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Abstract: A generic reasoning approach for autonomous unmanned vehicle (UxV) mission execution
is presented. The system distinguishes (a) mission planning and (b) mission execution, treating these
as separate but closely interdependent stages. The context of the work is that of tactical military
operations, and the focus of the current (simulated) application is on ground-based platforms. The
reference behavior for the UxVs is defined by military doctrine. Two operational requirements are
met: (1) Mission plan and execution must be constructed such that they can be understood and
evaluated (prior to giving the go ahead for the platforms to commence the mission) by a decision
maker. (2) Mission plan and execution must account for both observations/information gathered
during execution (for example, the spotting of enemy units) and for foreseeable changes in the
internal and external situation (e.g., a sub-system failure, or changes in terrain or weather).
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1. Introduction

There has in recent years been a significant and rapid increase in the availability
and the use of unmanned systems in general. This is especially true in the context of
military operations. While this is not new (aerial systems have long been used by militaries
around the world; the earliest use of drones dates back to at least the Vietnam war [1,2]), the
attention this has received from research and the industrial sector has increased significantly.
Until recently, this was predominantly in the context of remote controlled or remote piloted
systems, that is, systems that are still controlled by a human operator. The benefits of this
include the safety of the operator, the ability to have a team of operators to take turns, etc.

In the civilian context, ground-based platforms have been remotely operated for, e.g.,
Search and Rescue (SAR) missions [3] and infrastructure inspection [4,5], for crime scene
inspection/material (bomb) removal (by civil defense units such as police) [6] or to inspect,
e.g., nuclear installations in the aftermath of a natural disaster [7].

At The Dutch Organization for Applied Scientific Research (TNO) we have researched
remotely operated systems since 1937 [8] (making TNO among the first in Europe to do
so). Due to advances in hardware and software and driven by the increasingly pervasive
nature of unmanned platforms [9], we are currently witnessing a paradigm shift from using
remote controlled systems to using autonomous systems.

In the military domain, the advent of loitering ammunition [10] (sometimes referred
to as kamikaze drones [11]) has had a massive impact on operations and is considered to
be a (tactical) game changer [12,13] (note that the authors are not fond of this term, as the
application and the application domain are not a game to those participating in it). The
conflict often mentioned in this context is the war between Armenia and Azerbaijan over
the disputed Nagorno-Karabakh region in 2020 [14], where Azerbaijan deployed drones
with devastating effect (for details we refer to this post by the Center for Strategic and
International Studies (2020): https://www.csis.org/analysis/air-and-missile-war-nagorno-
karabakh-lessons-future-strike-and-defense, accessed on 1 February 2023).
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Thus, far, the complexity of the operations of these unmanned and autonomously
operating weapon platforms has been relatively low, and there is little or no cooperation
between multiple platforms. In the conflict in Ukraine that started in February 2022, there
has been widespread use of autonomous (mainly aerial) vehicles, again mainly using
drones to autonomously (fire and forget) search out and then attack pre-specified targets.

Techniques that address methods for cooperative execution by multiple platforms [15,16],
in a generic way and for real world applications, is still limited. As is mentioned in [17], plan-
ning can be considered the “reasoning side of acting”, but in relevant dynamic environments,
the actual integration of acting (execution) with planning is still insufficiently researched.
A generic approach towards autonomous mission execution and planning for cooperative
unmanned (autonomous) systems or vehicles is not yet available.

At the same time, given the political situation(s) around the world and the funding
allocated for military spending, the question is not whether this will soon be in use by
militaries around the world but only when we will first encounter it in uncontrolled settings.

In this article, we describe an approach developed for the autonomous mission execu-
tion and planning of tactical military operations of the Royal Netherlands Army (RNLA) by
unmanned ground vehicles (UGVs). It is aligned with the efforts of our colleagues, as de-
scribed, e.g., in [18]. The application for the work presented in this article is the deployment
of intelligent and autonomously operating cyber-physical systems (i.e., mobile, and when
applicable, armed platforms that observe and act without human control). It has been
undertaken in close collaboration with the Netherlands Ministry of Defense (NLMinDef).

Specifically, we propose a generic automated reasoning methodology and correspond-
ing software which we refer to as Intelligent Coordination of Tactical Unmanned Sys-
tems (ICTUS). It encompasses automated planning and execution modules for military
missions executed by a team of autonomous vehicles. We address the reasoning over,
amongst others, the terrain, enemy courses of action, and the own course of action, that
is, the coordination of the tasks for individual autonomous vehicles, in order to achieve
user-defined mission goals. Taking these reasoning elements into account during both the
planning and the execution of the mission is essential to mission success.

1.1. Scope

The envisioned use is ultimately the tactical execution of a mission for a cooperating
team of UGVs in a dynamic and possibly adverse environment, reacting in a reliable and
effective way to achieve mission objectives (i.e., in real-time and during combat operations).

However, the scope of our work, as presented here, is a research and development
effort and does not yet extend to the actual deployment of the autonomous platforms in
real applications, in no small part owing to legal and ethical reasons [19]. In addition,
this paper does not address the control challenges that arise from operating autonomous
platforms in the real world (as discussed, e.g., in [20]). We assume that such systems are
commercial products, purchased with those issues addressed.

The performance evaluation is based on simulations; there has not yet been a validation
by deployment in the real world with a human in/on the loop. Furthermore, it should be
understood that the work we report on is, arguably, primarily an engineering achievement.
We designed and developed a system—albeit thus far only for simulations—that does
not yet exist in the literature. This makes a comparative numerical evaluation difficult.
Classical systems that solve the same problem rely on recalculating and replanning, whereas
we specifically avoid this. One way to evaluate performance is thus to point out that
our approach does not require replanning. Comparison on the basis of, e.g., execution
time, would require parallel implementations of alternative approaches (as well as some
significant tailoring thereof). This is well outside the scope (and budget) of our work.

1.2. Motivation

The following considerations are the most pressing motivations for developing a
generic automated reasoning methodology in the context of tactical military operations:
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• Planning ahead and coordination actions has been a fundamental part of maneuver
warfare [21] for hundreds [22], and indeed, thousands of years [23].

• The realization of planned actions is undertaken by individual units, and as such has
to be described, and performed, in a specific manner. This empowers other units to
act meaningfully and enables multiple units to perform combined arms operations.

• Given that militaries operate under rules of engagement and are subject to legal and
ethical guidelines, plans must be such that their impact can be understood by decision
takers. Military conflict operates at the fringes of ethics, and no comprehensive set of
if–then rules exists; we can, however, calculate and offer possible choices to a human
commander, who uses his expertise and understanding of the situation to decide.

The above motivation does not specifically address autonomous systems and is equally
relevant and applicable for tactical operations undertaken by human personnel. However,
given the rapid progress for mobile autonomous platforms, the following are our main
motivation for specifically considering unmanned systems:

• Military operations are inherently dangerous, and we believe that human life is more
important/valuable than robotic hardware.

• Tactical military operations are inherently complex, and computer systems are faster
and more reliable than humans at processing large amounts of real-time information.

• Human personnel will always be comprised of individuals with subjective talents and
performances. Cyber-physical systems are significantly more consistent in their perfor-
mance and durability and are furthermore not susceptible to fatigue and exhaustion.

1.3. Contributions of This Article

This article makes the following contributions:

• We present an automated reasoning approach that facilitates the planning and execu-
tion of combined tactical operations. The approach specifically allows the cooperation
between multiple, physically separate platforms.

• The presented approach does not require replanning in case that the actually encoun-
tered situation differs from the initially assumed state of affairs.

• The approach offers choices which are stated in the form of concise descriptions of the
high-level actions (and their consequences) and are comprehensive (complete). Our
system is specifically designed with an informed human in the loop.

1.4. Structure and Overview of This Article

In this article, we present our work towards mission preparation, mission execution,
and coordination among multiple tactical unmanned systems. As our work is situated
in a specific domain, we first provide some background (Section 2) and then propose a
framework facilitating the mission planning for such systems (Section 3). We discuss the
execution of tasks by an autonomous platform (Section 4) and the planning/execution
of missions by multiple such platforms (Section 5) separately, before elaborating on the
implementation (Section 6), which also serves as a demonstration and a proof of concept.
We close with the usual conclusions and planned and scheduled future work (Section 7).

