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Abstract: Thanks to the development of 5G networks, edge computing has gained popularity in
several areas of technology in which the needs for high computational power and low time delays
are essential. These requirements are indispensable in the field of robotics, especially when we are
thinking in terms of real-time autonomous missions in mobile robots. Edge computing will provide
the necessary resources in terms of computation and storage, while 5G technologies will provide
minimal latency. High computational capacity is crucial in autonomous missions, especially for cases
in which we are using computationally demanding high-level algorithms. In the case of Unmanned
Aerial Vehicles (UAVs), the onboard processors usually have limited computational capabilities;
therefore, it is necessary to offload some of these tasks to the cloud or edge, depending on the time
criticality of the application. Especially in the case of UAVs, the requirement to have large payloads
to cover the computational needs conflicts with other payload requirements, reducing the overall
flying time and hindering autonomous operations from a regulatory perspective. In this article, we
propose an edge-based architecture for autonomous UAV missions in which we offload the high-level
control task of the UAV’s trajectory to the edge in order to take advantage of the available resources
and push the Model Predictive Controller (MPC) to its limits. Additionally, we use Kubernetes to
orchestrate our application, which runs on the edge and presents multiple experimental results that
prove the efficacy of the proposed novel scheme.

Keywords: edge computing; UAV; model predictive control; Kubernetes

1. Introduction

Today, the need for autonomous solutions in robotics is rapidly increasing, while
Unmanned Aerial Vehicles (UAVs) are used more and more every day for scenarios that
range from inspection, maintenance, mapping and exploration to surveillance, photography
and transportation uses. Some of these missions are quite complex, especially when the
environments in which the UAV must operate are harsh and unknown, a great amount
of data is generated from sensors and computationally heavy algorithms are required to
ensure the desired levels of autonomy. For some of these tasks, the data processing and
overall algorithmic operation must happen in real-time and in a bounded time delays
perspective. In this article, the goal is to control the trajectory of a UAV by offloading
the control architecture to an edge server. For this reason, we used a Model Predictive
Controller (MPC), which is extremely effective but can be computationally heavy. The
computational demands of the controller are due to the MPC optimization method, which
can have a high complexity. Additionally, the chosen MPC horizon can be long and,
consequently, require a significant amount of computational resources for performing the
needed optimizations in fixed and bounded time instances. Taking into consideration the
high computational demands of the MPC, we propose a novel edge-based architecture to
offload the MPC to the edge. At the same time, we propose the utilization of Kubernetes
architecture for the overall orchestration. The edge server will give us the opportunity to
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experiment with various MPC horizons and rates in several use cases, while at the same
time the system will not suffer from significant time delays. In contrast, Kubernetes will
automate the deployments, scaling and managing of the control application, which runs
inside a docker container.

1.1. Background and Motivation

Edge computing has piqued the interest of many researchers and engineers. The
capabilities can be significant in many cases, such as autonomous vehicles, traffic manage-
ment, remote monitoring, smart grid, predictive maintenance, patient monitoring, content
delivery, smart homes and even more areas [1]. In robotics, edge computing is gaining
remarkable attention, and researchers are trying to integrate edge capabilities into their
applications. In [2], a system architecture for offloading SLAM tasks to the edge is pre-
sented. The system consists of four layers: the robot and edge layers for data processing
and analysis, a fog layer for distributed storage and a cloud layer for monitoring and
general mission control. In this case, the edge is used for real-time decisions thanks to
minimal latency times. In [3], a system to teleoperate dynamic self-balancing robots that can
detect and pick up objects through the edge (dynamic self-balancing navigation controller)
and cloud (assisted teleoperation and visual recognition) is demonstrated, while in [4],
researchers approached the task of object recognition and grasp planning by a mobile robot,
where deep robot learning distributes computation, storage and networking resources
between the cloud and the edge. In [5], a fog robotics architecture is proposed, in which
the response rate of the robots is validated, and the whole system is examined in terms of
latency. A search planner algorithm using deep learning is designed at the edge for UAVs
in [6].

