight (LOS). The infrared-based positioning technology
is relatively simple, and it also uses the transmitter and the receiver to evaluate the pose.
There are already mature commercial solutions such as StarGazer available [15]. VLC
is an emerging indoor positioning solution, with Light-Emitting Diode (LED) lights and
photosensitive sensors/cameras as its hardware. It is a good motivation to use LED lights
that are already used as lighting fixtures for positioning [16]. This motivation is similar to
Wi-Fi, and its location accuracy is better than Wi-Fi.

An ultrasonic is a mature technology that also uses radio frequency signals for ranging.
Compared with radio frequency signals, ultrasonic waves have serious multipath effects
and are also affected by temperature and humidity. It is more suitable for high-precision
positioning at medium and short distances, so ultrasonic is usually used to assist positioning
or obstacle avoidance [17].

The IMU is an essential sensor for mobile robots. The positioning technique used
by the IMU is dead reckoning [18]. By calculating the acceleration and angular velocity
information collected by the accelerometer and gyroscope, the position of the robot is
continuously updated. The calibration accuracy of the IMU directly affects the positioning
accuracy of the mobile robot. The positioning accuracy of the IMU is not high enough, so it
is usually used as an auxiliary positioning technology to perform data fusion with other
positioning technologies.

Geomagnetic is based on the naturally occurring Earth’s magnetic field. It utilizes the
unique properties of each point in the Earth’s magnetic field for location determination.
Indoor geomagnetic positioning first needs to collect the geomagnetic feature information
in the indoor range to establish a geomagnetic database. Then, during the operation of
the mobile robot, it obtains its position by matching the geomagnetic feature information
collected in real-time with the data in the database. The main feature is that it is free from
interference and has no accumulated errors [19].

The angles of evaluating an indoor positioning system are positioning accuracy, cost,
whether it needs facility modification and robustness, etc. [10]. At present, there is no
system as dominant as GNSS in the field of indoor positioning. Choosing a suitable indoor
positioning system also requires a trade-off between multiple angles. Each positioning
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technology has advantages and disadvantages. For example, UWB technology that solves
the problems of multipath and signal attenuation of RF signals is expensive. Ultrasonic
technology has a centimeter-level positioning and is only suitable for short-distance posi-
tioning and detection of obstacles because ultrasonic waves cannot cross obstacles. Wi-Fi
and Bluetooth are cheap and low energy, but their positioning accuracy is easily affected
by the environment. Computer Vision SLAM with high accuracy without modifying the
environment has high requirements on algorithms and computers. High-precision LiDAR
SLAM depends on the number of threads of the radar, and the number of threads is directly
related to the price.

Data fusion of positioning methods is a good method to improve the positioning effect,
which can overcome the shortcomings of different positioning methods and enable mobile
robots to adapt to complex and diverse working environments. With the improvement of
computer hardware, intelligent algorithms [20], machine learning [12], deep learning [21],
and cloud computing [22] can be used in the positioning of mobile robots to achieve higher
positioning accuracy.

At present, there is much research on the indoor positioning of mobile robots, but
there are very few reviews. This paper uses (mobile AND robot AND indoor AND po-
sitioning/localization) as the search term. The selected search scope is the paper title,
abstract, and keywords. The time limit is 2019–2022. A total of 495 papers were automati-
cally screened. To improve the quality of the selected papers, the papers without citations
are removed, leaving 258 papers. Then, a secondary screening was conducted using the
following criteria:

1. The positioning object must be a mobile robot instead of a drone or an underwater drone.
2. The method proposed in the paper should focus on indoor positioning, rather than navi-

gation, mapping, path planning, human–computer interaction, and obstacle avoidance.
3. Papers belonging to review and survey types will also be screened out.
4. The paper should be written in English.

After the screening, there were 147 papers on the indoor positioning of mobile robots.
The second section of this paper focuses on 12 mainstream positioning methods and

related positioning technologies. A comparative analysis is made based on positioning
accuracy, cost, and advantages and disadvantages. The third section conducts a comprehen-
sive analysis of the selected 147 pieces of literature, digs out common laws, and discovers
future trends. The fourth section presents conclusions and future prospects for the indoor
localization of mobile robots.

2. Overview of Indoor Positioning Technologies for Mobile Robots

This section details the basic principles of the 12 positioning methods, the localization
techniques used, and case studies. The 12 positioning methods are divided into Non-Radio
Frequency (IMU, VLC, IR, Ultrasonic, Geomagnetic, LiDAR, and Computer Vision) [20]
and Radio Frequency (Wi-Fi, Bluetooth, ZigBee, RFID, and UWB).

2.1. Non-Radio Frequency Technologies

Although radio localization is the most commonly used indoor localization method,
LiDAR and Computer Vision are more attractive to researchers in the field of mobile
robotics. They are more accurate and require no modification to the environment. This
section details the non-radio methods: IMU, VLC, IR, Ultrasonic, Geomagnetic, LiDAR,
and Computer Vision.

2.1.1. Inertial Measurement Unit

The IMU is the most basic sensor in mobile robots, and all mobile robots are equipped
with an IMU. The IMU is composed of an accelerometer and gyroscope, which can measure
the acceleration, angular velocity, and angle increment of the mobile robot. Real-time
positioning of the robot is achieved through integral calculation of the motion trajectory
and pose according to the parameters of acceleration, angular velocity, and angle increment.
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This method can only rely on the internal information of the robot for autonomous navi-
gation [23]. Therefore, the calibration accuracy of the IMU directly affects the positioning
accuracy of the mobile robot.

The advantages of inertial navigation are strong anti-interference; inertial sensors will
not reduce the accuracy due to the interference of external environment signals such as
Wi-Fi, sound waves, etc. The working speed of the IMU is fast, and the inertial navigation
of the IMU is more suitable for fast-moving objects than other positioning technologies.
The main disadvantage is that the positioning error of inertial navigation is cumulative.
Thus, the last positioning error will affect the next positioning, which will cause the error
to expand. As the robot runs, the positioning error of inertial navigation will continue
to increase if there is no correction process. Therefore, we usually use other navigation
methods in combination with inertial navigation. In this way, the positioning method will
retain the advantages of strong anti-interference and high speed of inertial navigation, and
will limit the error to a certain range.

The positioning technique of the IMU is dead reckoning [12]. The dead reckoning
method knows the initial position and pose of the mobile robot and calculates the current
position through the moving distance and rotation angle recorded by the IMU. The formula
for deriving the current position Pn(Xn,Yn) is expressed as Equation (1), and the schematic
diagram of the dead reckoning algorithm is shown in Figure 1:

Xn = X0 +
n
∑

i=1
di cos αi

Yn = Y0 +
n
∑

i=1
di sin αi

(1)

where P0 (X0, Y0) is the starting position of the mobile robot, d is the moving distance, and
α is the rotation angle of the mobile robot.
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The IMU is usually used as an auxiliary navigation method to assist other positioning
methods to estimate the position of the robot. The anti-interference feature of the IMU
can be used to correct the positioning information. In recent literature, IMU localization
methods focus on how to perform data fusion. The fusion algorithms used are mainly
based on filters, but machine learning is also used. Table 1 shows the specific information
in the IMU-based data fusion papers.
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Table 1. The IMU-based data fusion papers.