2. Background
2.1. Application Domain

Robotics [24,25] is increasingly becoming an integral part of everyday life. This is
happening as we, as a society, are shifting from automated processes (such as repetitive
factory work performed by robots) to autonomous systems (where machines decide on a
course of action, within a provided scope, and where these decisions are made in reaction
to changes they observe and based on their own perceptions of the world around them).
In other words, we are moving from automating processes to enabling intelligent machines
to act independently. Some consider this the step towards revolutionizing fundamental
aspects of our society, with regard to both people and nature [26].
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Robots have become more affordable and are increasingly found in, by now, almost
all aspects of society. In the last 20 years, there has been another development in this
area, as we moved from single systems to collectives of systems (or swarms [27]) [28].
While this may initially have been a simple aggregation of physically disjoint but otherwise
identical systems, it is increasingly a matter of combining different hardware with different,
often very specific, hardware: heterogeneous groups [29]. The advantages are obvious:
dedicated hardware can be allocated and used where it is needed, as opposed to being
included by default. Be it homogeneous or heterogeneous, enabling multiple systems to
work together can at the same time reduce system cost while increasing system capabilities
and usability. It does come, however, with a series of new challenges that were not an
issue when considering single systems. Among these challenges are the coordination of the
actions of the systems (over time or space) and that operating in dynamic environments
means that the internal representation a system maintains of the environment (including
its peers) will have to be able to handle uncertainty.

The challenges, some of which are specifically discussed below in Section 2.3, as oper-
ational constraints imposed on the approach presented in this paper, are complex and hard
to overcome. For some, no complete solution will exist, so compromises and trade-offs will
need to be made. However, in many applications and/or tasks, the benefits of cooperating
groups of platforms are considerable and outweigh the challenges.

For militaries around the world, the emergence of robotics and automatic systems
can be considered a critical innovation. Such systems have the ability to sense, process
the sensed data, and act upon this information; and they can do so with minimal human
guidance or intervention [30]. The following application scenarios are examples of possible
useful deployment of UxVs. Many more can be envisioned:

• Information gathering: Intelligence, Surveillance and Reconnaissance (ISR): Groups
of heterogeneous platforms with various (sensing) capabilities can be used to continu-
ously and tirelessly provide surveillance for, e.g., protection for forward bases and
troops on the move. This requires an interface with the human commander to task the
autonomous team with overall objectives and provide the rules of engagement, and
an existing and agreed upon plan between the platforms of how to collectively react
to specific events.

• Infrastructure maintenance: The extremely dull (and potentially quite dangerous)
task of continuously checking infrastructure, such as pipelines or mine fields, can be
undertaken by autonomous platforms which are expendable yet precise and reliable.
Additionally, here, a commander has to be able to state high-level directives and
operational boundaries while the platforms operate according (and possibly adapt
dynamically) to a plan agreed to in advance.

• Protective mother—child systems: New military platforms—tanks, ships, etc.—are
increasingly equipped with support UxV systems that can serve as extended sensors
and/or effectors as part of the protection system. The primary tasks and objectives can
be set by the human commander, but the execution of protective actions has to happen
within such a short time that in order to be meaningful, autonomous cooperative
operation is necessary.

2.2. Requirements for Autonomous Operations

As shown by the examples in the previous section, whether it is for civilian or military
applications, three high level requirements emerge when considering the deployment of
multiple, possibly heterogeneous cyber-physical platforms in realistic scenarios:

R1: Plan executable missions for autonomous platforms in dynamic environments.
The system needs the ability to collectively plan and execute a mission which may
require reactive decisions (decisions to be taken based on the perceived situation in a
dynamically changing environment, e.g., atmospheric conditions [20]).
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R2: Return a set of choices (plans) to a human decision maker for the final decision.
We have to offer a high-level description of the various choices to the human operator
such that informed and timely operator control is possible.

R3: Enable the human decision maker to make an informed choice.
This requires the plan to be described in a concise (short), understandable but also
comprehensive (complete) way.

2.3. Operational Constraints

Using autonomous platforms has been shown to be non-trivial, especially in (highly)
dynamic environments (battle [31], disaster responses [4,32], emergency operations [4,9],
etc.) and with heterogeneous vehicles that have multiple capabilities available and a
multitude of missions in which they can participate. Specifically with the military domain
in mind, operating multiple autonomous platforms is very challenging [33]. From the
above listed requirements (Section 2.2), we derive four operational constraints that need to
be addressed for a successful deployment of autonomous platforms for (military) missions:

C1: Mission execution in dynamic environments: Autonomous platforms operating
collaboratively in the real world to achieve some high level goals and objectives must
be able to operate under changing conditions. These platforms need to be able to react
to new information obtained during execution in the environment (changing weather
conditions, an unforeseen change in terrain conditions, etc.). Furthermore, deployed
platforms have to be able to react to the behavior and goals of other actors (be they
friendly, neutral, or hostile), be they human or cyber-physical, and be able to handle
anomalies in their own systems, such as sub-system failures or draining batteries.

C2: Team coordination: Multiple unmanned vehicles may be deployed in a cooperating
team to achieve the overall objectives, but they will do so through individual tasks.
These tasks, or more precisely, the effects of these tasks, need to be coordinated
to achieve the best results. Cooperative operations may thus require coordination
between vehicles as a vital aspect of the mission execution. Ensuring coordination
between the platforms should therefore be a pivotal concept in the plan. Given the
domain (military, or at least, adversarial), the coordination between vehicles may
not be able to rely on perfect communication between the platforms in the collective,
something that, e.g., Cognitive Radio (CR) [34] could offer. The matter of how the
communication is realized (e.g., [35]) and to which extend it is trustworthy is ignored
in this manuscript, as it is work outside the scope of the project. As stated elsewhere
in this paper, the actual deployment of such platforms in uncontrolled settings still
faces a number of challenges. By the time this can realistically be attempted, new or
emerging technologies (e.g., StarLink/StarShield, https://www.space.com/spacex-
starshield-satellite-internet-military-starlink, accessed on 1 February 2023) may have
permanently changed the battlefield. For the remainder of this paper, the technical
details of how communication is realized are omitted.

C3: Predictable and accountable behavior: Military doctrine (see, e.g., https://english.
defensie.nl/topics/doctrine/defence-doctrine, accessed on 1 February 2023) [36,37] is
used extensively in the armed forces. It ensures a shared understanding and results
in a certain level of predictability in mission execution. At least the same level of
predictability that exists between humans should be expected from autonomous
platforms, since those vehicles will cooperate with other platforms, and eventually,
also in collaboration with human soldiers. Simultaneously, the platforms should act in
an accountable way and in accordance with their roles and responsibilities.

C4: Human approval: Military decisions are subject to final human approval. For this
statement to be meaningful (i.e., the decision to be an informed one), the human
decision maker must be able to understand the implications and consequences of a
plan. This means that the plans must be expressed in a high-level, human-readable
manner. Constructing a comprehensive plan in advance (before execution) involves
planning for a (possibly) very large time horizon. Creating such a long-term plan is

https://www.space.com/spacex-starshield-satellite-internet-military-starlink
https://www.space.com/spacex-starshield-satellite-internet-military-starlink
https://english.defensie.nl/topics/doctrine/defence-doctrine
https://english.defensie.nl/topics/doctrine/defence-doctrine
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computationally infeasible without providing contextual information that helps to
decide on tasks and the behavior of the platforms.

2.4. Automated Planning and Execution

Classically, a planning problem is a problem that requires determining a course of
action, i.e., a series of activities that need to be executed, in order to achieve a goal that is
specified as part of the problem. A solution to a planning problem is a complete plan that
achieves that desired goal, where a plan is a representation of the activities and consists
of a set of tasks, together with temporal, causal, and possibly other constraints on those
tasks. Typically, the objective is to determine a plan that is both executable and optimal
(expressed in some problem-specific measure of performance). Automated planning is a
field of research that aims to automate the planning process by designing algorithms that
construct plans, which are typically autonomously executed by unmanned vehicles.

We use the term task to denote activities performed by autonomous systems that
have an effect in the world. In other words, a task can be understood as summarizing a
specific behavior (with a specific set of consequences in mind). Examples of tasks include
repositioning, perceiving something, and interacting with objects in the world. Note that in
the planning literature, tasks are often referred to as actions, and the execution of a plan
(typically in a dynamic and unpredictable environment) as acting.

2.4.1. Planning

Automated planning [38] requires the modeling of the real world, the goals that need
to be achieved, and the behavior corresponding to each of the tasks that can be performed
by the unmanned systems. The task models predict the outcomes of the task behavior in
the real world, which allows a planning algorithm to find a sequence of tasks, a plan, that
will lead to the desired goal.