In this work, we focus on proposing a novel architecture for offloading the high-
level and computationally heavy motion controller to the edge in order to control the
trajectory of a UAV. As in our case, MPC has been, in general, proposed for offloading to
the edge mainly for process control-oriented approaches, as is depicted in the following
articles, in which related architectures have been evaluated in terms of their latencies and
uncertainties. In comparison to our work and the proposed framework, we are ahead
of the state of the art, and we propose a novel control and robotics-oriented architecture
with trending technologies, such as Kubernetes. In [7], the overview of an edge/cloud
architecture is described, and an example is presented to evaluate a remote MPC to control
a ball and beam system, while an architecture with two offloaded MPCs (on the edge and
the cloud) is described in [8,9]. In [10,11], the system is composed of multiple controllers
again, but, this time, there is an LQR locally, which does not require many computational
resources, and a much more demanding MPC is placed on the edge. Researchers in [12]
evaluated the strategy of a system by changing the values of the MPC horizon. In [13], the
authors proposed offloading the computationally heavy MPC to multiple ground-based
computational units (CUs). This work is focused on an architecture in which multiple
ground CUs carry on the task of controlling multiple UAVs, even when the CUs are less
than the UAVs. This architecture is characterized by the event-triggered distributed MPC
and is evaluated through a simulation setup.

Sometimes, the edge is used for offloading complex procedures in industrial environ-
ments. In [14], applications are deployed in docker containers, which run on a mobile edge
server. The containers contain remote controllers for controlling the two robot arms in an
industrial environment. The goal of the robotic arms is to complete cooperation tasks while
receiving commands from the edge. In [15], researchers were concerned about safety issues;
this is why they implemented a switching multi-tier control, a demanding controller with
sophisticated algorithms, while a safety controller runs locally. The switcher is responsible
for choosing between the two controllers, or, in other words, for switching from the edge
to the safety controller in case of an emergency. A switching mechanism is also presented
in [16], where the offloading decision mechanism will decide between a local or remote
(edge-based) operation of path planners and estimators for a mobile robot. Advanced
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algorithms, which are developed in containerized form and offloaded to the edge, are used
when the switching mechanism favors the remote operation.

In the proposed novel architecture, we introduce a Kubernetes component-oriented
architecture and novelly deploy our application, specifically oriented for the case of robots
on a Kubernetes cluster. Kubernetes are widely used in cloud and edge computing solutions,
but their potential in the robotics community has not been explored until now. In [17], an
optimization method is presented for distributing containers, which applies AI and feature
extraction methods to big data collected from various sensors from smart homes, cities,
construction sites and robots. The containers are distributed to the cloud, edge and fog,
based on a decision method and depending on the application requirements. The decision-
making method is based on stochastic processes, while an architecture that automates
the whole process is designed and implemented using Kubernetes’ orchestration. In [18],
an edge architecture and an open-source network are introduced for distributed edge
and cloud resources. In this work, Kubernetes is used for orchestrating a virtual cluster
comprising Virtual Machines (VMs). Container orchestration is also the subject of [19], in
which researchers focused on providing low-latency edge services for robotic applications
while containers interact with each other through plugins implemented based on Container
Network Interface (CNI). Finally, similar frameworks with a different architecture are
presented in [20]. In this case, an architecture using Docker, Kubernetes and a Robotic
Operating System (ROS) is introduced in which the robotic applications are organized in a
ROS framework and deployed into cloud clusters. The system’s architecture was evaluated
through the experimental results of a mobile robot interacting with an industrial agile
production chain; however, this approach did not focus on the control-oriented needs or
the offloading key performance components on the edge, e.g., the key high-level motion
planning framework.

Though VMs have been used widely for offloading robotic applications to the edge, the
benefits of a containerized application and Kubernetes constitute a preferred infrastructure
for our architecture. Since containers only emulate software components, such as system
libraries, external software packages and other operating system level applications [21],
they are more lightweight and easier to iterate, whereas VMs need much more time
to be deployed because they emulate an entire machine down to the hardware layers.
Our containerized MPC application can be deployed in any cluster rapidly and easily.
Furthermore, some robust pre-made container images, such as the ROS image used in this
work as an entry point, are provided. Finally, multiple software packages can be deployed
in multiple images to produce a novel and more complete application (we used two
different images for our application). To fully benefit from the advantages of containerized
applications, container orchestrators, such as Kubernetes, are needed. Kubernetes provides
reliability, scalability, robustness and security, which are some essential requirements in
robotic applications [22]. Kubernetes performs multiple essential tasks, such as reducing the
network overhead, increasing the resource usage efficiency, designating hardware resources
for your specific configuration and monitoring nodes and components, which leads to the
smooth execution of the controller on edge. These procedures in a VM environment should
be done manually by the user.