Papers Positioning Technologies Fusion Algorithm Error Accuracy

[24] IMU, Computer Vision (CV) Adaptive Fade EKF CV (x) = 0.11 m, CV (y) = 0.22 m
CV + IMU (x) = 0.06 m, Vision + IMU (y) = 0.15 m

[25] IMU, Computer Vision,
Odometer EKF The average error of the simulation is 0.163 m, and the actual error is 0.3 m

[26] IMU + Computer Vision/
LiDAR + Encoder EKF Max Error: CV + IMU (x) = 0.181 m, (y) = 0.101 m

LiDAR + Encoder (x) = 0.138 m, (y) = 0.104 m
[27] IMU, Computer Vision Multimodel Multifrequency Kalman Filter Mean Error: (x) = 0.0137 m, (y) = 0.0114 m
[28] IMU, Computer Vision RCNN RMSE is 0.056 m

[29] IMU, LiDAR EKF LiDAR (x) = 0.21 m, (y) = 0.26 m
LiDAR/IMU (x) = 0.12 m, (y) = 0.14 m

[30] IMU, LiDAR, Encoder, GPS EKF Centimeter-level accuracy
[31] IMU, UWB Sage–Husa fuzzy adaptive Filter RMSE: UWB = 0.8038 m, UWB + IMU = 0.1440 m

[32] IMU, UWB Maximum Correlation Entropy
Kalman Filter RMSE: UWB = 0.171 m, UWB + IMU = 0.131 m

[33] IMU, UWB Constrained Robust Iterative Extension
Kalman Filter Mean Error: UWB = 0.36 m, UWB + IMU = 0.21 m

[34] IMU, Odometer, GPS ANN + Fuzzy Logic Mean Error: (x) = 0.2847 m, (y) = 0.2631 m

[35] IMU, Odometer, GPS KF The positioning trajectories in the paper are given in the form of graphs,
with no specific values

[16] IMU, VLC EKF RMSE is 0.04 m

[18] IMU, Geomagnetic, Encoder Self-Tuning Kalman Filter The positioning trajectories in the paper are given in the form of graphs,
with no specific values

[36] IMU, Odometer, UWB,
LiDAR EKF Max Error is 0.091 m

where (x) represents the x-axis direction, (y) represents the y-axis direction. RMSE is the Root-Mean-Squared Error.
CV is Computer Vision. EKF is the Extended Kalman Filter. KF is the Kalman Filter.

2.1.2. Visible Light Communication

Localization based on visible light is a new type of localization method. The key element
of VLC communication is the LED light [16]. The communication principle is to encode
information and transmit the encoded information by adjusting the intensity of the LED, and
the photosensitive sensor can receive and decode the high-frequency flickering signal. Using
photo sensors to locate the position and orientation of LEDs, the RSSI, TOA, and AOA of
radio methods are the main localization techniques [37]. In contrast, a camera can also be
used to receive images of LEDs [38]. This approach is similar to Computer Vision.

LED is a kind of energy-saving lighting equipment, which has the characteristics of
low energy consumption, long life, environmental protection, and anti-electromagnetic
interference. With the popularity of LED lights now, the cost of environmental modification
using VLC positioning is lower, which is similar to Wi-Fi. LED lights can be installed in large
numbers indoors while considering the functions of lighting and communication. Due to
its high-frequency nature, it transmits information without disturbing the illumination [39].
A major disadvantage of VLC is that it can only communicate within the line-of-sight (LOS)
range. Moreover, light does not interfere with radio frequency equipment and can be safely
used in places where radio frequency signals are prohibited.

The direction of improvement of VLC positioning based on RSSI technology lies in the
process of optimizing the signal strength mapping position. An improved Bayesian-based
fingerprint algorithm [37], as well as the optimization of a baseline smoother based on an
extended Kalman filter and a central difference Kalman, filter have been described [40].
The VLC method can be fused with other localization methods, such as the IMU [16] and
the encoder [41], and the corresponding fusion algorithms are the EKF and particle filter.
Similar to fingerprint recognition, which requires building a signal strength library in
advance, LEDs require a prior calibration stage. Amsters et al. used the Cartographer
algorithm in LiDAR SLAM to build a VLC environment map, and identified the location of
the LED in the map according to the LED frequency and pixel coordinate information ob-
tained by the camera [42,43]. CMOS cameras combined with vision processing algorithms
can efficiently identify LED IDs [38,44]. Under normal circumstances, VLC is one-way
data transmission, and the LED terminal sends encoded information to the mobile robot.
Louro et al. designed a VLC-based bidirectional data transmission, implemented LED-to-
vehicle, vehicle-to-LED, or vehicle-to-vehicle communication, and proposed parity bits
to reduce the bit error rate [39,45]. Wang et al. designed a novel position and orientation
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sensor based on LEDs [46]. The sensor consists of four pairs of linear charge-coupled
devices (CCDs) and cylindrical lenses. The 3D coordinate measurement system based on
the intersection of four planes can be used to detect the pose of the mobile robot. Jeong et al.
proposed a VLC localization method based on a fuzzy logic system capable of estimating
the mobile robot’s position by analyzing the chromaticity and frequency component ratios
of LED lights installed under the ceiling [47].

2.1.3. Infrared Detection Technologies

Infrared is an electromagnetic wave that is invisible to the human eye and has a longer
wavelength than visible light. The positioning of indoor mobile robots based on infrared
methods relies on artificial landmarks with known positions, which can be divided into
active landmarks and passive landmarks according to whether the landmarks require
energy or not. The principle of active landmarks is that a mobile robot equipped with
an infrared transmitter emits infrared rays and a receiver installed in the environment
receives the infrared rays and then calculates the position of the robot, which can achieve
sub-meter accuracy. The principle of passive landmarks is that the arrangement in the
environment can reflect infrared landmarks and the mobile robot receives the reflected
infrared information at the same time and obtains the landmark ID, position and angle,
and other information [15]. At present, infrared-based positioning technology is relatively
mature, but its penetration is poor, and it can only perform line-of-sight measurement and
control. It is susceptible to environmental influences, such as sunlight and lighting, so the
application is limited.

The center for life science automation (CELISCA) has developed a complete auto-
matic transportation system for multi-mobile robots across floors [15]. The positioning
method was selected by Hagisonic’s StarGazer. It performs indoor positioning based on
infrared passive landmarks and obtains the relative position of the robot and passive land-
marks through a visual calculation to evaluate the robot’s own position and orientation.
The average positioning accuracy is about 2 cm, and the maximum error is within 5 cm.
Bernardes et al. designed an infrared-based active localization sensor [48]. Infrared LED
lights are arranged on the ceiling, and the mobile robot is equipped with an infrared light
receiver. Combined with EKF, the pose of the mobile robot is calculated using the emission
angle of the LED.

2.1.4. Ultrasonic Detection Technologies

An ultrasonic is defined as a sound wave with a vibration frequency higher than
20 kHz, which is higher than the upper limit of human hearing and cannot be heard.
At present, ultrasonic ranging has three methods: phase detection, acoustic amplitude
detection, and time detection. In practical applications, most of them are time detection
methods using the TOF principle. The time detection method obtains the distance by
calculating the time when the ultrasonic transmitter transmits the ultrasonic wave and
the time difference and sound speed of the ultrasonic wave received by the receiving
end [17]. The accuracy can theoretically reach the centimeter level [49]. Among them, the
phase detection method has the advantage of better detection accuracy. Its principle is to
calculate the measurement distance based on the ultrasonic wavelength by comparing the
phase difference when the ultrasonic wave is transmitted and the phase difference when
the ultrasonic wave is received. It also has a defect. The measured phase difference is a
multiple solution value with a period of 2nπ, so its measurement range needs to be within
the wavelength. The acoustic wave amplitude detection method detects the amplitude
of the returned acoustic wave, but it is easily affected by factors such as the medium,
resulting in inaccurate measurement, but this method is easy to implement. The principle
of the transit time detection method is to determine the distance of the obstacle according
to the time difference between the ultrasonic transmitting end transmitting the acoustic
wave signal and the receiving end receiving the acoustic signal reflected by the obstacle.
Although the positioning accuracy of ultrasonic waves can reach the centimeter level in
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theory, the propagation speed of ultrasonic waves is different in different media. Moreover,
it will be affected by changes in temperature and air pressure, and sometimes temperature
compensation is required.