In automated planning, a distinction is made between domain-specific planning
and domain-independent planning. The difference is that in domain-specific planning,
algorithms use domain-specific knowledge and information to solve planning problems
efficiently by exploiting the modeled knowledge of that domain.

Examples of domain-specific planning include algorithms for playing board games
such as chess [39] and Go [40] (for an overview, see [41]). These algorithms use game-
specific information such as rules and strategies. Another example is the automated
planning of airline flights, which use information on distances and flight times between
airports to generate efficient flight schedules [? ].

Domain-independent planning, on the other hand, uses general-purpose representa-
tions and algorithms, which can therefore be applied to a range of domains. Thus, although
domain-specific planning can be more effective for solving specific problems, the algorithms
in domain-independent planning can be applied more generally.

The most prominent form of automated planning involves so-called state space search,
where the planning algorithm searches through a tree of states. A state is a model of the
system together with the environment for which a plan is constructed. The root of the tree
is the initial state, edges represent the execution of a task in a state to arrive at another state.
The search algorithm traverses the tree, exploring different branches and expanding the
search space until a sequence of tasks that leads to the desired goal is found.

A second approach in automated planning is referred to as plan space planning.
This form of planning involves the decomposition of a complex planning problem into
smaller subproblems [15], after which each of the subproblems is solved. This approach
allows for reasoning about each of the subproblems relatively independently. The subplans,
the solutions of the subproblems, are combined into a complete plan that solves the original
planning problem. In this case, the search space encompasses all possible plans. A well-
known form of plan space planning is hierarchical task network (HTN) planning. In
Section 2.4.2, a short description of the HTN method is given, as it was our inspiration for
the hierarchical task decomposition concept [15], as used in ICTUS.
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2.4.2. Hierarchical Task Network Planning

In HTN planning, the decomposition of a planning problem into subproblems is
hierarchical in nature (hence the name). The top level in this hierarchy represents the goal
of the problem (here: our mission), and the lower levels detail the goal into subgoals, each
of which must be solved to achieve the goal of the planning problem. A detailed overview
of HTN planning can be found in [43].

A typical application for HTN planning is video games (see, e.g., [44]), where the
planning is used to generate realistic behavior for non-player characters in these games.
We use an approach to HTN planning that is primarily based on the work as described
by [31]. In this paper, the coordination of units in a video game, to be able to execute combat
maneuvers, is made explicit in the HTN and the resulting plan. An important aspect of
the approach is that there is no single state that is available to, and adjusted by, the tasks.
Instead, information between tasks is shared by connecting so-called task inputs and task
outputs. This approach enables the decomposition of tasks into lower level tasks in any
desirable order, instead of in (foreseen) chronological order.

HTN planning can be domain-independent or -specific, depending on how it is imple-
mented. It can use domain-specific information to drive the decomposition. This can be
augmented with general-purpose (domain independent) information representation and
search algorithms. In our HTN, we use algorithms specialized for military reasoning.

2.5. Discrete Event Simulation

In our approach towards plan execution, we use a separate component, the supervisor,
which is responsible for keeping track of plan progress and the dispatching of tasks to the
individual unmanned systems (assets) that execute tasks in the real world. This is done
by employing a Discrete Event Simulator (DES) process, a simulation process described
briefly below. We refer to [45] for an extensive overview of techniques and applications.

A DES is a computer program that simulates the behavior of a system that consists of
multiple entities. The behavior of the entities is modeled as processes that generate discrete
events. An event marks a changes in the state of one of the processes or in the relationship
between processes, and occurs at a particular point in time. These discrete events determine
the behavior of the individual entities, and the entities together determine the behavior of
the system as a whole. Note that in between events there are no changes in the system, and
the simulation can jump to the next time instance at which an event occurs. DESs are often
used to model and analyze complex systems in fields such as engineering, manufacturing,
and logistics; see, for example, [46].

As mentioned in the above, we use a DES for the execution of a plan. Every task in
the plan hierarchy is a process with discrete start, interrupt, and finish events. In addition,
incoming data, such as observations and status updates from the assets, are also events in
the DES. All planned coordination between tasks is expressed as event sets that are logical
conditions to trigger other events, forming a coherent representation of the plan that can be
executed by processing events step by step. More details are given in Section 4.

3. ICTUS: Intelligent Coordination of Tactical Unmanned Systems
3.1. The Framework

The developed reasoning and execution framework, which we refer to as ICTUS, and
the phases required for the deployment of its system in a mission, are illustrated in Figure 1.
Various models are provided to the framework to specify different aspects of the mission.
Such models can describe a complex set of rules and behavioral paradigms to control what
tasks can be performed by the autonomous systems in the current environment.

Starting from mission design, the following three phases increasingly refine mission
requirements and goals towards the actual realization of the mission in the environment:

1. Mission design: Design doctrine based mission templates, choose matching analysis
methods, and specify necessary asset task capabilities for the preparation phase.
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2. Mission preparation: Generate a specific plan based on mission parameters and
available assets; and choose matching assessment methods for the execution phase.

3. Mission execution: In real-time, assess the situation regarding the environment and
assets, determine actionable runtime information, and dispatch planned tasks.

In each phase, both concrete information and reasoning methods are chosen and
passed to the next phase and more immediate time scale and abstraction level. Automation
is used in all phases, but autonomous behavior of the system increases toward the execution
phase. As indicated in the figure, the ICTUS framework scope is focused on the cooperative
and autonomous levels of mission execution.

Tasks

  

Assets

Mission Preparation Mission ExecutionMission Design

Templates and 

preparation methodsDesigner

Plan and 

assessment methods

Mission

parameters

Operator

Manual process Automated process

 ICTUS framework scope 

Mission

Environment

Behavior

SupervisorPlanner

Figure 1. Phases in mission development: from the manual design phase to the execution of the
mission in theater. In each phase, both the concrete information and the reasoning methods (used to
assess new incoming data) are passed. They are increasingly tailored to the specifics of the mission
objectives. The primary scope of the ICTUS framework is indicated.

Given the descriptions of the environment in which the team of assets will have to
operate, together with a set of orders defining the goals that need to be achieved in that
environment, planning can commence. A planner constructs plans, which often have to be
approved by a human operator. Operator analysis of a plan may trigger a refinement of the
orders given and thus resulting in a revision of the plan.

Once plans have been approved, they are submitted to a supervisor for execution.
During execution, the supervisor interacts with the autonomous vehicles (the assets) to
perform tasks in the environment. The execution phase in which the assets are deployed
may no longer include the human operator, dependent on the situation.

What about Replanning?

Generally speaking, the more interesting or relevant a situation, the more likely it is
to be subject to change. Especially in the military domain, this poses challenges [33], and
one has to continuously assume that the world does not always behave and react as one
has expected. When events which interrupt a planned sequence of actions occur during
the execution of a plan, contingency plans [16,47] should already be in place to enable the
executing asset to react in accordance with doctrine and the rules of engagement.

As preparing such contingency plans in advance can require significant additional
efforts, many approaches rely instead on a replanning process [48]. Once such a process
is triggered, the execution of the current plan is suspended or reset, and a new plan is
generated on the basis of the changed information now available to the planner. However,
depending on the complexity of the situation and the mission, generating a new plan,
especially in a multi-asset operation, can be time-consuming. Given the adversarial nature
of the domain, reactions to events in the environment are ideally instantaneous or at least
as immediate as possible, which in tactical situations may need to be very fast.

In the military, one relies on doctrine and standardized behaviors and responses.
The field has been subject to intensive studies (e.g., [21–23], and as a result, many (if not
all) of the most disruptive events are known and can therefore be anticipated. In ICTUS,
the generated plan contains contingency sub-plans for all anticipated disruptive events.
Since these reactive behaviors (including the "fallback" or "abort" actions) can be part of the
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general plan, the individual assets can themselves react appropriately to any other asset in
their team by falling back on a contingency.

The term replanning, as used in ICTUS, exclusively refers to the human operator
stepping in and aborting the mission so as to trigger a new planning process on the basis of
new/revised mission goals or using new mission parameters/conditions.

3.2. System Modules

Figure 2 offers an overview of the primary functional modules and their interactions.
The individual building blocks, which form the ICTUS system, are explained individually
below: the PLANNER (Section 3.2.1) constructs the plan before the mission; the unique SU-
PERVISOR (Section 3.2.2) and its assessor, together with the TASK MANAGERS (Section 3.2.3),
one for each autonomous asset, execute the plan.