1.2. Contributions

The main goal and contribution of this article is to take advantage of the edge capa-
bilities and establish an edge-based architecture for offloading the high-level MPC-based
motion controller over the edge using a Kubernetes orchestration for enabling autonomous
UAV missions. MPC is a computationally demanding controller; therefore, by offloading
the controller to the edge, we will have the opportunity to run experiments with various
MPC horizons and rates while satisfying the real-time characteristics of the application and
ensuring round-trip bounded time delays. Without the existence of the link to the edge, we
would not be able to run these experiments efficiently because the UAV’s computational
power cannot afford to run these processes without violating the real-time bounds. In this
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article, we propose a novel edge-based architecture for offloading the MPC to the edge
and evaluate the architecture’s capabilities in terms of latency and computational power.
This architecture can also be used in the future for offloading additional more complex
and computationally heavier processes to the edge; thus, we can move towards fully edge-
oriented ubiquitous autonomous solutions. In the novel established architecture, as will be
presented, we concentrate on the edge layer in which the applications are developed with
Kubernetes orchestration, and the MPC, optimizer and ROS master are deployed inside
PODs (Figure 1).

Figure 1. Kubernetes-based edge architecture for controlling the trajectory of one UAV via an MPC
that runs on the edge.

1.3. Outline

The rest of the article is structured as follows: In Section 2, the model predictive control
scheme is presented, and, in Section 3, we describe the novel system’s architecture with
Kubernetes orchestration oriented for robotic applications. Most of the edge providers offer
Kubernetes solutions because of the advantages they provide. On the other hand, there
are some challenges that we might face when using Kubernetes, which will be addressed.
Additionally the parameters of the controller are presented. In the sequel, the architecture
and the software used are presented in Section 4, in which we also evaluate the usage of
the edge/Kubernetes cluster in matters of latency and computation power. Future research
directions and additional tasks that can be assigned to the edge are mentioned in Section 5,
including the conclusions of the article.

2. Model Predictive Control
2.1. UAV Kinematics

Model Predictive Control has been widely used in both research and industrial en-
vironments. In this article, MPC is implemented for following the desired trajectory of a
UAV that is modeled as a six-degrees-of-freedom robot with a fixed body frame, and its
kinematic model can be described by Equation (1) in the body frame as [23]:
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ṗ(t) = vz(t)

v̇(t) = Rx,y(θ, φ)

0
0
T

+

 0
0
−g

−
Ax 0 0

0 Ay 0
0 0 Az

u(t) (1)

φ̇(t) =
1
τφ

(Kφφd(t)− φ(t))

θ̇(t) =
1
τθ
(Kθθd(t)− θ(t))

In Equation (1), p = [px, py, pz]T is the position, and v = [vx, vy, vz]T is the linear
velocity referenced in the global frame. R(φ(t), θ(t)) ∈ SO(3) is the rotation matrix that
describes the attitude in Euler form, while φ and θ ∈ [−π, π] are the roll and pitch angles
along the xW and yW axes, respectively. Furthermore, φd and θd ∈ R and T ≥ 0 are the
desired input values to the system for the roll, pitch and total thrust. The above model
assumes that the acceleration is only dependent on the magnitude and angle of the thrust
vector, produced by the motors, as well as the linear damping terms Ax, Ay, Az ∈ R and
the gravity of earth g. The attitude terms are modeled as a first-order system between
the attitude (roll/pitch) and the desired φd and θd ∈ R, with gains Kφ and Kθ ∈ R and
time constants τφ and τθ ∈ R. It is assumed as well that the UAV is equipped with a
lower-level attitude controller that takes thrust, roll and pitch commands and provides
motor commands for the UAV.

2.2. Cost Function

For the cost function, the UAV’s state vector is represented as x = [p, v, φ, θ]T , and
the control input as u = [T, φd, θd]

T . The system has a sampling time of δt ∈ Z+ using a
forward Euler method for each time instance (k + 1|k). This discrete model is used as the
prediction model of the MPC. The prediction considers a specified number of steps into the
future, called the prediction horizon, which is denoted as N. An optimizer is tasked with
finding an optimal set of control actions, defined by the minimum of this cost function,
by associating a cost to a configuration of states and inputs at the current time and in the
prediction. The predicted state at time step k + j, produced at the time step k, is represented
as xk+j|k. The corresponding control actions are represented as uk+j|k. Additionally, xk
and uk represent the fully predicted states and the corresponding control inputs along the
prediction horizon. The objective of the controller is to navigate to the desired position and
deliver smooth control inputs, and the cost function is presented in Equation (2).

