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Abstract: This study tackles the task of swarm robotics, where robots explore the environment to
detect targets. When a robot detects a target, the robot must be connected with a base station via
intermediate relay robots for wireless communication. Our previous results confirmed that Lévy
flight outperformed the usual random walk for exploration strategy in an indoor environment.
This paper investigated the search performance of swarm crawler robots with Lévy flight on target
detection problems in large environments through a series of real robots’ experiments. The results
suggest that the swarm crawler robots with Lévy flight succeeded in the target’s discovery in the
indoor environment with a 100% success rate, and were able to find several targets in a given time in
the outdoor environment. Thus, we confirmed that target exploration in a large environment would
be possible by crawler robots with Lévy flight and significant variances in the detection rate among
the positions to detect the outdoor environment’s target.

Keywords: swarm robot; autonomous mobile robot; random walk

1. Introduction

Swarm robotics (SR) [1–3] has attracted much research interest from several multi-
robot system research community researchers. SR has challenged several control tasks [2,4]:
aggregation [5–8], formation [9–12], transport [13,14], task allocation [15–18], and naviga-
tion [19,20]. These control tasks should be set as complicated or inefficient for a single robot
to tackle. Şahin [21] enumerated several criteria (Şahin [21] claimed to use these criteria as
a measure of the degree of SR in a particular study) for distinguishing swarm robotics as
follows: autonomy, redundancy, simplicity, and homogeneity. The last criterion enhances
the second and third criteria. Thus, homogeneous controllers for individuals are desirable
for SR systems. In addition, this approach does not assume an explicit leader in swarm
robots. Such a homogeneity results in collective behavior.

Our research group mainly focuses on a target detection problem, which we consider a
navigation problem. In this control task, robots explore some targets in a given environment.
First, a robot finds a target and sends information to a base station via intermediate
relay robots. Then, all of the robots share the detection. Therefore, all robots should be
“connected” to the base station via wireless networks [22,23].

In our research group, we investigated the communication range and the number
of robots required for a wireless sensor network composed of swarm robots to achieve
connectivity in the simulated environment [24] and the preliminary experiment [24].
Then, we applied those results to a target detection problem [25] and investigated the small
differential wheeled robots’ exploration ability and connectivity. As an exploration strategy,
we incorporated two types of random walk into swarm robots: one is Brownian walk,
which employs the constant step size, and the other is Lévy flight [26], which employs the
step size following Lévy probability distribution. We conducted a series of real experiments
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in the indoor environment, including a long corridor with two elevator halls, and confirmed
that Lévy flight outperformed Brownian walk. We also investigated the search efficiency of
the Lévy flight based on nonlinear dynamics in a simulated and a real experiment [27].

A controversy on Lévy flight advantage in animal behavior has continued [28–35];
Lévy flight is considered the optimal search strategy to find scattered food or preys in the
vast field. In such an environment, Lévy flight could enhance the exploration in robotics,
as well as in biology. Robots with such a high exploration ability could be applied to
various scenarios, e.g., reconnaissance, surveillance, offshore exploration, and rescue. In a
large field, such as the above scenarios, a high mobility is required for a robot’s hardware.
Therefore, we employed swarm crawler robots for large fields. To the best of our knowledge,
we are the first to investigate the search performance of swarm robots with Lévy flight in a
large field.

This paper investigated the search performance of swarm crawler robots with the
Lévy flight [25] on target detection problems in large environments through a series of
real experiments. We employed the Lévy flight based on probability distribution, widely
employed in robotics. The paper is organized as follows. The next section shortly introduces
the related works. Section 3 explains the structure of the crawler robots. Section 4 describes
Lévy flight. Section 5 describes the controller of the robots and how to implement a random
walk in the controller. Sections 6 and 7 show the settings and the results in real experiments
in the indoor environment and the outdoor one, respectively. Conclusions are given in the
last section.

2. Related Work

In the SR community, Lévy flight, following Lévy distribution described in Section 4,
has been recognized as one of the most efficient search strategies for an environment with
sparse targets that robots have no prior knowledge of [36–38].

Recently, Lévy flight has been applied not only to a single robot [39,40] but also to swarm
robots [36,37,41–44]. In most swarm robots, however, the search performance and the charac-
teristics of Lévy flight have been investigated in simulated environments [36,37,41,45], the
experiments with real robots have been quite a few, and the environments were relatively
small [42–44,46].