Planner
Supervisor







Mission
parameters

Task

Manager

Task messages

Task progress 

and results

Plan

Replan context

Execution phasePreparation phase

Assessor

EnvironmentTask

ManagerTask


Manager

Figure 2. An overview of the primary functional modules and their interactions. Two separate phases
are distinguished: the preparation or planning phase (in which the PLANNER module is active)
and the execution phase (involving the SUPERVISOR and the TASK MANAGER module). The former
happens offline to generate the plan and have the human operator approve this plan, and the latter
has all assets execute their tasks separately while being coordinated by the supervising module.

An example of ICTUS modules being deployed on physical hardware is given in
Figure 3. In this example, the PLANNER is available on a base station, together with
a human–machine interface (HMI) that allows for interactions with an operator. The
SUPERVISOR is deployed on one of the autonomous assets, and all the autonomous assets
have a TASK MANAGER. The interactions between, e.g., the PLANNER and SUPERVISOR,
the TASK MANAGERS themselves, and HMI (and hence the operator) and the SUPERVISOR,
are supported by a (typically wireless) communication infrastructure.

Asset nAsset 2

Base Station

Asset 1

. . .

Operator

HMI Planner

Task Manager Task ManagerSupervisor Task Manager

Communication Infrastructure

Figure 3. An example of several ICTUS modules running on hardware: the PLANNER runs on
a base station and the SUPERVISOR on one of the n autonomous assets, all of which also run a
TASK MANAGER.

3.2.1. The PLANNER Module

The main functionality of this module is to interpret the available information, e.g., the
assets and their capabilities that are available for the mission, and the operator-provided
goals and constraints for the mission. This information is converted into a mission plan
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object in a planning process. To construct the plan, it is required to assess anticipated
uncertainties and construct contingencies for these uncertainties to ensure that the mission
goals are achieved. Examples of such uncertainties involve not-yet-known information
about terrain conditions, possible locations that provide cover and concealment, weather
conditions, the health status of (sub-)systems, and the intents and courses of action of
expected opposing forces. The PLANNER module is discussed in detail in Section 5.1.

3.2.2. The SUPERVISOR Module

The SUPERVISOR and the TASK MANAGERS together are responsible for the execution
of the mission plan. The SUPERVISOR module uses a DES as a plan execution model.
It dispatches task information to the individual assets and receives task progress and
result information from these assets. In this context, the assets are referred to as workers,
as they perform tasks in the environment to achieve the mission goals. Additionally,
the SUPERVISOR keeps track of the mission’s progress and performs assessment of both the
perceived information and the mission plan through an internal ASSESSOR sub-module.
The SUPERVISOR module is discussed in detail in Section 5.2.

3.2.3. The TASK MANAGER Module

The responsibility of the TASK MANAGER is to effectively instruct the components of
the asset (either real or simulated hardware). Each TASK MANAGER interprets the received
task information and perceives and interacts with the environment and entities in that
environment during its task execution, while providing feedback on the execution and
results of the task. The protocol of task-related messages between the SUPERVISOR and
TASK MANAGERS is one of the primary interfaces in the ICTUS framework and crucial in
the application of ICTUS. The TASK MANAGER module is discussed in detail in Section 5.3.

4. Task Execution
4.1. Task Execution Requirements

To coordinate the planned behavior of a team of autonomous assets, the task execution
model that is used by the SUPERVISOR has a number of requirements:

• Tasks have to be grouped into a meaningful hierarchy of tasks consisting of (higher-
level) compounded tasks—which have subtasks—and basic tasks as the leaves of the
hierarchy. Using this hierarchy, the overall intended behavior can be constructed
through (reusable) task definitions. The same definitions can be used to keep track of
mission progress and to provide sufficient context for when the outcome of the task
execution differs from what was expected.

• Tasks can be executed concurrently. While an individual asset executes tasks in series,
the supervisor must manage several tasks and subtasks in parallel.

• Plan execution must allow for runtime resolving of task parameters. For example,
after the observation of a contact, it should be possible to assign a FOLLOW CONTACT

task using the information from that observation. This specific information will only
be available during execution, that is, at runtime; therefore, the plan must provide for
placeholders of that information. In ICTUS, this information is called runtime data.

• To allow for the composition of complex team behaviors, a (compound) task must
allow for repetition. In other words, a task should repeat while (or, alternatively, until)
predefined conditions are met. Examples include the continuous scanning of an area
or the repeated engagement of targets during an attack.

• A branching mechanism is required to support decisions made during execution.
While conditional execution of tasks is an important approach to supporting this, we
introduced a decision task to explicitly account for this functionally in the plan object.

• There should be a detailed description of the basic tasks that the assets can perform au-
tonomously. These tasks can be performed without coordination by the supervisor and
are possible while interacting with other assets. The basic task descriptions determine
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the interface to the task managers of the assets. For this reason, the implementation of
this interface will be application and use-case-specific.

In Figure 4, an overview over the task hierarchy and the different types of tasks is
given. The highest level task is the plan or course of action.

Task

 

 

 

 

 

 

 

Task

 

 

 

 

Task

 

 

 

 

. . .

Top level task: Course of action

N levels of compound tasks

Tasks dispatched to assetsTaskTaskTaskTask

. . .

. . .

Figure 4. An illustration of the task hierarchy with the three types of tasks: top-level (the plan),
compound tasks, and basic tasks.

Note that, in the context of this article, a plan encompasses the design and specification
of cooperative behavior and coordination that is crucial during the execution phase. Related
to the implemented use case involving a defense operation (see Section 6), their definitions
aim to follow military doctrine as closely as possible.

The complexity of the compound and basic tasks range from relatively straightforward
to very complex. Choosing the appropriate conceptual level of these tasks depends on the
ability of assets to individually or jointly perform certain tasks. Another aspect to take into
account is whether the tasks should be part of the mission plan explicitly and how they
may be represented to human operators before and during execution. For the use case and
demonstration, the level of abstraction is primarily based on the extent to which an asset is
able to individually execute the task.

4.2. The Task Execution Model

Each task within the hierarchy of tasks (the plan tree) is either a compound task or a
basic task. A compound task contains one or more subtasks. An basic task (the leaves of
the plan tree) can be dispatched to and autonomously performed by an asset.

This hierarchy provides a clear and explainable distinction between team-level co-
ordinating mission tasks and individual asset tasks. The transition from mission-level
information to individual task data naturally follows from this structure and is tractable at
both design time and execution time.

Execution of tasks is event driven: the planned task hierarchy is not scheduled in
time like a train table, but each task has start, finish, and possibly interrupt events.
These events can be used to trigger the execution of other tasks. Each planned task is
provided with several condition sets for when to start, interrupt, repeat, or finish the task.
The execution process for a task is explained in Section 4.3.

The supervisor oversees and manages this process by dispatching asset tasks and
receives responses (task status messages, feedback messages, observations, interventions,
etc.). In this way, information from the environment is received by the supervisor module.
The received data are processed by the assessor module to produce actionable information.
This information is used during plan execution in the form of so-called external events.

External events are additions to the start, interrupt, and finish events of the tasks.
These events originate from external data sources (messages, asset feedback, observations,
etc.) and are emitted by the assessor when these data are relevant for the execution. By the
mechanism of generation of external events, together with internal task events, the plan
execution can react properly to the mission, the environment, and intermediate results in a
pre-described, and hence planned, manner.
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4.3. The Task Execution Process
4.3.1. Execution Conditions

The execution of a task is determined by four sets of conditions. For each, a simple
example is given to illustrate how the condition would appear in our implementation:

1. Start conditions: When all start conditions are satisfied, the task is started. Take a
simple example plan involving two tasks, task A and task B, where task B starts after
task A has finished: taskB.starts_after(taskA.finish), where taskA.finish is
the finish event of task A.

2. Interrupt conditions: When all of these conditions are satisfied, the task and its
subtasks are interrupted as soon as possible. As an example, consider an external
event enemy_observed being triggered after an appropriately assessed observation:
taskA.interrupt_when(enemy_observed).

3. Repeat conditions: Whenever all conditions are satisfied, the task is restarted. If
applicable, all its subtasks are recreated and processed. Consider the following
example: taskA.repeat_after(taskB.finish).