J =
N

∑
j=1

(xd − xk+j|k)
TQx(xd − xk+j|k)︸ ︷︷ ︸

state cost

+ (ud − uk+j|k)
TQu(ud − uk+j|k)︸ ︷︷ ︸

input cost

(2)

+ (uk+j|k − uk+j−1|k)
TQδu(uk+j|k − uk+j−1|k)︸ ︷︷ ︸

control actions smoothness cost

where Qx ∈ R8x8 is the matrix for the state weights, Qu ∈ R3x3 is the matrix for the
input weights and Qδu ∈ R3x3 is the matrix for the input rate weights. In (2), the first
term describes the state error cost, which is the cost penalty associated with the deviation
from a certain desired state xd. The second term describes the input cost that penalizes a
deviation from the steady-state input ud = [g, 0, 0] and represents the inputs that describe
hovering. The final term is added to guarantee that the control actions are smooth, which is
achieved by comparing the input at (k + j− 1|k) with the input at (k + j|k) and penalizes
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the changing of the input from one time step to the next one, with N ∈ N+ to denote the
control horizon of the MPC.

2.3. Constrain Formulation

Except for the cost function, we defined some constraints regarding the control input
rate and the control inputs. To restrict the aggressive and oscillatory behavior of the
controller, we impose these constraints to guarantee successive differences in the control
actions and bounds on their changes. Thus, we set a bound on the magnitude of the change
in control inputs φre f and θre f described by the following equation:

[φre f ,k+j−1|k − φre f ,k+j|k − δφmax]+ = 0

[φre f ,k+j|k − φre f ,k+j−1|k − δφmax]+ = 0. (3)

The same constraints are imposed for θ with δφmax and δθmax as the maximum change
in input.

Moreover, we applied constraints on the control inputs to stabilize the attitude. This
constraint is applied by defining bounds on the thrust input given as:

umin ≤ uk+j|k ≤ umax. (4)

In this work, we focus on evaluating the behavior of an edge-implemented overall
MPC architecture by selecting various values for the horizon and the execution rate. To that
end, we also evaluate the behavior of the system with several experiments, as presented
in Section 4. Furthermore, in Sections 2.3.1 and 2.3.2, we present the reason for running
multiple experiments with different values for these parameters.

2.3.1. MPC Prediction Horizon

One important parameter of the MPC is the prediction horizon because it sets a finite
time-horizon on which the current timeslot will be optimized, while future timeslots will
be taken into account in a repetitive approach. The MPC horizon provides the ability to
anticipate future events and can take control actions accordingly, which can be extremely
handy in dynamic environments, as stated in [24]. A longer horizon might mean more ac-
curate predictions, but these advantages do not come without a cost. Since the optimization
method is based on the prediction horizon, the longer the horizon is, the more computa-
tional resources are needed. That is one of the reasons that we propose and evaluate an
edge-based architecture in Section 4.

2.3.2. MPC Rate

The second parameter with which we decided to experiment is the MPC rate. This
parameter is partially responsible for the execution time of the MPC, since running the MPC
at a high frequency means that control commands generate much faster. This is especially
crucial in our case because the generated commands have to travel from the edge to the
UAV. In the proposed novel architecture, we have two types of time delays. The first is
based on the execution time of the MPC d2, and the second is the time the signal requires to
travel from the edge to the UAV and vice versa d1, as shown in Figure 2. These two time
delays comprise the round-trip time delay. In the presence of the travel time and execution
time delays, there is a mismatch between the time stamp of the CF states, for which the
control command was calculated, and the present CF state, for which the control command
is executed. This mismatch can cause the UAV to fly to a random position, instead of
the desired one, if the delays are relatively long. In robotic-oriented control frameworks,
it is paramount to have a low round-trip time delay so that the UAV is able to react to
commands faster. By choosing a fast MPC (with an increased MPC rate), we can reduce the
round-trip time by reducing the execution time.
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Figure 2. Block diagram of the edge architecture for the UAV-MPC system.

