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Abstract: The subject of this paper is a programmable con trol system for a robotic manipulator.
Considering the complex nonlinear dynamics involved in practical applications of systems and
robotic arms, the traditional control method is here replaced by the designed Elma and adaptive
radial basis function neural network—thereby improving the system stability and response rate.
Related controllers and compensators were developed and trained using MATLAB-related software.
The training results of the two neural network controllers for the robot programming trajectories are
presented and the dynamic errors of the different types of neural network controllers and two control
methods are analyzed.

Keywords: robot manipulator; programmable control system; neural network; nonlinear multivariate
compensators; modeling; dynamic analysis; dynamic errors

1. Introduction

In the early control design period of the manipulator, the dynamic model of the
system and related system parameters need to be accurately described when designing
the controller [1]. In traditional control design methods, such as computational torque
control and inverse dynamics control, which works fine [2], by calculating the torque of
the robot arm and the construction of your dynamic equation, you can get a good control
effect [3]. However, this is under the premise of being able to get an accurate data model.
However, it is difficult to obtain an accurate mathematical model of a robot during its actual
production and use [4]. Furthermore, due to the effects of different payloads, it may be
difficult to obtain appropriate model-based methods. Recently, neural network calculators
have been used to improve the characteristics of robotic manipulator control systems in the
development of robotic manipulator control systems. In numerical control (CNC) systems,
a neural network interpolator of robot link trajectories can be used to replace the traditional
spline interpolator [5].

This research is used to train compensators using neural networks in numerical control
systems of robotic manipulators and in the absence of precise initial data [6]. The adaptive
neural network compensator is used to replace the traditional PID controller and other
methods for compensating the dynamic error caused by the torsional load in the robot
link drive [7]. The nonlinear dynamic coupling of the drive selects the two-strait robot
manipulator in the angular coordinate system as the simulated control object [8].

The purpose of this work is to synthesize and train a multi-dimensional neural network
controller to compensate and correct the dynamic error of the robot trajectory. Both the neu-
ral network controller and simulation of the project were performed in MATLAB(R2018b,
The MathWorks, Inc. Protected by U.S and international patents) [9].

There are mainly two types of neural networks trained in this paper: an Elman neural
network and an RBF adaptive neural network.
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An Elman neural network is a typical local regression network (global feed forward
local recurrent). An Elman network can be viewed as a recurrent neural network with local
memory units and local feedback connections [10]. Its main structure is a feedforward
connection, including an input layer, hidden layer, and output layer, and its connection
weight can be modified by learning; the feedback connection is composed of a group of
“structural” units that are used to memorize the output value of the previous moment.
The connection weights are fixed. In this kind of network, in addition to the ordinary
hidden layer, there is a special hidden layer called the association layer (or connection unit
layer) [11]; this layer receives feedback signals from the hidden layer and each hidden
layer node—each has a corresponding association layer node connection. The role of the
association layer is to use the state of the hidden layer at the previous moment together
with the network input at the current moment as the input of the hidden layer through the
connection memory, which is equivalent to state feedback [12]. It is a dynamic feedback
network, which can internally feedback, store, and utilize the output information of the
previous moment. It can not only realize the modeling of the static system, but also realize
the mapping of the dynamic system and directly reflect the dynamic characteristics of the
system. It is better than a BP neural network in terms of its performance and stability [13].

The structure of the RBF network is similar to the multi-layer forward network, which
is a three-layer forward network. The input layer is composed of signal source nodes; the
second layer is the hidden layer. The number of hidden units depends on the needs of the
described problem. The transformation function of the hidden unit is the RBF radial basis
function, which is radially symmetric to the center point. It has a decaying non-negative
nonlinear function; the third layer is the output layer, which responds to the effects of the
input mode [14]. The transformation from the input space to the hidden layer space is
nonlinear, while the transformation from the hidden layer space to the output layer space
is linear. This also makes the RBF neural network have a very fast system response speed,
which is also its biggest feature [15].

In this paper, by constructing the dynamic equation of the manipulator robotic, we
tested the two constructed neural networks in the same state and obtained the following
results: 1. The two constructed neural networks reached the theoretical position in the case
of unknown perturbations and incomplete dynamic model data and demonstrated the high
efficiency of the control. 2. Through the results of the external disturbance compensation, it
was also found that although the response speed of the RBF adaptive neural network was
faster, its accuracy was lower than that of the Elman neural network. However, the RBF
adaptive neural network performed better in local approximations. 3. For the designed RBF
adaptive neural network, the control algorithm was directly designed in the workspace,
which improved the system response time and was able to ensure that the adaptive control
was always stable.