Tsay et al. developed a navigation tool for multiple agricultural robots based on a
Spread Spectrum Sound-based Local Positioning System (SSSLPS). With static measure-
ments using Time Division Multiple Access (TDMA), the positioning accuracy achieved
was 1.2 cm. In contrast, under dynamic measurements employing Frequency Division Mul-
tiple Access (FDMA), the positioning accuracy reached 6.2 cm [49]. Chen et al. proposed
an indoor localization system based on discrete sonar sensors [50]. The sonar receiver is
arranged on the ceiling, and the robot carries the ultrasonic transmitter. Similar to the
previous VLC case, the SLAM technique was chosen for calibration. Since the ultrasonic
path loss and ultrasonic emission dead zone have a great influence on the positioning,
Zhang et al. designed a multi-degree-of-freedom ultrasonic receiving device [51]. It can
automatically rotate and follow the ultrasonic transmitter on the mobile robot. Grami et al.
used particle filters to fuse ultrasonic localization and odometry information [17]. Gualda
proposed a simultaneous calibration and navigation system that can simultaneously per-
form navigation and ultrasonic calibration of mobile robots [52]. He also compared various
Bayesian filters, including the Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF), and H-∞ filter. Simulation results show that an average error of H-∞ is 0.33 m, and
both the EKF and UKF are 0.35 m. Magrin et al. used an ANN (artificial neural network)
to fuse a sonar octagon, a digital compass, and wireless network signal strength [53]. The
octagonal sonar can cover 360◦ of the robot, and the recognition rate was 100% in grids
measuring 120 × 120 and 60 × 60.

2.1.5. Geomagnetic Field Detection Technologies

The earth is wrapped in a natural geomagnetic field formed between the north and
south poles, and the strength of the magnetic field varies with latitude and longitude.
At present, geomagnetic fingerprints are mainly used for indoor positioning based on
geomagnetism. Magnetic fingerprints have unique properties in space, with geomagnetic
modulus values in a small contiguous region forming a fingerprint sequence [54]. Geomag-
netic fingerprint positioning includes two stages: offline training and online positioning.
During the offline training stage, the geomagnetic sensor is used to collect the geomagnetic
information about the sampling points, and the information is stored in the fingerprint
information database. In the online positioning stage, the geomagnetic information about
the current location obtained by the geomagnetic sensor is used to form the fingerprint
information and match the information in the fingerprint database. The geomagnetic field
is less affected by external factors, as there is no cumulative error and there is no NLOS
problem, but the accuracy is at the meter level. Generally, geomagnetism is used as an
auxiliary positioning tool to correct accumulated errors, or used with other sensors for
information fusion. The formula for geomagnetic indoor positioning is:

P = (B− B0)/(B1 − B0) (2)

where P is the position of the device is located. B is the measured magnetic field strength
at the device’s location. B0 is the magnetic field strength at a reference point. B1 is the
magnetic field strength at another reference point.

Lv et al. developed a self-tuning Kalman filter that fused the geomagnetic sensor,
the IMU, and encoder, and used the real-time update global position characteristics of the
geomagnetic sensor to correct the error accumulation defect of dead reckoning [18]. The
positioning method of particle filter-based is presented by Isaku Nagai et al. [55] to fuse
data from multiple magnetic sensors, an optical sensor, and a gyroscope.

2.1.6. LiDAR Detection Technologies

LiDAR systems consist of an optical transmitter, a reflected light detector, and a
data processing system. First, the optical transmitter emits discrete laser pulses to the
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surrounding environment. The laser pulses are reflected after encountering obstacles. The
reflected laser light is received by the reflected light detector, and then the data are sent
to the data processing system to obtain a two-dimensional image or 3D information of
the surrounding environment. LiDAR systems are active systems since they emit laser
pulses and detect reflected light. This feature supports the mobile robot to work in a dark
environment, does not require any modification of the environment, and is highly universal.
In indoor situations, 2D LiDAR is mainstream, and 3D LiDAR is usually used in the field
of unmanned driving [56].

The 2D LiDAR SLAM is the mainstream method for the indoor positioning of mobile
robots. Without prior information, LiDAR SLAM uses LiDAR as a sensor to obtain sur-
rounding environment data, evaluate its pose, and draw an environment map based on the
pose information. Finally, synchronous positioning and map construction are realized. At
present, there are two types of 2D LiDAR SLAM methods to solve the indoor positioning
problem of mobile robots: filter-based and graph-based [57]. The problem to be solved is
the estimation of a posterior probability distribution over the robot’s location given sensor
measurements and control inputs. This can be stated as follows:

P(xt|z{1:t}, u{1:t}) = η × P(zt|xt)×
∫

P(xt|xt−1, ut)× P(xt−1|z{1:t−1}, u{1:t−1})dxt−1 (3)

where xt represents the robot’s state (position and orientation) at time t; z{1:t} represents
the lidar observation data from time 1 to t; u{1:t} represents the robot control input from
time 1 to t; P(xt|z{1:t}, u{1:t}) represents the posterior probability of the robot’s state at
time t, given the observation data and control input; P(zt|xt) represents the likelihood
probability of observation data zt, given the robot state xt; P(xt|xt−1, ut) represents the
transition probability of the current state xt, given the previous state xt−1 and the current
control input ut; and η is a normalization factor that ensures the sum of probabilities is 1.
By iterating this formula, we can estimate the robot’s position and orientation based on the
LiDAR observation data and robot control input.

The filter-based SLAM method has been proposed since the 1990s and has been widely
studied and applied [58]. Its principle is simply to use recursive Bayesian estimation to
iterate the posterior probability distribution of the robot pose to construct an incremental
map and achieve localization. The most basic algorithms are EKF SLAM and particle filter
SLAM. Gmapping SLAM and Hector SLAM are now commonly used methods.

EKF SLAM is linearized by first-order Taylor expansion to approximate the nonlinear
robot motion model and observation model. Cadena et al. improved the EKF slam based
on directional endpoint features [58].

The particle filter RBPF SLAM, also known as sequential Monte Carlo, is a recur-
sive algorithm that implements Bayesian filtering through a non-parametric Monte Carlo
method [59,60]. Zhang et al. used the PSO algorithm to improve the particle filter [20].
Nie et al. added loop detection and correction functions [61]. Chen et al. proposed a
heuristic Monte Carlo algorithm (HMCA) based on Monte Carlo localization and discrete
Hough transform (DHT) [62]. Garrote et al. added reinforcement learning to particle
filter-based localization [63]. Yilmaz and Temeltas employed self-adaptive Monte Carlo
(SA-MCL) based on an ellipse-based energy model [64]. Based on the EKF and RBPF,
FastSLAM combines the advantages of both. It uses a particle filter for path estimation and
a Kalman filter for the maintenance of map state variables. FastSLAM has great improve-
ments in computational efficiency and scalability. Yan and Wong integrated particle filter
and FastSLAM algorithms to improve the localization operation efficiency [65].

In 2007, Gmapping SLAM was released as open source, which is an important achieve-
ment in the field of laser SLAM [66]. It is a particle filter-based method. On this basis,
many companies, and researchers have applied Gmapping in mobile robot products [67,68].
Norzam et al. studied the parameters in the Gmapping algorithm [69]. Shaw et al. com-
bined Gmapping and particle swarm optimization [70].
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Hector SLAM is also a classic open-source SLAM algorithm based on filtering. The
main difference from Gmapping is that it does not require odometer data and can only
construct maps based on laser information [71]. Garrote et al. fused mobile Marvelmind
beacons and Hector SLAM using PF [72]. Teskeredzic et al. created a low-cost, easily
scalable Unmanned Ground Vehicle (UGV) system based on Hector SLAM [73].