3. Edge Architecture

The application PODs contain Docker containers that run the MPC and ROS master
on the edge, while in this case, Kubernetes is used for the orchestration. A container is a
unit of software that runs code and all the dependencies so that the application deployed
on the container will run quickly and reliably from any computer. A POD is a group of
containers that shares storage and network resources, and Kubernetes is an orchestration
system for automatic application deployment, scaling and management [25]. In our work,
we used two Ubuntu container images with a ROS for deploying the MPC and ROS master
on the edge, as shown in Figure 1. The two images are similar, but, in one, we deployed the
MPC and the optimization method, and, in the other one, we deployed the ROS master.

In the presented edge architecture, the MPC commands are sent from the edge to a
UAV with low or no computational capabilities, as shown in Figure 1. This figure also
represents the basic structure of the system. In the proposed implementation, we utilized
the TCP protocol and the host network to map the listening port of the edge to the port of
each POD, as well as for overall communication between the edge and the local computer.
Furthermore, we ran the ROS master, the MPC and the optimizer ROS nodes on the edge. In
more detail, the ROS master runs on an application POD, while the MPC and the optimizer
run on another application POD. The architecture and the block diagram of the system are
shown in Figure 2. The MPC and the optimizer were deployed in the same POD. The MPC
ROS node subscribes to the odometry topic and the reference topic in order to receive the
states necessary for controlling the UAV and publishes the commands to the command
velocity topic in order to send the commands back to the UAV. On the other side, the
UAV subscribes to the command velocity topic to receive the commands and publishes its
position to the odometry topic. Both the UAV and the MPC node are registered to the ROS
master in order to establish communication between them.

In Figure 2, we can observe the parameters of the system. In order to control the UAV,
we use the reference signal that describes the desired pose and the states signal, which
describes the real pose of the UAV. The reference input signal for the desired trajectory is
depicted as r(k), and the states signal generated by the UAV dynamics are depicted as x(k).
These states are the linear and angular positions and velocities of the UAV. For closing the
overall control loop, we should feed these states signals back to the MPC. As the MPC
is running on the edge, we have to indicate the latency times and, as such, d1 represents
the time delay between the time for which the UAV dynamics generated the states signal
on the local computer to the time in which the signal gets to the MPC on the edge. This
is why the states signal that arrives to the MPC is represented as x(k − d1). We depict
the command signal generated by the MPC as u(k− d2). The value d2 denotes the MPC’s
execution time depending on the MPC rate and the computational process. Again, since
the command signal has to travel from the edge to the local computer, where the UAV
model is implemented, the command signal arriving to the UAV is u(k− d1 − d2). This
command signal also represents the necessary thrust for each one of the rotors for the UAV
to follow the desired trajectory. Finally, y(k) is the output of the system, which describes
the x, y, z, yaw values of the real pose of the UAV.



Robotics 2022, 11, 80 8 of 15

4. Experimental Results and Evaluation

To evaluate the architecture of our system, we used a Crazyflie (CF) [26], shown in
Figure 3, which is a small UAV without computational capabilities. In order to control the
CF, we ran the MPC on the edge and set various different MPC horizons and rates. The
behavior of the CF is depicted in the following figures. To extract these figures, we used
the Matlab software MathWorks. The edge layer used for these experiments consisted of a
Kubernetes cluster located in Luleå, Sweden, within the same network in which we were
operating the CF, and provided computational resources with minimal delays.

Figure 3. The UAV Crazyflie used for the experimental evaluation. CF is a resource-constrained UAV
that is not capable of running the MPC on board.

Based on the performed experiments, we recorded ROSbags of the UAV while flying
and present the corresponding results below. In Figure 4, a three-dimensional view of the
trajectory of the CF is depicted. Figures 5–9 show the responses for the three frame axes (X,
Y, Z) of the CF, while flying in a circular trajectory, for several different horizons, running
at five different MPC rates. Moreover, the error between the reference trajectory and the
real position values for each frame axis is presented in Figure 10. Finally, the round-trip
time is shown in Figure 11 for different MPC rates, while the prediction horizon is set at
100 steps.

Figure 4. The 3D views of the circular trajectories for various MPC rates (from 20 Hz to 100 Hz) and
MPC horizons of 20, 40, 60, 80 and 100 steps.
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Figure 5. Response for a circular trajectory for various MPC rates and an MPC horizon of 20 steps.
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Figure 6. Response for a circular trajectory for various MPC rates and an MPC horizon of 40 steps.
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Figure 7. Response for a circular trajectory for various MPC rates and an MPC horizon of 60 steps.
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Figure 8. Response for a circular trajectory for various MPC rates and an MPC horizon of 80 steps.
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Figure 9. Response for a circular trajectory for various MPC rates and an MPC horizon of 100 steps.