2. Materials and Methods

In this paper, the controlled object was selected as the n-joint manipulator, and its
dynamic equation was:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = τ − τd (1)

where M(q) is the n× n positive definite inertia matrix of the order; C
(
q,

.
q
)

is for the n× n
order centrifugation and Gohrenheit force terms; G(q) is an n× 1 order gravity term; the q
vectors are the joint variables; τ is the moment acting on the joint; and τd is the disturbance
for the outside world. In practical engineering, M(q), C

(
q,

.
q
)
, and G(q) are often unknown

factors and can be expressed as follows:

M(q) = M0(q) + EM
C
(
q,

.
q
)
= C0

(
q,

.
q
)
+ EC

G(q) = G0(q) + EG

(2)
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where EM, EC, and EG are modeled errors for M(q), C
(
q,

.
q
)
, and G(q), respectively. The

controller design defines the tracking error as:

e(t) = qd(t)− q(t) (3)

where qd(t) is the ideal tracking instructions and q(t) is the actual location. The sliding
mode function is defined as:

r =
.
e + Λe (4)

where Λ > 0.
.
qr = r(t) +

.
q(t) is defined, followed by

..
qr =

.
r(t) +

..
q(t),

.
qr =

.
qd + Λe

and
..
qr =

..
qd + Λ

.
e◦ by Equation (1), as follows:

τ = M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + τd

= M(q)
( ..
qr −

.
r
)
+ C

(
q,

.
q
)( .

qr − r
)
+ G(q) + τd

= M(q)
..
qr + C

(
q,

.
q
) .
qr + G(q)−M(q)

.
r− C

(
q,

.
q
)
r + τd

= M0(q)
..
qr + C0

(
q,

.
q
) .
qr + G0(q) + E′ −M(q)

.
r− C

(
q,

.
q
)
r + τd

(5)

Among these E′ = EM
..
qr + EC

.
qr + EG for the above system and the design controller

is as follows:
τ = τm + Kpr + Ki

∫
rdt + τr (6)

where Kp > 0; Ki > 0; τm for the control term based on the nominal model; τr is for robust
terms and

τm = M0(q)
..
qr + C0

(
q,

.
q
) .
qr + G0(q)

τr = Krsgn(r)
(7)

where Kr = diag[krii]; krii > |Ei|, i = 1, · · · , n; E = E′ + τd is the coefficient matrix of the
linear compensator. The purpose of this project was to design a controller through the
Elman and RBF adaptive neural networks. Through simulation and training, the unknown
external disturbance can be compensated more quickly, so as to obtain higher stability and
shorten the system response time.

By synthesizing Equations (5)–(7), we can obtain:

M0(q)
..
qr + C0

(
q,

.
q
) .
qr + G0(q)−M(q)

.
r− C

(
q,

.
q
)
r + E′+ τr

= M0(q)
..
qr + C0

(
q,

.
q
) .
qr + G0(q) + Kpr + Ki

∫ t
0 rdt + Krsgn(r)

(8)

where

M(q)
.
r + C

(
q,

.
q
)
r + Ki

∫ t

0
rdt = −Kpr− Krsgn(r) + E (9)

Under this model, the traditional controller can only work under the unknown model
and uncertainty, which causes the control input to chatter. To solve this problem, two
kinds of neural networks were used to approximate the model and compensate for external
disturbances.

3. Training of Nonlinear Neural Network Compensators
3.1. Designing Compensators with Elman Neural Networks

This part of the article is for the development of a model of an Elman neural control
scheme for nonlinear dynamic systems in a manipulative robot.

As an example, consider an industrial n-link robot manipulator, the links of which are
interconnected by rotational motion drives. The position of the links is determined by the
angles ϕ1, ϕ2, ϕ2 . . . In addition, weight forces act on the robot links, which are directed at
a certain angle α to the selected coordinate system, which demonstrates the ability of the
device to work at any angle to the horizon [16].