In addition to this, it has been reported in [36,37] that each individual in swarm robots
does not follow Lévy distribution due to collision avoidance from other robots, resulting in
an inefficient search. Inconsistency of the distribution would occur due to the truncation
of Lévy flight in obstacle avoidance, e.g., against walls or enclosures or detecting a target.
Khaluf et al. [36] and Nauta et al. [37] introduced the simple communication rule in which
a robot tells its neighbors to avoid itself while executing a long flight. Pang et al. [42]
proposed adjusting each robot’s step size according to the frequency of physical inference,
although there would be no guarantee that each robot’s adjusted step sizes follow Lévy
distribution.

3. Setup for Crawler Robots

Crawler robots (Figure 1) by NEXUS ROBOT were used in this study. The robot chassis
(300(W) × 310(D) × 100(H) [mm]) is equipped with four infrared distance sensors and
three infrared target detection sensors located at the front and the side of it. The former is
for measuring the distance to other robots and walls, and the latter for detecting targets.
The maximum detection ranges of the former infrared sensor and the latter infrared sensor
are 300 [mm] and 200 [mm]. The robot’s processor is the Arduino-compatible microcon-
troller embedded with ATmega328, 16 MHz clock speed, and 32 KB flush memory, which
collects sensory inputs and outputs signals to control two DC motors connected to the
crawlers. This processor can proceed with the controller described in Section 5 without
delay or halt. The robot is equipped with wireless devices, XBees [47]. XBees, based on
ZigBee wireless standard, can compose wireless ad hoc networks, where nodes can com-
municate with each other via a multi-hop path. An XBee on each robot was set as a router
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of the network. As a target, an infrared-emitting ball was employed to make handling easy,
which is the official ball for RoboCup Junior [48]. Its infrared rays are distinguishable from
those emitted by the distance sensors described above due to the different wavelengths.
A camera is located at the front of the chassis, and Raspberry Pi is located within the chassis,
distinguishing the boundary from the field of artificial lawn ground. Raspberry Pi outputs
signals to the Arduino when it detects the boundary. This classification system was used
only for the outdoor environment. The details are described in Section 7.

distance
sensor

target detecting
sensor

camera module target detecting
sensor

distance
sensor

Figure 1. Setup for a crawler robot: (left) Front view. A robot has two infrared distance sensors and
an infrared target detection sensor at the front. (right) Side view. A robot has an infrared distance
sensor and an infrared target detection sensor on each side.

4. Lévy Flight

A random walk with a constant step size and a random turning angle is well known
as Brownian motion. On the other hand, Lévy flight is a random walk whose step size
varies according to a Lévy probability distribution [26]. The Lévy probability distribution
for a step size, l, is formulated as follows:

pα,γ(l) =
1
π

∫ ∞

0
e−γqα

cos(lq)dq, γ > 0, l ∈ R (1)

where γ is the scaling factor and α (0 < α < 2) is a parameter varying the probability
distribution shape.

The Lévy probability distribution for a step size can be approximated in the follow-
ing [49]:

p(l) ∝ l−α (2)

According to the recommendation in [25,39], we define it as follows:

p(l) ≡ l−1.2 (3)

In a computer simulation on a many-target detection problem [50], we compared the
performance of Equation (3) with those of the other formulations of the Lévy probability
distribution and then confirmed that Equation (3) shows the best performance in the control
task. Thus, we employed Equation (3) as a Lévy flight based on the probability distribution
in this work.

5. Controller
5.1. Subsumption Architecture

Subsumption architecture (SSA) [51] is employed as a format to describe individuals’
behavior of the swarm robots according to our previous work setting [25]. Figure 2 shows
a layer structure of SSA implemented in these swarm robots. The SSA used to achieve a
control task in target detection problems comprises the following three layers: transmission,
obstacle avoidance, and target exploration (these are only for the indoor environment. The SSA
for the outdoor environment has an additional layer, described in Section 7). The capital I in
a circle in Figure 2 indicates that a lower layer is inhibited when an upper layer is activated.
Each layer is composed of some connected modules.