The measurements for the circular trajectory, shown in Figure 4, were captured from
multiple experiments run with every combination of different MPC horizons and rates. The
MPC rates were set at 20 Hz, 40 Hz, 60 Hz, 80 Hz and 100 Hz while the MPC horizon steps
were set to 20, 40, 60, 80 and 100. The responses of the circular trajectories are depicted in
Figure 4, while the responses of each frame axis are depicted in Figures 5–9. From these
figures, we are able to extract some valuable conclusions about our architecture and the
behavior of the system regarding the MPC parameters that we chose to evaluate.

Figures 5–9 depict the responses. We can make an observation, shown more clearly
in the figures regarding the response of the Z axis, that the overshoot decreases when
we increase the MPC horizon. Since the MPC predicts the behavior of the system, it can
follow the desired trajectory with the same velocity in a smoother manner by increasing
the horizon.

The errors between the real and reference values of the response are depicted in
Figure 10. In this figure, it is shown that the error after the CF takes off is always below the
tolerance value of 0.4 m and, during the duration of the trajectory, is mainly under 0.25 m.
This figure indicates the function of the controller, which ensures that the CF follows the
desired trajectory.

In Figure 11, we can observe that by increasing the MPC rate, the round-trip time
is drastically reduced. This was expected since the round-trip time is based partially on
the execution time of the MPC. Additionally, we do not observe much deviation, nor any
significant travel time delays, which can be explained by the fact that we used an edge
computing framework that provides minimal latency and because the CF and the edge are
operating in the same local network.

Regarding the CF microcontroller, the onboard processor is equipped with limited
CPU power and memory, which could become a limitation if users want to implement new
functionalities [27]. The 128KB RAM (the CF’s onboard processor memory) is incapable of
solving the optimization problem, and the execution crashes; thus, there is a need to utilize
external resources (edge).
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Figure 10. Errors between real and reference values of the X, Y and Z axes’ responses.

Figure 11. Round-trip time for a circular trajectory for various MPC rates and an MPC horizon of
100 steps.

The proposed edge architecture can be applied in multiple-use cases and for offloading
various computational components while, in this case, we have used an aerial robot (the
CF) that has no computational resources as a test-bed. To control the CF, we had to offload
the overall high-level control architecture to the edge, a case that will be dominant in
several scenarios in the future since the demand for more computationally heavy tasks is
continuously increasing.
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5. Conclusions and Future Work

In this article, we proposed a novel edge-based architecture-oriented MPC scheme
with Kubernetes orchestration for controlling the trajectory of a UAV and, at the same
time, held multiple experiments to evaluate the behavior of the proposed framework.
As presented, we achieved control of the UAV to follow the desired trajectory, while the
high-level motion controller ran on the edge. In the proposed architecture, Kubernetes
was responsible for managing the deployed application on the edge and automating some
procedures. Additionally, by using Kubernetes, we have the capability to mount and
unmount resources on the fly, while Kubernetes takes control of the running applications
and assigns them to the right work nodes automatically. These capabilities can be extremely
handy in the future in cases in which it would be requested from the use case to have
access to varying computational resources or if we run multiple applications on the edge
for autonomous missions.

Two issues with our proposed system’s architecture that need to be addressed are
latency and safety concerns. These issues should be investigated further in the near future
and are out of the scope of this article. An additional promising solution is 5G technology,
but this might require specific configurations or have some network limitations. Safety
should be investigated from two different perspectives. First, network safety should be
examined and established. Second, it is essential to implement a high-level minimally
computationally demanding backup controller that runs locally on the UAV’s onboard
processor. Hence, in the case of a network failure or a communication loss, the UAV will
operate with the backup controller.