The object of the control is the n joint robotic arm, whose kinetic equation is:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + F

( .
q
)
+ τd = τ (10)
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Through the dynamic analysis of the manipulator in the second part and
Equations (1)–(4), the following equations can be obtained:

M
.
r = M

( ..
qd −

..
q + Λ

.
e
)
= M

( ..
qd +

.
e
)
−M

..
q

= M
( ..
qd + Λ

.
e
)
+ C

.
q + G + F + τd − τ

= M
( ..
qd + Λ

.
e
)
− Cr + C

( .
qd + Λe

)
+ G + F + τd − τ

= −Cr− τ + f + τd

(11)

where f (x) = M
..
qr + Cr + G + F;

.
qr =

.
qd + Λe. As f (x), you can see from the expression

f (x) that it contains all the model information—that is, in Equation (7), all the model
information can be represented by f (x). The control goal was to use the neural network
approximation f (x) to design a robust controller that does not require model informa-
tion. The approximation used was Elman network approximation f (x) and the network
algorithm was:

hj = xj(k− 1), j = 1, 2, · · · , m
f (x) = W1>h(k) + W2(u(k− 1)) + ε

(12)

where x is the input of the Elman neural network; W is the ideal weights for the network;
W1 connect the weights from the input layer to the middle layer; W2 connects the

weights from the output layer to the middle layer h =
[

h1 h2 · · · hm
]T; ε is a

very small, positive real number. Approximation was carried out using Elman neural
networks f (x); j is the number of neurons in the hidden layer of the neural network.

The advantage of the Elman neural network is increased stability, since it has feedbacks
from the outputs of internal neurons to the intermediate layer, which makes it more stable
compared to a recurrent network of a similar type (for example, the Hopfield neural
network, in which internal feedbacks are brought to the primary inputs, where signals
are mixed). In addition, the Elman neural network allows you to take into account the
background of the observed processes and accumulate information to choose the right
robot control strategy [11].

f̂ (x) = Ŵ1>h(k) + Ŵ2(u(k− 1))

where W̃ = W − Ŵ; ‖W ‖F6 Wmax. Combining the above equation and Formula (12), we
can get:

f − f̂ = W1>h(k− 1) + W2(k) + ε− Ŵ1>h(k) + Ŵ2(u(k− 1))
= W̃1>h(k− 1) + W̃2(k) + ε

(13)

By Equation (13), referencing the [11] design methods, the design control laws are:

τ = f̂ (x) + Kvr− v (14)

where v = −(εN + bd)sgn(r) for the robust term; f̂ (x) is an approximation of f (x).
ELMAN The network weight adaptive law is:

.
Ŵ = ΓhrT (15)

where Γ = ΓT > 0. The general Equation (13) can be substituted into (10), a collation of the
Elman neural network adaptive control MATLAB simulation:

M
.
r = −Cr−

(
f̂ (x) + Kvr− v

)
+ f + τd

= −(Kv + C)r + W̃1>h(k) + W̃2(u(k− 1)) + ε + (ε + τd) + v
= −(Kv + C)r + ζl

(16)
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where ζ1 = W̃1T(k)ϕ + W2
(

u
(

k̃− 1
))

+ (ε + τd) + v ; with reference by [7], the analysis
of the closed-loop system is as follows: the Lyapunov function is defined as:

L =
1
2

rTMr +
1
2

tr
(

W̃1(k− 1)TΓ−1W̃1(k)
)
+

1
2

tr u
(

W2
(

k̃− 1
))

(17)

Derivating Equation (17) to get:

.
L = rTM

.
r +

1
2

rT
.

Mr + tr

(
.̃

Ŵ1(k)TΓ−1
.

W1

)
+ tru

(
˜.

Ŵ2(k− 1)TΓ−1
.

W2

)

By substituting Equation (15) into the above equation, the following Equation can be
defined:

.
L = −rTKvr + 1

2 rT
( .

M− 2C
)

r

+trW̃1(k)
T(

Γ−1
.

W1 + hrT
)
+ trW2(k− 1)

(
Γ−1

.
W2
)
+ rT(ε + τd + v)

(18)

According to the following conditions:

(1) oblique symmetry characteristics of the manipulator rT
( .

M− 2C
)

r = 0;

(2) rTW̃Th = tr
(
WThrT);

(3)
.
→
W = −

.
Ŵ = −ΓhrT.

where .
L = −rTKvr + rT(ε + τd + v) (19)

consider
rT(ε + τd + v) = rT(ε + τd) + rT(−(εN + bd)sgn(r))

= rT(ε + τd)− ‖ r ‖ (εN + bd) 6 0
(20)

then the following definition can be obtained

.
L 6 −rTKvr 6 0 (21)

The neural network learning algorithm consists of the following steps:

1. At the initial moment of time t = 0, all neurons of the hidden layer are set to the zero
position—the initial value is zero.