4. Finish conditions: When all are satisfied, the task is finished and will produce a finished
event. An example: taskC.finish_after(any(taskA.finish, taskB.finish)).

In the first three examples, a single event was used as the condition, but as the last
example shows, a set of conditions can be turned into a complex condition by using logical
operators to combine events and/or other condition sets. As shown in Figure 5, conditions
can be combined using either the ANY (triggered as soon as one of the events is triggered) or
the ALL (triggered when all input events are met) operator. Figure 6 shows a schematic of
the execution process together with all four condition sets.

 ANY

 ALL

Figure 5. Task execution is determined by a number of conditions (cf. Section 4.3.1); conditions can
be logically composed using the ANY and the ALL operators.

Task

start finish

interrupt

Execute
subtasks

Repeat
conditions

Finish
conditions

Interrupt
conditions

Start
conditions

Figure 6. The task execution process showing all 4 execution conditions introduced in Section 4.3.1.

4.3.2. The Execution Process

The outline of the execution process for a task is as follows:

1. Initially, the task awaits for its start conditions to be satisfied.
2. The start of a task could be disabled (by an event), which will result in the interruption

of the task, which means that the task will not execute and hence never start.
3. When started, all subtasks are concurrently processed (all await their start conditions),

and the task will await either its repeat or its finish conditions. When either of these
conditions is triggered, all active (started) subtasks will be interrupted, and in the case



Robotics 2023, 12, 24 13 of 27

of the repeat conditions, the task is restarted. Alternatively, when the finish condition
is satisfied, the task finishes.

4. In the case of a basic task—which is a leaf in the task tree—there are no subtasks.
When a basic task starts, a TASKREQUEST is sent to the appropriate asset, and the
process awaits its response. When the request is accepted, the task is marked as
started and the task awaits a response (that is, a task result message) from the asset.
Upon receiving this response, the task finishes. When the task is rejected by the asset,
the task is disabled. If the task has to be interrupted, a cancel request is sent to the
asset in order to stop its execution.

The pseudocode for the execution process of a (compound) task is given in Algorithm 1,
and the task conditions and events are schematically illustrated in Figure 6.

Algorithm 1 Task execution procedure.

1: procedure PROCESS(task)
2: try:
3: wait for start conditions
4: repeat
5: Perform task . Send TASKREQUEST or queue subtasks.
6: emit task start
7: wait for repeat or finish conditions
8: until finish conditions
9: emit task finish

10: except interrupt conditions . emit task interrupted
11: end procedure

5. Mission Planning and Execution
5.1. Mission Planning: The PLANNER Module

The hierarchically organized plan described in Section 4.3.1 is constructed autonomously
by the PLANNER module (cf. Section 3.2.1). The focal point of the planning approach
presented in this article is the iterative decomposition of compound tasks into lower level
tasks, an approach that is adopted from HTN planning (briefly discussed in Section 2.4.2).
However, the concept of HTN planning (and hence the many implementations that are
discussed in the literature) does not address all requirements for execution (as listed in
Section 4.1). Taking these requirements into account results in a more extensive planning
input and a more elaborate planning process compared to classical HTN planning. In
contrast to HTN planning, which constructs a plan consisting of basic tasks only, a hierarchy-
preserving approach was taken, based on [31]. All tasks that are decomposed remain
available in the mission plan. This allows for assessing the mission progress in the execution
phase and will help in providing the task contexts when decisions within the plan need to
be made during execution.

Having compound tasks available as context during plan execution helps in determin-
ing the consequences of task execution by an asset that is different from default behavior.
This is illustrated by an example involving a MOVE task of an asset that takes significantly
more time than anticipated. If this MOVE is part of a surveillance operation, taking more
time might not be problematic. On the other hand, in a scenario in which the MOVE is
part of a coordinated SURPRISE ATTACK task involving multiple assets, this asset being late
might render the SURPRISE ATTACK infeasible and even jeopardize the mission. This means
that a new approach to an attack needs to be selected.

5.1.1. Input to the Planning Process

Before detailing the planning process itself, we describe the input to this process. We
distinguish three elements in the input:

1. Task templates. The hierarchically structured templates for tasks are provided in
the design phase by the designer (see Figure 1). These task templates and their
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(hierarchical) relations ensure that a mission with a large time horizon, consisting of
many tasks, can be planned comprehensively before mission execution. The hierarchy
of task templates yields a mission-specific decomposition into subtasks.

2. World model. Information about the world and algorithms to reason over elements
in the world are also provided by the designer (as can be seen in Figure 1). Examples
of reasoning algorithms include methods for analyzing the environment, e.g., weather
conditions and terrain information, for analysis of the enemy’s possible courses of
action, and for the selection of assets to execute certain subtasks, based on situation
specific circumstances and/or asset capabilities.

3. Mission parameters. This situation specific information is provided by the operator,
as shown in Figures 1 and 2. The mission parameter specification contains information
about, e.g., the assets that are available for this mission, the type of mission for which
a plan needs to generated, an area of operation, and information on expected threats
and other contacts which might be present during the operation.

5.1.2. Task Relations

The task templates, and hence the tasks in the plan, are interrelated through three
types of relations. The most apparent relation between tasks is that of hierarchy, which has
been motivated and discussed earlier. The other two relations between tasks are:

1. Causal dependencies: Tasks relate to each other and to detected changes in the
environment via events and conditions. These provide a natural mechanism to
describe causal relations between tasks. Typically, the parent task in the tree of
tasks is responsible for specifying what the conditions are for subtasks to be started,
interrupted, or finished. Simple examples include parallel starting of multiple tasks
or a set of tasks that need to be executed sequentially.

2. Information propagation: Reasoning components typically require (mission specific)
input parameters that allow them to generate output. The input needs to be provided
during the process of decomposition. Therefore, we allow tasks to explicitly share
information via so-called task outputs which will be linked to task inputs, similarly to
what was done in [31]. Tasks can only be decomposed into its subtasks if all inputs of
the task are linked with outputs of other tasks. Such tasks are known as grounded
tasks. The parent task of a task that requires input is responsible for providing that
information, either directly or by creating a link with the output of another task.
An example of passing on information involves an area of operation that needs to
be split into regions, which is done using a reasoning method associated with a com-
pound task. This region information in turn can serve as input to a task that identifies
a strategy for surveying that region. This information can be already available in the
planning phase, but it is also possible to share runtime data, a placeholder, which will
be resolved during execution. An example of a runtime data source as task input is an
observed hostile contact which requires follow-up in the plan, without knowing the
location and other details about that contact in the preparation phase.

5.1.3. The Mission Planning Process

The complete plan hierarchy is constructed by recursively decomposing tasks into
subtasks. During the process of decomposition, the following steps are taken:

1. Reasoning methods are triggered to generate/calculate required information.
2. The subtasks are instantiated, based on their respective task templates.
3. Input for the subtasks is provided, either directly or by linking task output from

a task to a task input of another task. This allows compound subtasks to become
grounded, which means that these tasks can be decomposed themselves. Ultimately,
the propagation of input information results in basic task parameters that are required
for the execution of these tasks by (one of) the assets.

4. Causal relations between the subtasks are explicated by linking task events and
external events to task conditions.
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Note that in the current implementation, the reasoning that is required in the assess-
ment module is directly available in that module, which results in a somewhat ad hoc
design. The scope of a compound task could also provide a slot for reasoning methods that
are required during execution and made available to the assessment module. This will be
implemented in follow-up projects.

After decomposition of the task templates into a course of action, the compound and
basic asset tasks in that plan contain all required information, and are linked via conditions
and events. Pseudocode of the iterative decomposition of tasks, resulting in a plan, is
provided in Algorithm 2, and the steps required for the decomposition of an individual
task into subtasks are provided in Algorithm 3.

Algorithm 2 Plan construction.

1: procedure CREATE PLAN(rootTask)
2: tasksToDecompose← {rootTask}
3: plan← {rootTask}
4: repeat
5: for groundedTask in grounded tasksToDecompose do
6: tasksToDecompose.remove(groundedTask)
7: newTasks← DECOMPOSE(groundedTask) . See Algorithm 3.
8: tasksToDecompose← tasksToDecompose ∪ newTasks
9: plan← plan ∪ newTasks

10: end for
11: until decomposibleTasks = {}
12: return plan
13: end procedure

Algorithm 3 Task decomposition.