Moreover, our proposed architecture should be discussed in terms of capabilities and
limitations. The motivation of our work was to increase the computational capabilities
of resource-constrained robotic platforms, such as the CFs. By utilizing an edge machine,
we were able to successfully reach our goal, but there are still some limitations. Since the
proposed architecture is applied to almost real-time applications, the delays must remain
minimal. The location and distance (in terms of network hops) of the edge machine from
the robot should be taken into consideration to guarantee that the travel time delays will
be bounded within a desired threshold. However, by offloading the application over the
edge, the robots do not consume energy while executing the algorithms onboard; instead,
they consume energy for communication purposes. For the CFs, the flying time remains
relatively similar at about 5 to 7 min. Another limitation is the available edge resources.
Edge providers do not offer “unlimited” resources, and, usually, the resources are quite
costly. For our application, and with the available resources, we were able to tune the MPC
to up to 100 steps of the prediction horizon. The system depends on the edge resources,
and, if the applications require more resources than the available ones, the system can
become overloaded.

Furthermore, edge architectures could be used for offloading many applications re-
garding UAV autonomous missions. Some interesting directions include multi-agent
exploration and the multi-agent-based simultaneous localization and mapping (SLAM)
applications in which multiple robots can explore an unknown environment, building maps
on the edge while at the same time communicating and collaborating through the edge in
real-time. The rapid development of communication (5G networks) and computing tech-
nologies (cloud, fog and edge computing) will provide more possibilities and solve current
challenges, thereby helping the robotics field move towards fully autonomous systems.

Author Contributions: Conceptualization, A.S.S. and G.N.; Data curation, A.S.S.; Methodology,
A.S.S. and B.L.; Software, A.S.S. and B.L.; Supervision, S.G.S. and G.N.; Writing—original draft, A.S.S.;
Writing—review & editing, S.G.S., B.L. and G.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Robotics 2022, 11, 80 14 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. 10 Edge Computing Use Case Examples. Available online: https://stlpartners.com/articles/edge-computing/10-edge-

computing-use-case-examples (accessed on 1 July 2022).
2. Sarker, V.K.; Queralta, J.P.; Gia, T.N.; Tenhunen, H.; Westerlund, T. Offloading slam for indoor mobile robots with edge-fog-cloud

computing. In Proceedings of the IEEE 2019 1st International Conference on Advances in Science, Engineering and Robotics
Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–6.

3. Tian, N.; Tanwani, A.K.; Chen, J.; Ma, M.; Zhang, R.; Huang, B.; Goldberg, K.; Sojoudi, S. A fog robotic system for dynamic visual
servoing. In Proceedings of the IEEE 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2019; pp. 1982–1988.

4. Tanwani, A.K.; Mor, N.; Kubiatowicz, J.; Gonzalez, J.E.; Goldberg, K. A fog robotics approach to deep robot learning: Application
to object recognition and grasp planning in surface decluttering. In Proceedings of the IEEE 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4559–4566.

5. Gudi, S.L.K.C.; Ojha, S.; Johnston, B.; Clark, J.; Williams, M.A. Fog robotics for efficient, fluent and robust human-robot interaction.
In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 1–3 November 2018; pp. 1–5.

6. Barnawi, A.; Alharbi, M.; Chen, M. Intelligent Search and Find System for Robotic Platform Based on Smart Edge Computing
Service. IEEE Access 2020, 8, 108821–108834. [CrossRef]

7. Skarin, P.; Tärneberg, W.; Årzen, K.E.; Kihl, M. Towards Mission-critical control at the edge and over 5G. In Proceedings of the
2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2–7 July 2018; pp. 50–57.

8. Årzén, K.E.; Skarin, P.; Tärneberg, W.; Kihl, M. Control over the edge cloud–An mpc example. In Proceedings of the 1st
International Workshop on Trustworthy and Real-time Edge Computing for Cyber-Physical Systems, Nashville, TN, USA,
11 December 2018.

9. Skarin, P.; Eker, J.; Årzén, K.E. A cloud-enabled rate-switching MPC architecture. In Proceedings of the 2020 59th IEEE Conference
on Decision and Control (CDC), Jeju, Korea, 14–18 December 2020; pp. 3151–3158.

10. Skarin, P.; Eker, J.; Kihl, M.; Årzén, K.E. An assisting model predictive controller approach to control over the cloud. arXiv 2019,
arXiv:1905.06305.

11. Skarin, P.; Eker, J.; Kihl, M.; Årzén, K.E. Cloud-assisted model predictive control. In Proceedings of the 2019 IEEE International
Conference on Edge Computing (EDGE), Milan, Italy, 8–13 July 2019; pp. 110–112.