The behavior of each layer can be explained as follows. In the transmission layer, the
detect target module sends messages to the transmit messages module and the stop module
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when the sensory inputs from the sensors for detecting targets are beyond a threshold.
The transmit messages module transmits messages to the base station via intermediate
relay robots. The stop module sends messages to its motors to stop them. In the obstacle
avoidance layer, the detect obstacle module sends messages to either the turn right module
or the turn left module according to a threshold of the sensory inputs from distance sensors
described in Section 3, in order to avoid the obstacles that the robot faces. We tuned those
thresholds iteratively by hand until we obtained the desired robot behavior [52]. A random
walk, either Lévy flight or Brownian walk, is implemented in the target exploration layer.
The details are described in the next subsection. This incremental evolution of the SSA is
attractive for the design of collective behavior.
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Figure 2. Layer structure of the SSA for the indoor environment. It has three layers: transmission
layer, obstacle avoidance layer, and target exploration layer.

5.2. Implementation of a Random Walk in the SSA

In the target exploration layer for Lévy flight described in Section 4, the explore module
sends messages to one of the following three modules: forward, turn right, and turn left,
where forward means moving forward and turn right (left) means rotating clockwise (counter
clockwise) at the position.

Lévy flight is implemented by dividing the whole steps into the rotation and move-
forward phases. The transition between them occurs at 100%. In the rotation phase, a robot
randomly determines the rotation direction and randomly selects an angle of rotation from
{45, 90, 135} degrees. Then, a robot rotates until it reaches the desired angle (the turn right
or turn left module in Figure 2). A robot moves forward in the move-forward phase, driving
two wheels (corresponding to the forward module in Figure 2). The movement speed is set
to 0.12 m/s for the indoor environment (Section 6) or 0.3 m/s for the outdoor environment
(Section 7). The move-forward phase’s execution time is a random step size l according to
the Lévy probability distribution (Equation (3)) multiplied by l0, where l0 is the movement
time per step and was set to 6 sec according to the previous experiment [25]. When an upper
layer activation inhibits the target exploration layer, the target exploration layer keeps the
residual execution time. After the upper layer inactivation, the target exploration layer
is restarted from when it was interrupted. This restart is for maintaining long step sizes
generated according to the Lévy probability distribution. This setting is for the consistency
of the Levy probability distribution, described in Section 2.

The Brownian walk followed the same procedure as the Lévy flight except that the
move-forward phase’s execution time was fixed at 2 s. The setting of rotational angles in
the rotational phase was also the same as the Lévy flight.



Robotics 2022, 11, 76 5 of 15

6. Experiment in Indoor Environment

In Sections 6 and 7, we cope with target detection problems where we assume that
robots have no prior knowledge of the environment. In these scenarios, it seems that a
random walk is appropriate for the exploration strategy.

We conducted the real experiment in the indoor environment, which is the same as
the one employed in our previous work [25,27]. We have two reasons to conduct this
experiment: the first is to confirm that the crawler robots’ exploration ability with the Lévy
flight is equal to or more than the small differential wheeled robots’ one [25]. The second is
to confirm that the exploration ability of the Lévy flight outperforms the Brownian walk,
even when using the crawler robots. In the remainder of this section, we write LF as an
abbreviation of Lévy flight and BW as an abbreviation of the Brownian walk, respectively,
if necessary.

6.1. Experimental Environment

We investigated the crawler robots’ exploration ability with the Lévy flight or the
Brownian walk in the building’s corridor at Setsunan University (the gray part in Figure 3).
There are some classrooms adjacent to this corridor. Thus, the experimental environment is
surrounded by walls (we assume that the rooms’ doors are closed during the experiment).
A target (an infrared-emitting ball (Figure 4 (left)) described in Section 3) was placed at the
lower left corner as shown in Figure 3. At the upper right corner, a wireless base station was
placed. The base station is a laptop equipped with the same XBee as those on the swarm
robots. The XBee equipped on the base station was set as a coordinator. At the beginning
of each trial, swarm robots were always placed at the same initial position, the lower right
corner, next to the base station (Figure 4 (right)).

82.8m

6.3m

6
.1
m

6.1

6
.0
m

2
.4
m

3
.7
m

m 70.4m

8
.4
m

T

Figure 3. Indoor environment: the capital T in a circle indicates a target at the lower-left corner. A base
station is located in the upper-right corner. Swarm robots are initially set in the lower-right corner.