2. The input value is fed to the network, where it is directly distributed.
3. Set t = t + 1 and make the transition to step 2; neural network training is performed

until the total root mean-square error of the network takes the smallest value.

3.2. Designing a Compensator with an Adaptive Radial Basis Function Neural Network for Local
Model Approximation

In this section, a nonlinear dynamic model compensator is designed based on an
Adaptive Radial basis function (RBF) neural network, based on the literature [8,11], which
is then compared with the neural network compensator designed in the previous section.

The dynamic equation of the manipulator has the following properties:
Property 1: The inertia matrix Mx(q) is symmetric positive definite;
Property 2: If Cx

(
q,

.
q
)

is defined by Christoffel’s notation rule, the matrix
.

Mx(q)− 2Cx
(
q,

.
q
)

is skew symmetric [17].
Since Mx(q) and Gx(q) are just functions of q , they can be modeled using static neural

networks [16,18–20].

mxkj(q) = ∑
l

θkijξkij(q) + εmkj(q) = θT
kjξkj(q) + εmkj(q)

gxk(q) = ∑
l

βklηkl(q) + εkk(q) = βT
k ηk(q) + εkk(q)

(22)
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Among these, θkjl , βkl ∈ R are the weights of the neural network; ξkjl(q), ηkl(q) ∈ R
is the radial basis function whose input is a vector; q, εmkj(q), εkk(q) ∈ R are the modeling
errors of mxkj(q) and gxk(q), respectively, and are assumed to be bounded.

For C
(
q,

.
q
)
, modeling with a dynamic neural network with inputs q and q, the neural

network model of Cxkj
(
q,

.
q
)

is:

Cxkj
(
q,

.
q
)
= ∑

l
αkilξkil(z) + εikj(z) = αT

kjξkj(z) + εikj(z) (23)

Among these, z =
[

qT .
qT
]T
∈ R2n; αkjl ∈ R is the weight; ξkjl(z) ∈ R is the

radial basis function of the input vector z; and εckj(z) is the modeling error of the element
cxkj
(
q,

.
q
)
, assuming it is also bounded [20,21].

Using neural network modeling, the dynamic equation of the manipulator in space
can be written as:

Mx(q)
..
x + Cx

(
q,

.
q
) .
x + Gx(q) = Fx (24)

Using GL (general linear) matrices and their multiplication operations, Mx(q) can be
written as:

Mx(q) =
[
{θ}>·{Ξ(q)}

]
+ EM(q) (25)

where {θ} and {Ξ(q)} are GL (general linear) matrices whose elements are θT
kj and ξkj(q);

E_M (q)∈Rˆ(n × n) is a matrix whose elements are modeling errors εmkj(q).
Similarly, for C

(
q,

.
q
)

and Gx(q):

Cx(q, q .) =
[
{A}T ·{Z(z)}

]
+ EC(z) G_x (q) = [{B}̂T·{H(q)}] + E_G (q)) (26)

where {A}, {Z(z)}, {B}, and {H(q)} are GL matrices and GL vectors whose elements are
αkj, ξkj(z), βk and ηk(q); EC(z) ∈ Rn×n and EG(q) ∈ Rn are the elements and matrices of
the modeling errors εckj(z) and εkk(q), respectively.

Assuming xd(t) is the ideal trajectory of the workspace, then
.
xd(t) and

..
xd(t) are the

ideal velocity and ideal acceleration:

.
xr(t) =

.
xd(t) + Λe(t)

r(t) =
.
xr(t)−

.
x(t) =

.
e(t) + Λe(t)

(27)

where Λ is a positive definite matrix.

Lemma 1 (Barbalat’s Lemma). If the function h : R→ R is a uniform continuous function
defined by [0,+∞ ), and limt→∞

∫ t
0 h(δ)d exists and is finite, then limt→∞h(t) = 0 is obtained [22].

Lemma 2. Let e(t) = h(t) ∗ r(t), where * represents convolution, h(t) = L−1H(s) and H(s) is a
strictly exponentially stable transfer function of order n * n. If r ∈ Ln

2 , then e ∈ Ln
2 ∩ Ln

∞,
.
e ∈ Ln

2 , e
is continuous, e→ 0, r → 0,

.
e→ 0 when t→ ∞ .