12. Skarin, P.; Eker, J.; Årzén, K.E. Cloud-based model predictive control with variable horizon. IFAC-PapersOnLine 2020, 53, 6993–7000.
[CrossRef]

13. Gräfe, A.; Eickhoff, J.; Trimpe, S. Event-triggered and distributed model predictive control for guaranteed collision avoidance in
UAV swarms. arXiv 2022, arXiv:2206.11020.

14. Tsokalo, I.A.; Wu, H.; Nguyen, G.T.; Salah, H.; Fitzek, F.H. Mobile edge cloud for robot control services in industry automation.
In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,
USA, 11–14 January 2019; pp. 1–2.

15. Ma, Y.; Lu, C.; Sinopoli, B.; Zeng, S. Exploring edge computing for multitier industrial control. IEEE Trans.-Comput.-Aided Des.
Integr. Circuits Syst. 2020, 39, 3506–3518. [CrossRef]

16. Spatharakis, D.; Avgeris, M.; Athanasopoulos, N.; Dechouniotis, D.; Papavassiliou, S. A switching offloading mechanism
for path planning and localization in robotic applications. In Proceedings of the 2020 International Conferences on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Rhodes, Greece,
2–6 November 2020.

17. Kochovski, P.; Sakellariou, R.; Bajec, M.; Drobintsev, P.; Stankovski, V. An architecture and stochastic method for database
container placement in the edge-fog-cloud continuum. In Proceedings of the 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 396–405.

18. Figueiredo, R.; Subratie, K. EdgeVPN. io: Open-source Virtual Private Network for Seamless Edge Computing with Kubernetes.
In Proceedings of the 2020 IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 12–14 November 2020;
pp. 190–192.

19. Cha, J.G.; Kim, S.W. Design and Evaluation of Container-based Networking for Low-latency Edge Services. In Proceedings of the
2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20–22
October 2021; pp. 1287–1289.

20. Lumpp, F.; Panato, M.; Fummi, F.; Bombieri, N. A Container-based Design Methodology for Robotic Applications on Kubernetes
Edge-Cloud architectures. In Proceedings of the 2021 Forum on Specification & Design Languages (FDL), Antibes, France, 8–10
September 2021; pp. 1–8.

https://stlpartners.com/articles/edge-computing/10-edge-computing-use-case-examples
https://stlpartners.com/articles/edge-computing/10-edge-computing-use-case-examples
http://doi.org/10.1109/ACCESS.2020.2993727
http://dx.doi.org/10.1016/j.ifacol.2020.12.437
http://dx.doi.org/10.1109/TCAD.2020.3012648


Robotics 2022, 11, 80 15 of 15

21. Pahl, C.; Lee, B. Containers and clusters for edge cloud architectures–a technology review. In Proceedings of the 2015 3rd
International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 379–386.

22. Shah, J.; Dubaria, D. Building modern clouds: Using docker, kubernetes & Google cloud platform. In Proceedings of the 2019
IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019;
pp. 0184–0189.

23. Lindqvist, B.; Mansouri, S.S.; Nikolakopoulos, G. Non-linear mpc based navigation for micro aerial vehicles in constrained
environments. In Proceedings of the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020;
pp. 837–842.

24. Lindqvist, B.; Mansouri, S.S.; Agha-mohammadi, A.a.; Nikolakopoulos, G. Nonlinear MPC for collision avoidance and control of
UAVs with dynamic obstacles. IEEE Robot. Autom. Lett. 2020, 5, 6001–6008. [CrossRef]

25. Production-Grade Container Orchestration. Available online: https://kubernetes.io/ (accessed on 1 July 2022).
26. Nguyen, A.T.; Lee, J.W.; Nguyen, T.B.; Hong, S.K. Collision-free Formation Control of Multiple Nano-quadrotors. arXiv 2021,

arXiv:2107.13203.
27. Crazyflie 2.0: System Architecture. Available online: https://www.bitcraze.io/2014/07/crazyflie-2-0-system-architecture/

(accessed on 3 July 2022).

http://dx.doi.org/10.1109/LRA.2020.3010730
https://kubernetes.io/
https://www.bitcraze.io/2014/07/crazyflie-2-0-system-architecture/

	Introduction
	Background and Motivation
	Contributions
	Outline

	Model Predictive Control
	UAV Kinematics
	Cost Function
	Constrain Formulation
	MPC Prediction Horizon
	MPC Rate


	Edge Architecture
	Experimental Results and Evaluation
	Conclusions and Future Work
	References