The difference between graph-based SLAM and particle filter-based iterative methods
is that graph-based SLAM estimates the pose and trajectory of mobile robots entirely based
on observational information. All collected data are recorded, and finally, computational
mapping is performed [74]. The pose graph represents the motion trajectory of the mobile
robot. The pose of the robot is a node of the pose graph, and an edge is formed according
to the relationship between the poses. This process of extracting feature points from LiDAR
point cloud data is called the front end. The corresponding back end is to further optimize
and adjust the edges connected by the node poses, and the optimization is based on the
constraint relationship between the poses.

The methods of 2D LiDAR SLAM based on graph optimization include Karto SLAM [75],
published by Konolige et al. in 2010, and the Cartographer algorithm, open-sourced by
Google in 2016 [76].

Cartographer is currently the best 2D laser SLAM open-source algorithm for mapping
performance. Cartographer SLAM uses odometer and IMU data for trajectory estimation.
Using the estimated value of the robot’s pose as the initial value, the LiDAR data are
matched and the value of the pose estimator is updated. After a frame of radar data is
subjected to motion filtering, it is superimposed to form a submap. Finally, all subgraphs
are formed into a complete environment map through loop closure detection and back-end
optimization [76]. Deng et al. divided the environment into multiple subgraphs, reducing
the computational cost of the Cartographer [77]. Sun et al. improved Cartographer’s
boundary detection algorithm to reduce cost and error rate [57]. Gao et al. proposed a new
graph-optimized SLAM method for orientation endpoint features and polygonal graphs,
which experimentally proved to perform better than Gmapping and Karto [78].

LiDAR SLAM cannot provide color information, while vision can provide an infor-
mative visual map. Some researchers have integrated laser SLAM and visual SLAM to
solve geometrically similar environmental problems, ground material problems, and global
localization problems [26,79–82]. Visual-semantic SLAM maps are built based on laser
SLAM maps [83,84]. There is also fusion with other localization methods: odometer [85],
Wi-Fi [86,87], IMU [29,30], encoder, RTK, IMU, and UWB [36].

To solve the problem of a large amount of computation in SLAM, Sarker et al. intro-
duced cloud servers into LiDAR SLAM [22]. Li et al. used cloud computing to optimize a
Monte Carlo localization algorithm [88]. Recently, some researchers have also performed
a lateral comparison between localization methods and algorithms. Rezende et al. com-
pared attitude estimation algorithms based on wheel, vision, and LiDAR odometry, as
well as ultra-wideband radio signals, all fused with the IMU [89]. The results strongly
suggested that LiDAR has the best accuracy. Shen et al. compared Gmapping, Hector
SLAM, and Cartographer SLAM, and the results indicate that Cartographer performs best
in complex working environments, Hector SLAM is suitable for working in corridor-type
environments, and Gmapping SLAM is most suitable for simple environments [90].

2.1.7. Computer Vision Detection Technologies

Computer Vision uses cameras to obtain environmental image information. It is
designed to recognize and understand content in images/videos to help mobile robots
localize. Computer Vision localization methods are divided into beacon-based absolute
localization and visual odometry-based SLAM methods. Among them, visual SLAM is a
hot spot for the indoor positioning of mobile robots.

Absolute positioning based on beacons is the most direct positioning method. The
most common method is the QR code [91–97]. QR codes can provide location information
directly in the video image. By arranging the distribution of QR codes reasonably, the



Robotics 2023, 12, 47 10 of 28

mobile robot can be positioned in the whole working environment. Avgeris et al. designed
a cylinder-shaped beacon [98]. Typically, beacons are placed in the environment, and Song
et al. innovatively put QR codes on robots and vision cameras mounted on the ceiling [93].
The location of the mobile robot can be determined by tracking the QR code. Lv et al.
utilized grids formed by tile joints to assist mobile robot localization [99].

Visual SLAM is similar to LiDAR SLAM. Multiple cameras or stereo cameras are
used to collect feature points with depth information in the surrounding environment, and
feature point matching is performed to obtain the pose of the mobile robot. Visual SLAM
systems use geometric features such as points, lines, and planes as landmarks to build
maps. The visual SLAM flowchart is shown in Figure 2 [100].
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• Sensor data input: Environmental data collected by the camera. Occasionally, the IMU
is used as a secondary sensor.

• Front-end visual odometer: Preliminary camera poses estimation based on image
information of adjacent video frames.

• Back-end nonlinear optimization: optimize the camera pose obtained by the front-end
to reduce the global error.

• Loop closure detection: According to the image to determine whether to reach the
previous position. Form a closed loop.

• Mapping: Build a map of the environment based on continuous pose estimates.

Visual SLAM can be divided into five types according to the type of camera: Mono SLAM
based on a monocular camera [3,79,87,91,97,99,101–105], Stereo SLAM based on a binocular
camera [27,106,107], and RGB-D SLAM based on a depth camera [7,24,25,28,32,80,82,108–120],
fisheye camera [121], and omnidirectional vision sensor [122]. Due to the lack of depth
information, monocular cameras are usually used with beacons [91] or IMUs [101]. The
algorithm used to fuse the monocular camera and IMUs in visual SLAM is called a visual-
inertial odometer (VIO). The current mainstream is RGB-D cameras that can directly obtain
depth information. The most common RGB-D camera model in the papers is Kinect,
developed by Microsoft.

Currently, many researchers are working on assigning specific meanings to objects in
visual SLAM, called semantic SLAM. Semantic SLAM builds maps with semantic entities,
which not only contain the spatial structure information of traditional visual SLAM, but
also the semantic information of objects in the workspace [123]. It is beneficial to improve
the speed of closed-loop detection, establish human–computer interaction, and perform
complex tasks.

In semantic SLAM for dynamic scenes, Han and Xi utilized PSPNet to divide video
frames into static, latent dynamic, and prior dynamic regions [109]. Zhao et al. proposed to
combine semantic segmentation and multi-view geometric constraints to exclude dynamic
feature points and only use static feature points for state estimation [101]. Yang et al. intro-
duced a new dynamic feature detection method called semantic and geometric constraints
to filter dynamic features [114].

Object detection and recognition based on deep learning is now mainstream in the field
of Computer Vision. Lee et al. used YOLOv3 to remove dynamic objects from dynamic
environments [124]. Maolanon et al. demonstrated that the YOLOv3 network can be
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enhanced by using a CNN [21]. Xu and Ma simplified the number of convolutional layers
of YOLOv3’s darknet53 to speed up recognition [125]. Zhao et al. used a Mask-RCNN
network to detect moving objects [123].

For the division of semantic objects, Rusli et al. used RoomSLAM, which is a method
of constructing a room through wall recognition by using the room as a special semantic
identifier for loop closure detection [126]. Liang et al. identified house numbers and
obtained room division information [84].

With the use of sensor data fusion, more precise positioning can be obtained. Since the
previous localization methods have been introduced, they are listed here as LiDAR [79–81,83,84,95],
IMU [7,24,27,28,97], wheel odometer [99,124], IMU and UWB [32], LiDAR and Odometer [82],
LiDAR Odometer and IMU [26], and IMU and wheel odometer [25].

The image information obtained by visual SLAM has the largest amount of data among
all positioning technologies. The inability of onboard computers to meet the computational
demands of visual SLAM is one of the reasons that currently limits the development of
visual SLAM, in particular, deep learning-based visual SLAM [105,107]. Corotan et al.
developed a mobile robot system based on Google’s ARcore platform [127]. Zheng et al.
built a cloud-based visual SLAM framework [102]. Keyframes are first extracted and
submitted to the cloud server, saving bandwidth.