Figure 4. Experimental setup for the indoor environment: (left) infrared ball; (right) initial position
of the swarm robots.
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6.2. Setting of the Experiment

In this experiment, the swarm robots explore the above environment, detect a target
located so far (around 80 [m]) from the base station, and send a message to the base station
via intermediate relay robots. We conducted the experiment with eight robots. One trial
ended either when the base station receives the message from the robot detecting a target
(in the remainder of this paper, the robot detecting a target is considered synonymous with
when the base station receives the message from the robot) or when 1800 s (30 min) are
performed without receiving the message. As a controller of the swarm robot, the SSA
described in Section 5 was employed. We conducted 20 independent runs.

6.3. Experimental Results

Tables 1 and 2 show the time taken for detecting the target in the indoor environment
for the LF (this result on the LF was identical to the one obtained in our previous work [27])
and the BW, respectively. The “average” in Tables 1 and 2 indicates the average time for
the trials. The “1800” in Table 2 indicates the failure of the trial. Here, the success rate
of the LF is exceptionally higher than the BW. This result means that it is difficult for the
BW to complete this control task and that the crawler robots with the LF show the search
performance, which would be equal to the differential wheeled robots [25].

Figure 5 (left) shows the robot’s expansion in the environment at the end of the trial
for the LF. Figure 5 (right) shows the robot detecting the target for the LF.

Figure 5. Behavior of the robots for the LF in the indoor environment: (left) expansion of the robots
when the robot found the target; (right) detecting the target. Then, the robot stopped and sent a
message to the base station.

Table 1. Time taken to detect the target for the LF in the indoor environment.

Trial Time [s] Trial Time [s] Trial Time [s]

No.1 953 No.8 1530 No.15 644
No.2 833 No.9 663 No.16 808
No.3 832 No.10 648 No.17 771
No.4 557 No.11 1209 No.18 210
No.5 956 No.12 547 No.19 729
No.6 916 No.13 868 No.20 471
No.7 915 No.14 865 average 796
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Table 2. Time taken to detect the target for the BW in the indoor environment.

Trial Time [s] Trial Time [s] Trial Time [s]

No.1 1800 No.8 1800 No.15 1800
No.2 1800 No.9 1800 No.16 1800
No.3 1800 No.10 1800 No.17 1800
No.4 1800 No.11 1800 No.18 1800
No.5 1800 No.12 1800 No.19 1800
No.6 1800 No.13 1800 No.20 1800
No.7 1800 No.14 1800 average 1800

7. Experiment in Outdoor Environment
7.1. Experimental Environment

We conducted the real experiment in the artificial lawn ground at Setsunan University
(Figure 6). On this ground, the track (the blue area, Figure 7 (left)) surrounds the field (the
light and dark green area, Figure 7 (right)). The field is the area to be explored by the robots.
The robots must avoid the track to keep within the field because neither boundary walls
nor fences surround the track. Thus, we used the camera module controlled by the Rasp-
berry Pi described in Section 3 to distinguish the track from the field. In this experiment,
we employed deep convolutional neural networks (CNN) [53] for image classification.
The setting of the CNN is described in Appendix A.

Figure 6. Artificial lawn ground for an outdoor environment. The track (the blue area) surrounds the
field (the light and dark green area). Robots explore targets within the field.

Figure 7. Artificial lawn ground images for classification: (left) track image; (right) field image.

Ten targets (infrared-emitting balls described in Section 3 and 6) were placed uniformly
over the field (Figure 8). At the lower right corner, a wireless base station was placed. At the
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beginning of each trial, the swarm robots were always placed at the same initial position,
the lower right corner, next to the base station, at random orientations (Figures 8 and 9).

6
9

 m

120 m

10

9

8

7 4

5

6

3 1

2

Figure 8. Set up for the outdoor environment. The numbers in circles indicate targets placed
uniformly over the field. A base station is located in the lower right corner. Swarm robots are initially
set in the lower right.

Figure 9. Initial positions of swarm robots in the outdoor environment.