Consider a second-order SISO system and let r(t) = ce(t) +
.
e(t), then we can obtain

r(s) = e(s)(c + s), e(s) = 1
s+c r(s), and H(s) = 1

s+c . To ensure that H(s) is a strictly
exponentially stable transfer function, it can be defined that c > 0. If the above conditions
are satisfied, then r(t) = 0, ce(t) + e(t) = 0 can be obtained, thus ensuring that the system is
exponentially closed [17].

Using (σ̂) to represent the estimated value of (·), define d(·) = (·) − (σ̂), then{
θ̂
}

,
{

Â
}

, and
{

B̂
}

represents the {θ}, {A}, and {B} estimates.
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Designing the controller this can be defined as:

Fx =

[{
θ̂
}T
·{θ(q)}

]
..
xr +

[{
Â
}T
·{Z(z)}

]
.
xr +

[{
B̂
}T
·{H(q)}

]
+ Kr + kssgn(r) (28)

where K ∈ Rn×n > 0; ks >‖ E ‖; E = EM(q)
..
xr + EC(z)

.
xr + EG(q). The first three terms

of the controller are model-based controls, the K_r term is equivalent to the proportional
derivative (PD) control, and the last term of the control law is a robust term that suppresses
the modeling error of the neural network.

From the expression of the controller, it is obvious that the controller does not need
to solve the Jacobian inverse matrix. In actual control, the loser can be obtained by
τ = JT(q)Fx [19].

Substituting Equations (24) and (25) into Equation (23), we can obtain:{[
{θ}T·{Ξ(q)}

]
+ EM(q)

} ..
x +

{[
{A}T·{Z(z)}

]
+ EC(z)

} .
x

+
[
{B}T·{H(q)}

]
+ EG(q) = Fx

(29)

Substituting the control law (27) into the above formula, we can obtain:{[
{θ}T·{E(q)}

]
+ EM(q)

} ..
x +

{[
{A}T·{Z(z)}

]
+EC(z)}

.
x +

[
{B}T·{H(q)}

]
+ EG(q)

=

[{
θ̂
}T
·{Ξ(q)}

]
..
xr +

[{
Â
}T
·{Z(z)}

]
.
xr

+

[{
B̂
}T
·{H(q)}

]
+ Kr + kssgn(r)

(30)

Substituting X =
.
xr − r and

..
xr =

..
xr −

.
r into the above equation, we can obtain:{[

{θ}T·{θ(q)}
]
+ EM(q)

}( ..
xr −

.
r
)
+
{[
{A}T·{Z(z)}

]
+EC(z)}

( .
xr − r

)
+
[
{B}T·{H(q)}

]
+ EG(q)

=

[{
θ̂
}T
·{θ(q)}

]
..
xr +

[{
Â
}T
·{Z(z)}

]
.
xr +

[
〈B̂〉>·{H(q)

〉]
+ Kr + kssgn(r)

(31)

Substituting Equations (24) and (25) into the above equations, we can obtain:

M f (q)
.
r + Cx

(
q,

.
q
)
r + Kr + kssgn(r)

=
[
{θ}>·〈B(q)}

] ..
xr +

[
{Â〉>·{Z(z)}

] .
xr +

[
{B̃}>·{H(q)}

]
+ E

(32)

For the closed-loop system, if K > 0, k,>‖ E ‖ parallel, and the adaptive law is
designed as:

.
θ̂k = Γk·{ξk(q)}

..
xtrk.

α̂k = Qk·{ξk(z)}
.
xrrk.

β̂k = N↓ηk(q)rk

(33)

Among these, Γk = ΓT
k > 0; Qk = QT

k > 0; Nk = NT
k > 0 and θ̂k and α̂k are the vectors

of θ̂k and âk, respectively; then, θ̂k, α̂t·β̂k ∈ L . . . , e ∈ L∗2 ∩ L∗, e is continuous. And e→ 0
and

.
e→ 0 when t→ ∞ .
According to an integral line Lyapunov function proposed in Reference, the stability

can be analyzed as follows:

RV =
1
2

rTMk(q)r +
1
2

n

∑
k=1

θT
k Γ−1

k θk +
1
2

n

∑
k=1

∼
α

T
k Q−1

k
∼
αk +

1
2

n

∑
k=1

β̂T
k N−1

k β̂k (34)
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Among these, Γk, Qk, and Nk are positive definite pair-second matrices. Derivative
with respect to V, we obtain:

R
.