2.2. Radio Frequency Technologies

Radio frequency-based positioning is a common type of positioning system, covering
many fields. It is very convenient to expand from the original communication function to
the positioning function, which offers the advantages of low energy consumption and low
cost, including Wi-Fi, Bluetooth, ZigBee, RFID, and UWB.

2.2.1. Radio Frequency Technology Positioning Algorithms

This section introduces several of the classic radio frequency technology positioning
algorithms: RSSI, TOA, TDOA, and AOA, as shown in Figure 3.
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RF positioning algorithms can be divided into two categories according to whether
they are based on received signal strength indication (RSSI).
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There are two main kinds of positioning techniques based on RSSI: triangulation and
fingerprint positioning [128]. The position of the AP (access point) is known by RSSI-
based triangulation [129]. The distance between the robot and each AP can be calculated
according to the signal attenuation model, and then circles are drawn around each AP
according to the obtained distance information. The intersection point is the mobile robot’s
position. This method needs to measure the location of the AP in advance, so it is not
suitable for situations where the environment is changing.

Fingerprint positioning is more accurate than triangulation. It is divided into two
stages, an offline training stage and an online localization stage [130]. In the training phase,
the room is divided into small area blocks to establish a series of sampling points, and
the radio frequency technology receiving equipment is used to sample these one by one,
record the RSSI value and AP address obtained at this point, and establish a database.
During online positioning, the mobile robot carries the radio frequency technology signal
receiving device, obtains the current RSSI and AP address, and transmits this information
to the server to match with the established database to obtain the estimated position.
Collecting fingerprints in advance requires significant effort, and the fingerprints need to
be re-collected after the signal-receiving device moves.

CSI (Channel State Information) is an upgraded version based on RSSI. The problem
of multipath fading is the main problem of RSSI which is difficult to solve but will greatly
reduce the positioning accuracy [131]. CSI can receive and transmit channel amplitude and
phase responses at different frequencies. In frequency, CSI has fine-grained characteristics
compared to the coarse-grained RSSI and has the characteristics of resisting multipath
fading [132]. Compared to RSSI, CSI contains more than 10 times the information. Thus, CSI
has better stability and positioning accuracy [4]. However, the amount of data transmitted
by CSI is huge, which requires more equipment and transmission time.

The positioning methods not based on RSSI mainly include Time of Arrival (TOA),
Angle of Arrival (AOA), and Time Difference of Arrival (TDOA) algorithms. These methods
are easy to calculate but are generally affected by problems, such as multipath and non-
line-of-sight (NLOS) problems of the signal.

The most basic time-based RF positioning method is the Time of Arrival (TOA) [31].
The distance between the two is assessed by recording the time it takes for a signal to
travel from the target to the access point (AP). Conventional TOA positioning requires at
least three APs with known positions to participate in the measurement. The positioning
model can be established according to the triangulation method or geometric formula to
solve the target position. The TOA algorithm completely relies on time to calculate the
target position and requires exact time synchronization between the target and the AP. The
formula for TOA can be described as:

d = v× (tr − ts) (4)

where d is the distance between the transmitter and the device. v is the speed of signals.
tr is the time the signal is received by the device. ts is the time the signal is transmitted by
the transmitter.

TDOA is a time difference positioning algorithm. It is an improved version based on
TOA [133]. The positioning is performed by recording the time difference between the target
and different APs to estimate the distance difference between different APs. Like TOA, at
least three APs with known locations are required to participate in the measurement. The
method selects a base station as a reference base station and combines other base stations
and reference base stations to establish multiple hyperbolas with the base station as the
focus. The intersection of multiple hyperbolas is the position of the target. The focus of the
hyperbolic equation is the base station, and the long axis is the distance between the signal
arrival time differences between the base stations. Since there is no need to detect signal
transmission time, TDOA does not require time synchronization between the target and
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the AP; it only requires time synchronization between APs. This feature reduces the need
for time synchronization. The formula for TDOA can be described as:

d = v× (∆t/∆ f ) (5)

where d is the distance between the transmitter and the device. v is the speed of signals.
∆t is the time difference between signals received at two receivers. ∆ f is the frequency
difference between the two signals.

AOA estimates the target position by obtaining the relative angle of the target to the
AP [134]. AOA requires at least two APs and sets up array antennas or directional antennas
to obtain the angle information of the target and AP. AOA has a simpler structure than
the above two algorithms but is seriously affected by non-line-of-sight. The positioning
accuracy depends on the accuracy of the antenna array and requires regular inspection and
maintenance. The formula for AOA can be described as:

θ = arctan((y− ys)/(x− xs)) (6)

where θ is the angle of arrival of the signal. (x, y) is the position of the device being located.
(xs, ys) is the position of the signal source. AOA is a direction-based localization technique
that requires multiple antennas or an array of antennas to accurately estimate the angle
of arrival.

2.2.2. Wi-Fi

Wi-Fi is the 802.11 wireless local area network standard defined by the Institute of
Electrical and Electronics Engineers (IEEE). The research on Wi-Fi-based indoor positioning
started in 2000 [10]. Wi-Fi devices are widely used in various modern indoor occasions,
and Wi-Fi is mainly used in mobile robot communication in an indoor environment. It
is currently the preferred method in the field of indoor positioning [135]. Wi-Fi-based
indoor positioning is relatively simple to deploy in an indoor renovation, and there is no
requirement for additional hardware devices. The working frequency of Wi-Fi is in the
2.4 GHz and 5 GHz frequency bands, of which the 5 GHz frequency band has the advan-
tages of less interference, lower noise, and faster speed. The main purpose of Wi-Fi now is
communication. If Wi-Fi is to be used for robot positioning, further processing of Wi-Fi
signals is required to improve positioning accuracy.

In the screened papers, all the papers based on Wi-Fi technology applied the RSSI
technique. While techniques such as TOA and AOA are not uncommon, the RSSI technique
has a higher positioning accuracy ceiling. RSSI is less affected by non-line-of-sight and
is more suitable for the actual working environment of mobile robots. The problem with
RSSI is multipath fading and frequent signal fluctuation. With the introduction of filters,
neural networks, and deep learning, there are more and more schemes combined with RSSI.
Wang et al. used a K-ELM (Kernel extreme learning machine) to improve the accuracy of a
fingerprint recognition algorithm [12]. Cui et al. proposed a robust principal component
analysis–extreme learning machine (RPCA-ELM) algorithm based on robust principal com-
ponent analysis to improve the localization accuracy of mobile robot RSSI fingerprints [136].
Since the fluctuation of Wi-Fi signal strength has a great influence on fingerprint positioning
accuracy, Thewan et al. proposed the Weight-Average of the Top-n Populated (WATP)
filtering method. Compared with Kalman filtering, it reduces the calculation time while
satisfying the positioning accuracy. The Kalman filtering Mean-Square-Error (MSE) is
13.65 dBm, and the proposed method MSE is 0.12 dBm [11]. Sun et al. applied cellular
automata to the indoor RSS positioning of AGVs to achieve low-cost filtering of noise
caused by environmental factors and mechanical errors [137]. Zhang et al. optimized
Wi-Fi-based RSS localization with Deep Fuzzy Forest [138]. The first step in using RSSI is to
collect Wi-Fi fingerprints at various indoor locations and establish a database. This step is
labor-intensive, and as the location of the device changes, the database needs to be rebuilt.
Lee et al. [87] and Zou et al. [86] combined the LiDAR method with the Wi-Fi method and
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used SLAM technology to collect Wi-Fi fingerprints. CSI and RSSI are compared, and the
results indicate that the CSI positioning accuracy error is about 2% smaller than the RSSI,
which improves the problem of multipath effects in RSSI [132].