1: procedure DECOMPOSE(task)
2: Execute reasoning methods . Using task inputs.
3: Instantiate subtasks . Using template information.
4: Set task input of subtasks . Using reasoning results and task input/task output.
5: Set subtask conditions . Using task events and external events.
6: return subTasks
7: end procedure

As shown in Figure 2, the execution of the mission plan is performed by the SU-
PERVISOR module, together with a team of assets. We describe the responsibilities of the
SUPERVISOR and its ASSESSOR and that of the TASK MANAGERS that are available in each
asset in the next section.

5.2. Mission Execution: The SUPERVISOR Module

The SUPERVISOR component (briefly introduced as the SUPERVISOR module in
Section 3.2.2) fulfills several core functions within the ICTUS framework:

• Execution of the plan: managing tasks, conditions, and events in the planned hierar-
chy. The SUPERVISOR implements the task execution process using a discrete event
simulation. Starting from the top level task in the plan, all subtasks are processed
according to their condition sets, as described in Section 4.3.

• Messaging: The SUPERVISOR is the central node that requests tasks from the worker
assets and receives results and feedback. Messaging is done by a publish–subscribe
messaging system on which all team members are subscribed. The interpretation and
content of task-related messages are outlined below; note that the precise technical
implementation is not essential for ICTUS. In addition to this, all messaging with
the worker assets is done and received information is passed to the (mission-specific)
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ASSESSOR module. The assessment leads to triggering of events to move forward in
the plan execution.

• Assessment: Working together with the ASSESSOR and a data store for runtime infor-
mation (the blackboard), the SUPERVISOR manages and acts upon relevant information
about mission progress and results. As the complete planned hierarchy is known
during the entire execution, mission progress can be closely logged and monitored by
the SUPERVISOR. In future systems, this can be exploited to give operators insight in
mission progress both during and after execution.

5.2.1. Messaging

To coordinate the interaction between worker assets and the SUPERVISOR, the ICTUS
framework defines a set of message types. The most important messages are shown in
Figure 7.

IctusMessage

TeamMessage

TaskRequest

TaskFeedback

response_to

TaskResponse CancelResponse ResultResponse

CancelRequest ResultRequest

Worker messages

Supervisor messages

response_to response_to

Figure 7. An overview over the most relevant messages that are exchanged between the SUPERVISOR

and workers’ TASK MANAGER in the ICTUS system.

When the SUPERVISOR wants to dispatch a task to a worker, it sends a TASKREQUEST

for a specific task type with appropriate task parameters. In response, the TASK MANAGER

sends a TASKRESPONSE either accepting or rejecting the task. When accepted, the task is
executed, and the TASK MANAGER sends FEEDBACK messages with information on task
progress. When the task finishes (successfully or not), a RESULTRESPONSE with result info
is sent to the SUPERVISOR. The actual contents of request, feedback, and result messages
are task-specific and will depend on the type of asset and its capabilities. The described
interaction between SUPERVISOR and TASK MANAGER is summarized in Figure 8.
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Figure 8. The interaction between the SUPERVISOR and a TASK MANAGER for the execution of a task.
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5.2.2. The ASSESSOR Module

The ASSESSOR module is responsible for the execution-time data handling and the
assessment of the plan and the situation. The concept of the ASSESSOR is best illustrated
with a relatively simple example, which involves the following behavior:

Several drones search an area for an object. When the object is spotted (which relates
to an observation event in the plan), the spotter drone (an asset deployed to perform
reconnaissance) stops searching and starts to hover above the object. The other drones
keep searching. This seems and should be straightforward to plan beforehand, but at plan
time, when putting a HOVER task into the plan, it is not yet known which of the drones
will be the one spotting the object. That information will not be available until during the
execution of the SEARCH tasks.

To achieve the correct behavior, we introduced runtime data as a mechanism to resolve
this. In the plan, the HOVER task is assigned to a placeholder drone which we refer to
as spotter (a unique data identifier in the plan that refers to a data value that will be
determined during execution). This is combined with an ASSESSOR method that—during
execution—receives feedback data from the SEARCH tasks. When the observation feedback
matches with the object that was searched for, it can easily determine the actual drone
that was identified with spotter in the plan and put that information on the blackboard.
The ASSESSOR subsequently triggers the observation event that is present in the plan. The
SUPERVISOR is then able to combine the placeholder with the information on the blackboard
and dispatch the HOVER task to the correct drone. This mechanism can be extended to
more involved reasoning methods to assess and determine runtime information and plan-
specific events. Note that the assessment methods become an integral and essential part
of the plan object. This is the reason that in ICTUS the SUPERVISOR/ASSESSOR module
has been separated into two parts. The SUPERVISOR is doing the generic execution and
communication processing, and the ASSESSOR, which is plan specific, contains filtering
and decision logic to process outside data into plan-relevant, actionable information.

5.3. Mission Execution: The TASK MANAGER Module

As briefly introduced in Section 3.2.3, the TASK MANAGER is a module that is de-
ployed on each autonomous asset. As discussed, it interacts with the SUPERVISOR by
receiving information on the execution of tasks and by providing the SUPERVISOR with task
results, feedback on task execution, and sensor information. The responsibility of the TASK

MANAGER is to have the asset properly execute the tasks it receives, either individually
or in cooperation with other assets. In other words, the TASK MANAGER ensures that the
correct behavior is being performed, by sending commands to the different modules and
payloads of the asset. For example, if a MOVE task is received, this will result in triggering
path planning and subsequently commands a navigation controller. In addition, the TASK

MANAGER provides information to the SUPERVISOR (and hence ASSESSOR) to allow for
team-level situation awareness and understanding, and keeping track of task and mission
progress, making sure that the mission goals will be achieved.

When a TASK MANAGER receives task information from the SUPERVISOR, it first checks
whether or not the asset is able to perform the received task (in the current circumstances)
and will start executing that task if this is indeed the case. Every asset has a set of tasks
it can execute, and assets can exhibit different behaviors for the execution of the same
task. For example, a task might require the presence of a certain payload (e.g., a sensor
or weapon) on the asset. In addition, a MOVE task of a fixed wing drone will result in
different behavior from that of a tracked vehicle. Tasks that are typically not available for
all autonomous assets are LAUNCH and DOCK tasks, MOVE tasks, and WAIT tasks.

If a TASK MANAGER is not executing a task, this will typically result in the same
behavior as an explicit WAIT task. But if the task cannot be executed, or if at some mo-
ment the task execution fails, the TASK MANAGER informs the SUPERVISOR by sending
a TASKRESULT message with status failed. If the TASK MANAGER is requested to cancel
the task which it is currently executing, it will (gracefully) stop that task and confirms it is
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stopping by informing the SUPERVISOR. To provide some insight in asset behavior that is
associated with task execution by its TASK MANAGER, we give a few examples:

• Consider as asset a UGV, capable of moving covertly through a terrain with forests
and open fields. If its TASK MANAGER receives a MOVE task that needs to be executed
covertly, the terrain is analyzed to determine a path on which the probability of
detection by other (non-friendly) assets is minimized. At the same time, the covert
path length should not be much larger compared to a shortest path. Concretely,
the path will be such that the asset is close to forest edges and/or through shrubbery.

• During the execution of a FOLLOW task, an asset will first execute a move towards
to object to follow (if it is not yet in sight). After the object is observed, the asset will
reposition itself (regularly) if needed to make sure the object will remain in sight.

• If an ENGAGEMENT task is received, the asset’s goal is to eliminate a target, by using
one or more of its weapon systems. Engagement continues until the target is no longer
a threat, or if the target is no longer within line of fire or line of sight. If the target is
eliminated, the task was executed successfully; otherwise, the task is considered to
have been failed. Note that the execution of the ELIMINATE task involves not only
repeatedly actuating weapons, but also the processing of sensor information.

As mentioned before, information involving the progression of tasks, the state of
the asset and its perception of the world are shared with the SUPERVISOR during the
mission, and, if desired, with other assets. For example, during the execution of a move
task the intended path, the remaining distance and the estimated time of arrival can be
shared using FEEDBACK messages. Another use for FEEDBACK messages involves sharing
observations of other (non-team) assets with the SUPERVISOR and other TASK MANAGERS.
Communication between TASK MANAGERS allows the SUPERVISOR to send a task to
multiple assets that require alignment during it execution. For instance, the search for
suspect contacts or loitering ammunition are tasks that can be executed with multiple assets
that work together, without the need for detailed coordination from the SUPERVISOR.