V = rTMk
.
r +

1
2

rT
.

Mkr +
n

∑
k=1

θ
T
k Γ−1

k

.
θk +

n

∑
k=1

αT
k Q−1

k
.
αk +

n

∑
k=1

β̂T
k N′k

.
βk (35)

Since the matrix
.

Mx(q)− 2Cx
(
q,

.
q
)

is obliquely symmetric, then rT
( .

Mx − 2Cx

)
r = 0,

and the below formula can be obtained:

.
V = r>

(
Ms

.
r + Csr

)
−

n

∑
k=1

θ
>
k Γ−1

k

.
ˆ
θk +

n

∑
k=1

α>l Q−1
k

.
αk −

n

∑
k=1

β
>
k N−1

k

.
ˆ
βk (36)

Substituting Equation (33) into the above equation, we can obtain:

.
V = −r>Kr− ksr>sgn(r) +

n
∑

k=1
〈θk}>·{ξk(q)}

..
xtrk +

n
∑

k=1

∼
α
>
k ·〈ξk(z)〉

.
x∗rk

+
n
∑

k=1
β>k ηk(q)rk + r>E−

n
∑

k=1
θ>k Γ′k

.
ˆ
θk +

n
∑

k=1
α>k Q−k

.
ˆ
αk −

n
∑

k=1
β̂>k N−1

k

.
ˆ
βk

(37)

Substituting the adaptive law (32) into the Equation (37), and combining the inequality
kn >‖ E ‖ parallel, we can obtain:

.
V = −rTKr− kxrTsgn(r) + rTE 6 0 (38)

Convergence Analysis:

(1) From
.

V 6 −r>Kr 6 0 and K > 0, from the lemma e ∈ Ln
2 ∩ Ln,

.
e ∈ Ln

2 , e, e∈L2n, e is
continuous; then, when t→ ∞ , e→ 0,

.
e→ 0

(2) From
.

V 6 −r>K, we get 0 6 V(t) 6 V(0), ∀t > 0. Therefore, when V(t) ∈ L, there
are θk,α̂k, βk ∈ L, and θ̂k, α̂k, β̂k ∈ L .

4. Simulation Study

This section presents the simulation results to evaluate the operation of the proposed
adaptive neuro controller. In this section, the proposed control scheme is applied to a two-
link project, the mathematical model of which was developed in the Solid works package
and imported in the MATLAB package by the second generation of Simulink [22,23].

Initially, the first link moves, but the second one does not. It is shown that after the
training of the first link, external disturbances are worked out. Then, the second link starts
moving, and the first one stops. After that, both links move, exerting dynamic disturbances
on each link. The dynamic equation can be written as:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = τ − d

M(q) =
[

q1 + 2γ cos(q2) q1 + q2 cos(q2)
q1 + q2 cos(q2) q1

]

C
(
q,

.
q
)
=

[
−q2

.
q2 sin(q2) −q2

( .
q1 +

.
q2
)

sin(q2)
q2

.
q1 sin(q2) 0

]

G(q) =
[

g cos q1 + g cos(q1 + q2)
g cos(q1 + q2)

]
where the known parameters are j = 12, q1 = 9, q2 = 8, g = 9.8 [23] and the external
interferences of the system are d = d1 + d2e + d

.
e, d1 = 2, d2 = 3, d3 = 6. Assuming that
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the expected instructions for tracking the link angle and angular velocity are the following
equation:

q1d = 1 + 0.2 sin(0.5πt)

q2d = 1− 0.2 cos(0.5πt)

then the initial state of the system is [q1 q2]ˆT = [0.6 0.3]ˆT, ∆M = 0.6M, ∆C = 0.6C,
∆G = 0.6G. When modeling, using the formula of the control law and the formula of the
adaptive law, α = 2, γ = 20, k = 0.001. In the neural network, the parameters of the
Gaussian function were set to c = [−2 −1 0 1 2] and b = 3, and the initial weight was 0.1.
The model of the manipulator is shown in Figure 1.
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(1) Simulation Modeling of Elman Neural Networks

In the Matlab/Simulink system, an artificial neural network model was created to
control a manipulative robot, containing an input layer of 15 neurons and a hidden layer
varying from 12 to 19 neurons that have local feedback through delay lines.