2.2.3. Bluetooth

Bluetooth uses the 802.15.1 standard developed by the IEEE. The worldwide universal
Bluetooth 4.0 protocol was announced in 2010 [139]. Bluetooth communicates using radio
waves with frequencies between 2.402 GHz and 2.480 GHz. Among them, the Bluetooth
low-energy (BLE) version has the advantages of high speed, low cost, and low power
consumption, so it is widely used on the Internet of Things (IoT). Bluetooth positioning
technology is mainly based on RSSI positioning. It uses the broadcast function of the
Bluetooth beacon to measure the signal strength. A Bluetooth beacon installed in the
working environment will continuously send broadcast messages. After the terminal
mounted on the mobile robot receives the transmitted signal, it evaluates the pose of the
mobile robot according to the positioning algorithm. Bluetooth is widely used in indoor
positioning IoT because of its low cost and low operating expenses. Since it is susceptible to
noise interference and has insufficient stability, and the positioning accuracy of unprocessed
Bluetooth signals is at the meter level, it is rarely used in the field of indoor positioning of
mobile robots.

The iBeacon developed by Apple in 2012 and the Eddystone released by Google in
2015 greatly promoted the development of BLE [140]. Although the positioning accuracy
of the existing Bluetooth 4.0 technology cannot meet the high-precision requirements of
mobile robots, with the emergence of Bluetooth 5.0, this demand can be met. Compared
with Bluetooth 4.0, Bluetooth 5.0 has a longer effective distance, a faster data transmission
rate, and lower energy consumption [141]. Most importantly, the localization accuracy
is improved to the sub-meter level [142]. Bluetooth 5.0 has not been put into formal
application, and it is the indoor positioning technology of mobile robots available in
the future.

The trend of Bluetooth-based indoor positioning is to combine optimization algorithms
with positioning technology. Mankotia et al. implemented a Bluetooth localization of a
mobile robot based on iterative trilateration and cuckoo search (CS) algorithm based on a
Monte Carlo simulation [143]. Comparing the cuckoo algorithm and particle filter in the
simulation, the positioning accuracy of the CS algorithm (mean error 0.265 m) is higher
than that of the particle filter (mean error 0.335 m), and the overall error is reduced by 21%.

2.2.4. ZigBee

ZigBee uses the IEEE 802.15.4 standard specification. Its positioning principle is similar
to that of Wi-Fi and Bluetooth, and it is also mainly based on RSSI to estimate the distance
between devices. ZigBee is characterized by low cost, wide signal range, high reliability,
low data rate, and good topology capabilities. The disadvantage is that the stability is
poor, it is susceptible to environmental interference, and the positioning accuracy is at the
meter level.

Wang et al. designed a mobile robot positioning system based on the ZigBee position-
ing technology and combined the centroid method and the least square method to improve
the positioning accuracy of the RSSI algorithm in complex indoor environments [144]. The
mobile robot is both the coordination node and the mobile node of the network, which
increases the mobility and flexibility of the ZigBee network. Since RSSI-based positioning
is easily affected by environmental changes, Luo et al. proposed a ZigBee-based adaptive
wireless indoor localization system (ILS) in a dynamic environment [128]. The system is
divided into two steps. First, the mobile robot uses LiDAR SLAM to collect RSSI values in
the working environment and update the fingerprint database in real-time. Secondly, the
adaptive signal model fingerprinting (ASMF) algorithm is proposed. The signal attenuation
model of the ASMF can reduce noise, evaluate the confidence of RSSI measurement values,
and reduce the interference of abnormal RSSI values.
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2.2.5. Radio Frequency Identification

RFID positioning technology uses radio frequency signals to transmit the location of
the target. The hardware consists of three parts: a reader, an electronic tag, and an antenna.
The reader is the core part of the RFID system, mainly composed of data processing modules.
It communicates with the electronic tag through the antenna and reads the information
such as ID, RSSI, and phase of the electronic tag [145]. RFID tags are divided into active
and passive tags according to whether they need power [146]. Active tags can always
transmit wireless signals to the environment, while passive tags are passively responding
to the wireless signals emitted by readers. Active tags have wider coverage, but in indoor
positioning, passive tags are used more due to their low-cost, easy deployment, and
maintenance. RFID has different operating frequencies, mainly including low frequency
(LF) (9–135 KHz), high frequency (HF) (13.553–15.567 MHz), and ultra-high frequency
(UHF) (860–930 MHz) [147]. At present, UHF-RFID is mostly used in the indoor positioning
of mobile robots. Compared with LF and HF, UHF-RFID has the advantages of a simple
structure, low cost, and high data transmission rate. Most of the RFID-based papers
screened selected UHF-RFID.

Similar to many RF schemes, applying filters to RFID signals is also a common method.
DiGiampaolo et al. [148] and Wang et al. [146] both chose Rao-Blackwellized particle filters
as the algorithm for RFID SLAM. The reflection and divergence problem of RFID tags is
serious. Magnago proposed an Unscented Kalman Filter (UKF) to solve the phase ambiguity
of the RF signal backscattered by UHF-RFID tags [149]. Bernardini et al. equipped a mobile
robot with dual reader antennas to reduce signal loss and tag backscatter, and used the
PSO algorithm to optimize the specific absorption rate (SAR) process [150]. Gareis et al.
also used SAR RFID for localization, adding eight channels for monitoring [151]. The
positioning accuracy reached the centimeter level. Tzitzis et al. introduced a multi-antenna
localization method based on the K-means algorithm [152].

2.2.6. Ultra-Wide Band

As a carrierless communication technology, a UWB uses non-sinusoidal narrowband
pulses with very short periods to transmit data, which can achieve high speed, large-
bandwidth, and high time-resolution communication in proximity [153]. Extremely short
pulse modulation makes it possible to greatly reduce the effects of multipath problems.
Low transmission power avoids interference with Wi-Fi, BLE, or similar devices. A UWB
has stronger wall penetration than Wi-Fi and BLE. Recently, the UWB has become the
focus in the field of indoor positioning due to its stable performance and centimeter-level
positioning accuracy, making it one of the ideal choices for the positioning of mobile robots.
High-precision positioning at the centimeter level requires numerous anchor points, higher
carrier wave frequency, and sampling frequency, resulting in relatively high hardware and
computational costs.

A UWB can achieve localization using RSS, TOA, AOA, and TDOA techniques [154–156].
Traditional UWB localization systems are mostly based on mathematical methods and
filters [157,158]. Lim et al. proposed a three-layered bidirectional Long Short-term Mem-
ory (Bi-LSTM) neural network to optimize UWB localization [159]. Sutera et al. used
reinforcement learning to optimize noise in UWB localization and correct localization
errors [160]. Recently, data fusion is the trend of UWB positioning. A Constraint Robust
Iterate Extended Kalman filter (CRIEKF) algorithm has been proposed by Li and Wang to
fuse the UWB and IMU [33]. A Sage-Husa Fuzzy Adaptive Filter (SHFAF) is used to fuse
the UWB and IMU [31]. Cano et al. proposed a Kalman filter-based anchor synchronization
system to tune clock drift [154]. The UWB has also been used as a hybrid localization
method and SLAM method for data fusion using filter algorithms [32,36]. Liu et al. studied
how to arrange anchor points scientifically, and proposed a UWB-based multi-base station
fusion positioning method [161]. In the actual robot positioning process, the arrangement
and rationality of the base station directly determine the positioning accuracy and benign
space area.
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2.3. Comparison of 12 Indoor Positioning Technologies for Mobile Robots

A comparison of 12 positioning technologies based on the accuracy, cost, scalability,
advantages, and disadvantages of positioning technology is shown in Table 2.