6. Implementation and Demonstration
6.1. Implementation

The structure of the plan, its construction by the PLANNER, and the coordinated
execution by the SUPERVISOR and asset TASK MANAGERS were implemented in Python,
according to the architecture as given in Figure 9. The TASK MANAGER was implemented
as a ROS2 node. Python packages that were used included SimPy as the discrete event simu-
lation framework, pyzmq for messaging, and NetworkX and Matplotlib for visualization
of task templates and elements of the plan. The execution of the basic tasks by the TASK

MANAGERS are simulated within the game engine Unity.
The interactions between the SUPERVISOR and TASK MANAGERS were implemented

using a publish–subscribe messaging system to transfer ICTUS messages. For the commu-
nication between the TASK MANAGERS and the physical representation of the assets in the
Unity scene, a connection via ROS2 was used.

Figure 9 shows the higher-level architecture of the implementation, that is, the main
components and the connections between these components. The inputs to the PLANNER

include the operator-provided mission parameters, together with the in the design-phase-
determined mission templates and world models. The inputs contain information on
the military doctrine, including a hierarchy of tasks and reasoning capabilities on, e.g.,
terrain and enemy behavior. The output of the PLANNER is the plan, which consists of
tasks (which in turn can contain subtasks). The SUPERVISOR receives the plan and has
an execution mediator, called the Executor, which allows it to interact with one or more
TASK MANAGERS via messages containing tasks. The TASK MANAGERS interact with
the physical representation of the assets in the simulation environment, the Unity scene.
Information that the TASK MANAGERS share with the SUPERVISOR, summarized here as
Task feedback, is forwarded by the Executor to the ASSESSOR, which uses this information to
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perform Situation assessment and Plan Assessment. This assessment of “what is observed”
and “what is achieved” results in runtime data that are shared via the Blackboard object.

Figure 9. The ICTUS system architecture that has been implemented. The plan object specifies, for
each platform, the actions and the order in which they are to be performed, see Figure 10.

6.2. Demonstration
6.2.1. Demonstration: An Area Defense Operation

To demonstrate the ICTUS approach towards autonomous planning and execution of
tactical missions using autonomous assets, an area defense operation is considered as use
case. For this use case, a Unity scene was setup. The terrain in this scene contains forests
that are considered non-traversable, bushes that provide concealment, and a river. Roads
and bridges provide ways to navigate through forests and to cross the river. See Figure 11
for a 2D (top-view) and 3D visualization of the generated terrain.

The blue team of autonomous assets encompasses four UGVs, which are all equipped
with heavy machine guns. The objective of the defense operation is to deny the opposing
forces access to the area west to (in Figure 11, to the left of) the river. In addition to the
UGVs, a unmanned aerial vehicle (UAV) (or, drone) searches for opposing forces and shares
its observations of contacts with the assets and SUPERVISOR. The observations of the UAV
are used for timely regrouping of the UGVs.

To cross the river, there are three bridges available in the terrain, which create so-
called chokepoints that need to be passed by the opposing, red, team, in order to reach its
objectives. The red team consists of two vehicles, which can either cross the same bridge
(simultaneously) or cross two different bridges (either simultaneously or shortly after one
another). Thus, the red course of action involves deciding on when to cross which bridge
or bridges with how many vehicles. This means that a total of six plans are available: in
three cases, both vehicles aim to cross the same bridge and in three cases two bridges are
approached (by one vehicle each).

The vehicles of the red team each represent a small platoon, and it is assumed that
two blue UGVs, at a concealed position, are able to deflect and/or eliminate a red vehicle.
Equivalently, four UGVs are required for countering an attack executed by two red vehicles.

Mission templates for the required tasks and reasoning were implemented. Both the
blue forces and the opposing red forces use an ICTUS plan object, a SUPERVISOR module,
and TASK MANAGER modules for their respective missions.
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6.2.2. The Mission Plan

The mission plan is such that its execution results in the following behavior of the
assets in the blue team:

• First, three UGVs position themselves at so-called post locations, close to the three
bridges. A fourth vehicle positions itself at a reserve location, which allows it to move
covertly and quickly on any of the three "post" locations (see the bottom right picture
in Figure 11). In parallel, the UAV searches the area east of the river. The post locations
are such that they provide concealment while ensuring that any contact approaching
one of the three bridges will be observed.

• The three UGVs continuously scan their respective sectors, while receiving updates
on locations of contacts—that is, red vehicles—from the UAV. When the ASSESSOR

establishes which bridge(s) will be crossed, the UGVs are requested to regroup them-
selves as follows: If a single red vehicle is approaching a bridge, one UGV is tasked
to help in the defense. If the UGV at the reserve location is available, this asset is
involved. If in parallel (or shortly after) a second red vehicle is approaching another
bridge, the UGV that is guarding the remaining (third) bridge will be requested to
join the UGV at the post near that second bridge. If, on the other hand, both red
vehicles are approaching the same bridge, all four UGVs position themselves at the
post near the soon-to-be-crossed bridge. The (early) detections of the UAV ensure that
the UGVs have ample time to adjust their positions before the red vehicles are within
firing range.

• The red vehicles aim to enter blue territory via the bridges, and a fight between blue
and red takes place. After a successful repulsion of an attack, the UGVs distribute
themselves again. The three posts near the bridges are populated first, and if a fourth
asset is available, which means that there are no losses for the blue team, this remaining
asset will position itself at the reserve location.

A visual representation of a key part of the blue mission plan is given in Figure 10.
In this figure, tasks are represented by rounded shapes. The horizontal ordering of tasks
indicates causal dependencies between tasks, reading from left to right. At the top of the
figure, the compound tasks are given. These tasks are executed by the SUPERVISOR. The
box around the three ELIMINATE "X" tasks indicates that these tasks start in parallel, and in
this case, directly after the start of DEFEND POSITION NORTH task. Directly below the
compound tasks are so-called swim lanes located, one for each asset. In the swim lanes, it is
indicated which basic tasks are executed. Tasks that are partially white indicate that during
planning it is not yet known which asset will execute that task: the asset corresponding to
that swim lane serves as an example asset. The bottom part visualizes the external events
that might be triggered during execution by the ASSESSOR module. Arrows pointing from
these events to tasks indicate that a task starts if the external event is triggered.

When a red vehicle is observed and it is established which bridge is approached,
the ASSESSOR triggers the right Attack event, and an eliminate phase is started. The
ELIMINATE FROM POST and ELIMINATE BY HELPER tasks start directly. This results in the
repositioning, a MOVE to the post near the bridge, of an—at runtime—determined asset,
referred to as the helper. If two vehicles will approach that same bridge, the Backup event is
triggered. This means that the ELIMINATE BY BACKUPS starts and that the two remaining
blue assets, the backups, will also position themselves near the bridge. Since at most two
red vehicles are present, the backups can (temporarily) leave their respective post locations.
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Figure 10. A part of the plan for the blue area defense operation: the defense phase involving one of
the three bridges is given.

The asset that occupies the post and the repositioned assets wait until they observe the
red vehicles, and as soon as these vehicles are within weapon range, the blue assets execute
a (repeating) ELIMINATE task. The ASSESSOR assigns the target vehicle using runtime data
and the SUPERVISOR sends the task with correct parameters to the assets. The ELIMINATE

task continues until the asset itself is eliminated, if the target vehicle is eliminated or if the
target vehicle is no longer visible and/or within attack range. Since the vehicles do not
retreat in the current red course of action, the latter situation does not occur.

6.2.3. Plan Execution with Simulated Assets

The execution of the blue and red mission plans is illustrated with six snapshots that
were taken from the simulation and are given in Figure 11. We describe the rationale of the
snapshots, reading left to right, top to bottom:

• In the top-left sub-figure, the four blue assets are moving towards their respective
positions: the three post locations near the bridges and the reserve location. The red
vehicles are on the far-east side of the terrain and start approaching the blue territory.

• After some time, the blue ASSESSOR has established—through the UAV’s observations
—that the bridges in the north and in the south will be approached by one red vehicle.
The Attack events are triggered, and as a result, the SUPERVISOR instructs two of
the blue UGVs to reposition themselves. In the top-right sub-figure, the asset at the
reserve location has joined the asset in the north, and the asset that guarded the bridge
in the center left its post location and is moving towards the southernmost bridge.