It can be seen from the Figures 2 and 3 that in the case of adaptive compensation,
there was a certain degree of disturbance at the initial stage, and the angular velocity and
position tended to converge.

It can be seen from the Figure 4 that the disturbances were compensated and that the
robot control process was quite satisfactory.

The experimental results also demonstrate that the proposed method was sufficiently
resistant to dynamic perturbations due to unknown situations. The proposed control
method is original and successfully exploits the advantages of SMC, neural networks, and
adaptive control.

(2) Simulation Modeling of RBF Neural Networks

For the approximation of each element of Mx(q) and Gx(q), it is assumed that the
input vector of the RBF neural network is q and the number of hidden layer points is nine.
For Cx

(
q,

.
q
)
, the input vector

(
q,

.
q
)

of the RBF neural network is assumed and the number
of design hidden layer points is seven.
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The parameters of all Gaussian functions are taken as
ci =

[
−1.5 −1.0 −0.5 0 0.5 1.0 1.5

]
and bi = 10, The initial threshold of the

neural network is set to zero in the simulation. The control law adopts Formula (26), and

the adaptive law adopts Formula (31). The benefit is chosen as K =

[
30 0
0 30

]
, ks = 0.5.

From Lemma 2, it is desirable that Λ =

[
15 0
0 15

]
. The parameters of the adaptive law

(31) are taken as \Γk = diag{2.0}, Qk = diag{0.10} and Nk = diag{5.0}. The simulation
results are shown in Figures 5 and 6.
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As can be seen from the Figures 5 and 6, at the beginning of the simulation, the error
value was relatively large due to the neural network learning phase of the control input.
When the neural network compensator passed the learning stage, the errors were basically
eliminated, and the motion trajectory and the estimated value converged in the RBF neural
network relatively quickly, but the neural network training and compensation accuracy
were lower than Elman neural network. The unknown perturbation was almost completely
cancelled after 1 s.

From Figure 7 can be seen that since the tracking trajectory was not a continuous
excitation, the estimated values ‖ M̂x(q) ‖, ‖ Ĉx

(
q,

.
q
)
‖, and ‖ Ĝx(q) ‖ did not converge to

‖ Mx(q) ‖, ‖ Cx
(
q,

.
q
)
‖, and ‖ Gx(q) ‖, which is often encountered in practical engineering.
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neural network.

From the simulation of the two neural networks, it can be seen from Figures 8 and 9
that although the RBF neural network has faster training and learning speed under the
same trajectory planning. But Elman neural network is better in terms of compensation
accuracy for external disturbances and errors. However, when there were more interference
conditions and uncertain environments, the overall training results of the RBF were better.

In theory, as enough neurons are added to the hidden layer of the Elman network,
higher learning expectations will be obtained. However, in the actual simulation, once the
number of neurons in the hidden layer exceeds 60, the neural network will be in a state of
over-learning and the accuracy will drop.
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5. Conclusions

Therefore, summarizing the research results, the following conclusions can be drawn:
During the research process, the quality of a robot to perform a specific task depends not
only on the quality of the manufacturing materials and the quality of the moving parts,
but also on the quality of the mathematical model of the robot. The control efficiency and
accuracy of the robot is based on the analysis of its dynamic model, reducing the error
between the planned trajectory and the actual trajectory. This paper presents two different
neural networks for manipulating nonlinear dynamic systems of robots by developing
models of adaptive neural control schemes based on Elman networks. The choice of
network architecture is sound. Simulations of the RBF adaptive neural network show that,
despite the faster response time, in the absence of continuous excitation, the system does
not converge and the error value is much larger than that of the Elman network. However,
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if the simulation is performed locally, or if the system dynamics structure is complex and
there are many external disturbances, the response time and accuracy of the RBF adaptive
neural network will be better. The rotation model of the planar manipulator is described by
the dynamic model equation and the output equation. The simulation and training of an
adaptive neural network controller confirms its use in the presence of imprecise dynamic
structural data and unknown external disturbances. A computer simulation was applied to
the optimal control model, tracking the rotation angle of the manipulator, which confirmed
the theoretical position and demonstrated its high operating efficiency. This method can
also be applied to the simulation of multi-degree-of-freedom manipulators. At the same
time, the improved model can be used for the adaptive control method of the manipulator.
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