Table 2. Comparison of 12 indoor positioning technologies for mobile robots.

Technology Accuracy Level Hardware Costs Computational Costs Advantages Disadvantages

IMU 0.2 m [162] Low Low
Wide application

Easy to use
Anti-interference

Accumulated error

VLC <0.05 m [44] Low Medium Easy to deploy
No electromagnetic interference Only line-of-sight communication

Ultrasonic 0.012 m [49] Low Low Mature technology
High positioning accuracy

Short-distance measurement
Signal attenuation

IR <0.1 m [48] Medium Low Mature technology

Only line-of-sight communication
Need environmental

transformation
Affected by sunlight

Geomagnetic <0.21 m [55] Low Low
No cumulative error

No need for environmental
transformation

Low accuracy
Build a geomagnetic database

LiDAR <0.025 m [90] High High

Strong adaptability
Strong stability

No need for environmental
transformation

High requirements for algorithms
Affected by glass objects

Suffer in weak feature
environments

Computer
Vision 0.09 m [108] Medium High

Collection of rich information
Strong adaptability

No need for environmental
transformation

High requirements for algorithms
and computing performance

Affected by light
Suffer in weak feature

environments

Wi-Fi 2.31 m [136] Medium Medium
Widely used

Mature technology
Easy to deploy

Easy to be interfered with
Multipath problem

Bluetooth 0.27 m [143] Low Low Wide application
Low-power consumption

Path loss
Easy to be interfered with

ZigBee 0.71 m [128] Low Low Low-power consumption
Good topology

Poor stability
Easy to be interfered with

RFID <0.01 m [150] Low Low High positioning accuracy
Easy to deploy

Need environmental
transformation

Multipath problem

UWB <0.1 m [161] High Medium
High positioning accuracy

Anti-interference
High multipath resolution

High cost

The accuracy level column shows the data with the highest accuracy of the corresponding method in the literature.
The hardware and computational cost may vary depending on the specific implementation, the environment, and
other factors. This table is only intended to provide a rough comparison of the relative costs of different indoor
localization techniques. The cost considered here refers to the expenses required to implement high-precision
positioning solutions for this type of technology.

3. Current State of Mobile Robot Indoor Positioning Technologies

This section analyzes and summarizes the selected 147 papers and summarizes the
current laws and development trends of indoor positioning of mobile robots.

The titles of the 147 papers surveyed are extracted by word frequency, and the gen-
erated word cloud is shown in Figure 4. Words with a word frequency greater than
two were selected, and mobile robot indoor localization/positioning and meaningless
conjunctions were removed [3,7,11,12,16–22,24–48,50–53,55–57,59–65,67–73,77–99,101–128,
132,136–138,144,145,148–152,154–161,163–183].

3.1. SLAM

SLAM is the most used technology in mobile robot positioning (word frequency 39).
Among the 147 papers, 68 papers use SLAM-based positioning technology. Whether it
is LiDAR SLAM or visual SLAM, it offers the advantage of not needing to change the
environment, has no special requirements for the environment, is universal, and has the
ability to avoid obstacles. Today, there are very cheap options for cameras and LiDAR. In
theory, if the algorithms and computing resources are good enough, it can become a “GPS”
technology for indoor navigation.
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Computer Vision is the positioning technology most concerned by researchers, and
visual + vision has appeared 19 + 7 = 26 times. Vision has the richest environmental
information of all methods, and is also the most computationally challenging. It also has
the highest requirements for algorithm innovation, so many researchers focus on improving
the performance of vision algorithms. Visual SLAM is the main method based on vision,
followed by beacon-based. Semantic (word frequency eight; twelve papers use semantic
SLAM) is a new trend in the direction of visual SLAM. It gives the space and objects in
the environment the actual meaning. It improves the recognition of the environment, the
process of visual SLAM, and the efficiency of loop closure detection. It is also beneficial for
mobile robots to recognize the environment at a higher level and perform more complex
tasks. Semantic maps are mostly based on the ORB-SLAM2 algorithm (7/12). The most
used semantic SLAM target detection algorithm is the YOLO-V3 algorithm (7/12).

3.2. Data Fusion

Data fusion is also a key direction for researchers to innovate (word frequency 15,
papers 29). Various sensors have different advantages, disadvantages, and applicable
scenarios. The realization of sensor information fusion can complement each other’s
strengths and weaknesses, meet the needs of various working environments, and improve
the positioning accuracy of mobile robots. Among the one hundred and forty-seven selected
papers, thirty-one papers used multiple sensors for data fusion, and one paper used four
localization methods for data fusion [118]. The data fusion of the IMU positioning method
and other positioning methods has appeared 16 times, including vision, LIDAR, UWB,
visible light, and geomagnetic field. The advantage of the IMU is that the whole process
of positioning is closed loop and is not disturbed by other factors. The disadvantage is
also obvious, the positioning accuracy is not high, and there will be accumulated errors.
Therefore, it is the best choice to fuse the IMU and the method that can evaluate the pose in
real-time, and the two can complement each other’s advantages. The whole closed-loop
feature of the IMU is used to prevent the sudden positioning error of other methods, and
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the real-time performance of other methods is used to correct the accumulated error of the
IMU. Almost all mobile robots will be equipped with the IMU.

The fusion algorithms used in the data fusion papers mainly include the EKF, particle
filter, neural network, and improved algorithm based on the Kalman filter. Among them,
the EKF accounted for 12/29 and the fusion method based on the improved version of the
Kalman filter accounted for 7/29. The EKF is a nonlinear version of the Kalman filter. It is
a nonlinear state estimation approximation method based on Taylor series expansion to
overcome nonlinear system and measurement models. It has been used for a long time in
nonlinear sequential data processing problems. In the past ten years, the EKF has also been
widely used in the field of mobile robot positioning, which is the most classic algorithm to
solve the problem of multi-sensor data fusion. Compared with the extended Kalman filter,
the neural network has a stronger ability to deal with nonlinear problems, which also means
that it can process more data and obtain higher accuracy. In other fields related to data
processing, papers based on neural networks are growing rapidly, but in the localization
problem of mobile robots that requires robustness, the instability of neural networks is a
problem that needs to be solved. In the papers using other improved algorithms of Kalman
filtering, the researchers take the improvement of the Kalman algorithm as the biggest
innovation of the paper, which also indicates that the core of multi-sensor data fusion lies
in the algorithm. Multiple sensors will cause a large increase in the amount of information,
and the specifications of this information are inconsistent. How to filter useless information
and noise quickly, process data, and comprehensively analyze it are the keys to the fusion
algorithm, and they are also the focus of future research work.

3.3. Innovative Methods

Of the 147 papers, 31 papers used the ROS system. The main applications of ROS
are concentrated in papers based on LiDAR and Computer Vision localization methods.
In 2007, the ROS system was developed by the Stanford University Robotics Team. It
is currently a very widely used open-source robot operation sub-system in the field of
robotics. Similar to MATLAB, ROS encapsulates complex program implementations into
different libraries, saving a lot of low-level programming time for program compilers. Each
library can be compiled separately, which is convenient for program compilers to modify
the functions of the underlying code, and it is also convenient for beginners to learn and
use other people’s open-source programs. It is very beneficial for research innovation in
the algorithm. The completely open-source features and the improvement of countless
scientific research and programming workers make the ROS system widely used in the
field of robotics.