• In the middle two sub-figures, the encounter between red and blue near the bridge
in the south can be seen. As soon as the red vehicle is observed by the blue assets,
the ENGAGEMENT tasks start. The red vehicle returns fire, but by virtue of the conceal-
ment of the blue assets, its disadvantage is significant. For that reason, the red vehicle
is unable to eliminate the blue assets and is eliminated.

• In the bottom-left sub-figure, the attack in the south has finished, and the encounter in
the north is bound to happen. This is rendered in the visualization by graying out (the
symbol of) the eliminated red vehicle.

• After the attack by red is deflected, the defense phase is finished, and the remaining
blue assets redistribute themselves in the regroup phase of the plan, cf. Figure 10.

• In the bottom right sub-figure, the blue assets have returned to their starting positions.
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Figure 11. A few snapshots of the simulation involving the mission plan execution of the blue team.

7. Conclusions and Future Work

In the previous section, we discussed the implementation of our work and showed
screenshots from the demonstrator to indicate its behavior. In this final section, we conclude
the paper by highlighting the most important achievements of our work. We also suggest
directions for future work and briefly discuss the proverbial road ahead.

7.1. Summary

As stated, the reported work was driven by practical needs and undertaken in close col-
laboration with the NLMinDef. A generic approach towards autonomous tactical mission
planning and execution to control the operation of UGV has been developed.

As discussed in the opening of the manuscript, mission planning in the military
domain has to meet certain requirements (R, stated in Section 2.2) and satisfy important
constraints (C, see Section 2.3): planning has to be done for executable missions in dynamic
environments (R1) and by providing a set of choices (plans) for final decision making by
a human decision maker (R2). This means that the offered plans must be both short and
concise to enable the human decision maker to make an informed choice (R3).

These requirements lead to four constraints: a plan must be such that it can be executed
in a dynamic environment (C1) and by a number of platforms working as a coordinated
team (C2). The platforms may only operate within a given doctrine; their behavior must be
predictable and accountable (C3). Their deployment and the decision on which mission to
deploy them for must be subject to human approval (C4).

These requirements and constraints were met. See Section 7.2 for a discussion.
Core elements of the approach involve the notion of an iteratively decomposed hi-

erarchy of tasks, inspired by the HTN formalism (see Section 2.4.2), and an event driven
approach towards execution, based on DES (see Section 2.5).
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As a key distinction, our approach does not require replanning. Instead of having to
return to the drawing board, the hierarchy of tasks offered by our system is equipped with
sub-plans for (foreseen) contingencies.

The feasibility of the approach was demonstrated successfully in a simulation using
the implemented use-case for a defense operation. This relied on the developed rea-
soning modules and the modeled mission templates. A hierarchical mission plan was
constructed, providing tasks and subtasks for the mobile platforms during mission ex-
ecution. The (sub)tasks specified the desired team and asset behaviors. Using military
doctrine, the acceptable reactions to specific anticipated situations or events were defined.
Contained within the plan were contingencies for these anticipated events. The resulting
plan constituted a flexible blueprint for the operation that is suitable for a wide range of
possible variations of circumstances and capable of defining collective actions for multiple
platforms.

7.2. Revisiting the Constraints

The presented approach and its implementation were designed and developed with
the aforementioned constraints (cf. Section 2.3) and requirements (cf. Section 2.2), in mind.
Generally speaking, we argue to have met these constraints as follows:

• C3 (accountability): the design phase provides a mechanism (a doctrine model) to
ensure that military doctrine is always followed by the unmanned systems.

• C3 (predictability): To further insure predictable behavior in line with the rules of
engagement, mission templates and reasoning modules (determined in the design
phase) can, and should, be constructed under the guidance of a subject-matter expert.

• C1 (planning for dynamic environments): The construction of plans, based on design-
time determined templates is such that plans can span a long period of time, whereas
the automated planning process does not take a long time.

• C4 (human approval): This enables feedback from the human operators in advance,
allowing them to understand the behaviors of the unmanned systems and to adjust
mission parameters and ultimately provide consent for the execution of the plan.

• C1 (execution in dynamic environments): Mission execution can take place even
when external conditions have changed. The approach was specifically designed for
dynamic environments: the availability of contingencies and placeholders (runtime
data) in the plan, together with the event based execution of the plan, allows for
incorporating and responding to information that becomes available during execution.

• C2 (cooperative execution): The hierarchically structured plan and the explicit causal
relations between tasks in that plan enable coordinated and collaborative execution
of the mission plan. In addition, including the execution of the higher-level tasks,
in parallel with the basic tasks, helps coordinating the autonomous systems and
keeping track of overall mission progress.

• C2 (cooperative execution): The unmanned systems execute their assigned tasks
individually, and team level behavior, that is, coordinated and collaborative execution
of the overall mission, is guaranteed.

7.3. Conclusions

We can conclude that the presented approach is capable of constructing plans and
contingency plans for unmanned vehicles, allowing for the execution of a plan on the basis
of perceived changes in the environment. One of the main achievements of this work is
that the plan, constructed before deployment, was versatile enough to enable a group of
autonomous vehicles to operate together despite that neither the details of the environment
nor the exact behavior of an opposing force were known in the preparation phase.

Equally important was the ability to combine a smart-structured high-level approach
with specific guidelines and protocols for the handling of the individual tasks. This
combines the military’s approach to have standard responses to standard situations with
the flexibility required to make in situ decisions based on the situation at the time. Due to
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this, the behavior of the team of autonomous vehicles will be expected and contextually
understood by the human operator, while leaving the team with the ability to tailor their
joint behavior to the situation on the ground. While a human operator will not be able to
predict reliably what an autonomous vehicle will do once deployed, they can predict with
absolute certainty how any vehicle would react to any specific set of circumstances. This
combines the power of autonomous assets with the hard requirement to understand and
contain the behavior before it occurs.

7.4. Future Work

While many of the challenges related to autonomous or semi-autonomous weapon
systems are outside the scope of our expertise (and mandate), there is no shortage of next
steps that involve practical engineering and are well within the scope of our work. Some of
these have already been mentioned in the article itself and are considered for projects in
the near future (or already ongoing); others are more long-term plans. Among these are:

• In the mission-preparation phase, the plan is constructed based on the iterative de-
composition of tasks into subtasks. The current process of decomposition uses the
provided mission parameters to tailor the plan to the specific situation, but does not
include an optimization towards, e.g., measures of effectiveness for acting in that
situation. Including an optimization process is certainly part of the future work that
will be implemented in follow-up projects.

• In Section 5.1.3, we pointed out that the reasoning in the assessment module is as-
sumed to be directly available in that module itself. Extending the concept of a task
such that it can be used to provide this information to the module is considered (and
ongoing), but it will require tuning to the specific application, and thus our preliminary
insights are omitted here.

• Providing feedback to, and more generally, involving human operators during the
execution of the mission by the autonomous vehicles, will receive more attention
in future projects. As mentioned in Section ??, information on the current state of
the unmanned systems, and their perceived information, together with the assessed
situation and progress of the mission, are already available, and this information can
be shared with operators. In addition, explicit consent from human operators for the
execution of certain tasks during the mission might be required in specific cases and
hence should be provided for.

• More broadly speaking, there is ample room for additional and more fleshed-out
scenarios. We can go a number of ways in that, including (a) more advanced terrain
models, possibly including new features; (b) increasing the number of vehicles and
vehicle classes, and their capabilities; or (c) increasing the complexity of the modelled
rules of engagement. None of these extensions would require fundamental changes
in the developed system, but any of them means a significant increase in the time
required to build the reasoning component.

• We have conceded (see Section 1.1) that we cannot offer a performance evaluation or a
comparison of our approach to the state of the art on the basis of numerical results.
This is due to the specialized nature of our work and because implementing reference
approaches for bench marking and comparison is not feasible (in part because we
aim at a different functionality, namely, one that can do without replanning). We do
understand, however, that in the long run, the approach has to be further refined,
amended, and augmented with the state of the art. While we do not claim to plan this
for our own immediate future work, we do acknowledge the need for a more formal
performance evaluation and encourage the interested reader to contact us.

• Finally, as pointed out in Section ??, the abstract nature of our work allowed us to
gloss over the details regarding the communication for tactical operations. Suffice it to
say that a lot of efforts are directed at this challenge; and indeed, current operations
of the RNLA and the Royal Netherlands Navy (RNLN) make use of state-of-the-art
communication infrastructure. The approach presented here will operate within this
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existing infrastructure. As this is a fundamental aspect of the system, these details will
have to be discussed and presented to the field in due time.
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