Four papers used cloud computing. At present, to ensure the flexibility and endurance
of mobile robots, microcontrollers are the main choice for airborne processors. However, as
sensor technology improves, so does the computing demand for mobile robots. Especially
in the direction of sensor fusion and SLAM, insufficient computing power restricts the
effectiveness of the algorithm. The emergence of cloud computing can become a break-
through for this bottleneck. Transfer the huge computing tasks of mobile robots to cloud
computers. Use the fast and efficient computing power of cloud computing to ensure the
real-time performance of mobile robot positioning and mapping. In this way, the mobile
robot acts as a data collector and becomes part of the cloud framework. In this way, a large
amount of useful data collected by the sensor can be fully utilized to improve positioning
accuracy. However, the effect of cloud computing is limited by the transmission efficiency
of the network.

In the selected papers, there are three ways used to demonstrate the scientificity and
validity of the proposed method: simulation, testing in a real environment, and running
on public datasets. The most effective method of scientific research is simulation + actual
measurement. Simulation can easily modify sensor types and parameters, test positioning
algorithm codes, simulate various working environments, and demonstrate the theoretical
feasibility of the proposed method. Testing in a real environment is the most convincing
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way to demonstrate, especially the design of a positioning system for a specific environment.
The ultimate purpose of proposing a positioning method for a mobile robot is to run it
in an actual working environment. Running public datasets is an important means to
demonstrate the feasibility of SLAM methods. As SLAM becomes the preferred technology
for the indoor positioning of mobile robots, how to uniformly evaluate the advantages and
disadvantages of various algorithms has become the focus. Public datasets are conducive
to the objective evaluation of algorithms and horizontal comparison of excellent algorithms
in the field of SLAM. The most commonly used public dataset is the Technical University
of Munich (TUM) dataset.

3.4. Types of Papers

The graph above summarizes the number of methods used for the selected papers.
There are a total of 12 different methods. It can be clearly found that Computer Vi-
sion (55) and LiDAR (44) dominate the indoor localization of mobile robots, followed
by the IMU (16), UWB (13), VLC (12), Wi-Fi (8), RFID (6), and Ultrasonic (5), which have
also been studied more. Geomagnetic (2), ZigBee (2), IR (1), and Bluetooth (1) received
little attention.

As can be seen in Figure 5, in the field of radio, the UWB is the most used method,
even surpassing Wi-Fi. In fact, in the field of indoor positioning, Wi-Fi is the most popular
method. The reason is that the indoor positioning of mobile robots requires higher accuracy
than ordinary indoor positioning, and the UWB is a method in which the positioning
accuracy of the radio method can stably reach the cm level. Thus, the UWB is more suitable
for mobile robots. The limitation of the UWB is the high cost of meeting the high-precision
requirements. Wi-Fi positioning is also a very mature method. Almost all modern facilities
have ready-to-use equipment, the cost of transformation is low, and the existing research
on Wi-Fi positioning is also very extensive. Applying Wi-Fi to a robot is technically simple,
but it lacks precision. It usually needs to be combined with other optimization methods,
such as neural networks, deep learning, filters, etc. RFID is connected behind Wi-Fi, and
all RFID-based indoor positioning papers of mobile robots use UHF-RFID. UHF-RFID is
an emerging technology, and the positioning accuracy of a few papers has reached the
centimeter level, and most of them are at the decimeter level.
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Non-radio localization has more applications in robotic indoor localization, especially
Computer Vision and LiDAR. With the continuous improvement of algorithms and the
improvement of sensor equipment by researchers, they have the advantages of centimeter-
level high precision, there is no need for environmental modification, and they have the
advantage of adapting to complex environments. The only limitation is the high need for
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computational cost. If the computational problem can be solved, the accuracy and speed
of positioning will be better. As necessary hardware for robots, the IMU is usually used
as an auxiliary component for data fusion. VLC is an emerging positioning technology.
It innovatively uses the common LED in daily life as the main component, which can
meet the needs of lighting and positioning at the same time. An ultrasonic can achieve
centimeter-level accuracy in short-range positioning and is mainly used for robot obstacle
avoidance. Geomagnetic positioning is not used much in the field of robotics due to its low
positioning accuracy. It uses the natural magnetic field of the earth and is also a positioning
technology worth exploring.

3.5. Paper Citations

From the process of retrieving mobile robot indoor positioning papers and Table 3, it
can be found that there are many related papers in the past three years. There are many
positioning schemes proposed, but none of them have the same dominant positioning tech-
nology as GPS. Due to the complexity and diversity of work environments and different
needs, the new methods proposed in the researchers’ published papers are suitable for spe-
cific environments. Moreover, most of the proposed methods are based on the optimization
of existing technologies, and there is no subversive original method. The highest citation
count is forty-seven, and the citation count of most papers is below five. Papers in this
field may have the following characteristics: (1) the practicality of the proposed scheme
is not significant enough, (2) there is little content overlap between the papers, and the
application scope of the proposed scheme is narrow, and (3) the paper is based on past
knowledge points, (4) which proves that there are few reviews or surveys in the field of the
indoor positioning of mobile robots lately.

Table 3. Paper citations.

Citations Numbers

≥20 9
≥10 and <20 15
≥5 and <9 25
≥2 and <5 51

=1 47

These 147 papers were published in 72 journals. The most published journals are
IEEE Access—fifteen (papers), Sensors—thirteen, Robotics and Automation—six, Intelligent
Robots and Systems—five, IEEE Internet of Things Journal—four, IEEE Transactions on Industrial
Electronics—three, Proceedings of the ACM International Conference Proceeding Series—three,
International Journal of Advanced Robotic Systems—three, Optical Engineering—three, Advanced
Intelligent Mechatronics—three, and Transactions on Automation Science and Engineering—
three. The top conferences in the field of robotics, such as ICRA (0), IROS (1), RSS (0),
ROVISP (0), etc., have hardly appeared, indicating that the current focus of robotics research
has shifted from the direction of positioning.

The organization information of the first author was also collected, and it can be seen
that researchers from different countries pay attention to the field of indoor positioning
of mobile robots. The top countries were China—forty-five (papers), the United States—
twenty, Germany—eleven, Spain—eight, South Korea—seven, the United Kingdom—six,
France—six, Italy—five, Japan—five, and Canada—four.

4. Conclusions

This paper conducts a systematic review of the literature in the field of indoor po-
sitioning of mobile robots in the past three years. First, the 12 mainstream positioning
methods are classified and introduced, including the positioning technology applied in
the positioning methods. The advantages and disadvantages of each positioning method
in terms of positioning accuracy, cost, need for facility modification and robustness are
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analyzed. Each localization method is supported by the screened literature. The paper
also deeply introduces SLAM based on LiDAR and Computer Vision, which is the focus
of indoor positioning of mobile robots. Due to its high precision, high stability, no need
to change the environment, and universality to the environment, it has the potential to
become an indoor positioning ‘GPS’ method. Then, the 147 papers selected from the papers
in the past three years are summarized and analyzed, and the latest status and future
development trends of indoor positioning of mobile robots are obtained.

To verify the feasibility of the proposed positioning method, both simulation and
experiment in the real environment are good choices. Simulation can easily simulate
different working scenarios, and experiments in the real environment can fully demonstrate
the application ability of the positioning method. The combination of both approaches is
the most ideal verification method.

In addition, sensor fusion has great advantages. Each positioning method has ad-
vantages and disadvantages, which can be combined to make up for its shortcomings,
adapt to more and more complex environments, and achieve higher accuracy. The EKF
algorithm is the most popular algorithm for sensor data fusion. Emerging technologies
such as deep learning, neural networks, and cloud computing also appeared in the selected
papers, and they all combined with localization methods to receive solutions for realizing
high-precision localization of mobile robots. They are of great help to the improvement of
algorithm performance and are the future trend of mobile robot development.
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