7.2. SSA for Outdoor Environment

The SSA described in Section 5 was extended for the outdoor environment.
We changed the distance threshold to obstacles in the detect obstacle module to execute the
turn right module or the turn left module in the outdoor environment. It has an additional
layer: track avoidance as shown in Figure 10. In the track avoidance layer, the detect track
module sends messages to the turn right module and then to the forward module when the
camera module detects the track. A robot rotates until it reaches 90 degrees and moves
forward in 1 s to avoid the track and then return to the field.

We employed only the Lévy flight for the target exploration layer in this experiment
because of the superiority of the Lévy flight to the Brownian walk, which was confirmed in
the previous section.
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Figure 10. Layer structure of the SSA for the outdoor environment. It has an additional layer, the track
avoidance layer, compared to the layers of the SSA for the indoor environment in Figure 2.

7.3. Setting of the Real Experiment

The outdoor environment was much larger than the indoor environment in Section 6.
Therefore, we conducted the real experiment in the outdoor environment with ten robots.
One trial ended either when the robots detected all the targets or when 1800 s (30 min) was
performed without detecting all of the targets. As a controller of the swarm robot, the SSA
described in the previous subsection was employed. We conducted 20 independent runs.

7.4. Experimental Results

Table 3 shows the results, including the target detection rate for each trial and each
target, and Figure 11 shows the target detection rate for each trial. The robots found 60% of
the targets in the best trials. In addition to this, there was no trial where the robots could not
detect any target. However, there was a significant fluctuation in the detection rate among
the trials. Figure 12 shows the detection rate for each target position. The robots detected
the target for each position at least once in the 20 trials. However, the result also shows
significant variances among the target positions’ detection rates. Here, we can confirm
the high detection rates on the center in the longitudinal direction of the environment
( 1© 3© 5© 8© 10©). Figure 13 shows the robot detecting the target.
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Table 3. Target detection for each trial and each position in the outdoor environment: the symbol (◦)
indicates that the robot found the target placed there.

Trial
Target No. Detection

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© Rate [%]

No.1 ◦ ◦ ◦ ◦ ◦ ◦ 60
No.2 ◦ ◦ ◦ ◦ ◦ 50
No.3 ◦ ◦ 20
No.4 ◦ ◦ 20
No.5 ◦ ◦ ◦ 30
No.6 ◦ ◦ ◦ 30
No.7 ◦ ◦ ◦ 30
No.8 ◦ ◦ ◦ 30
No.9 ◦ 10

No.10 ◦ ◦ 20
No.11 ◦ ◦ 20
No.12 ◦ ◦ ◦ ◦ 40
No.13 ◦ ◦ ◦ ◦ 40
No.14 ◦ ◦ 20
No.15 ◦ ◦ 20
No.16 ◦ ◦ ◦ 30
No.17 ◦ ◦ ◦ ◦ 40
No.18 ◦ ◦ ◦ ◦ ◦ ◦ 60
No.19 ◦ ◦ 20
No.20 ◦ ◦ ◦ 30

detection
rate [%] 65 20 50 25 60 10 5 40 10 25 31
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Figure 11. Detection rate for each trial in the outdoor environment.
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Figure 12. Detection rate for each target in the outdoor environment.

Figure 13. The figure shows a robot detecting the target. Then, the robot stopped and sent a message
to the base station after detecting it. Then, the robot restarted its exploration.

7.5. Discussion

We observed the significant variances among the target positions’ detection rates
described in the previous subsection. These variances were not observed in the result
obtained in the computer simulation where many targets were distributed in a simulated
environment [50]. For this reason, we consider a hypothesis, which is as follows.

We hypothesize that the target positions’ detection rates depend on the periodicity
of distance from the center of the robots’ initial positions. Figure 14 shows the targets
with the virtual concentric circles in the outdoor environment. The center of the concentric
circles would be placed near the center of the initial positions of the robots. The smallest
circle passes through 1© 3©—the radius is approximately 34.5 [m]. The second and third
smallest circles pass through 5© and 8©, respectively. The largest circle passes through 10©.
Those radiuses are approximately 54.0, 75.2, and 102.3 [m]. They are approximately 1.5,
2.1, and 2.96 times as long as the smallest circle’s radius. These are the target positions
with a low detection rate between the circles, except for 2©. Otherwise, we should probably
consider 5© as an exception, ignoring the second smallest circle. The reason why we
suppose this is as follows. As a real experimental procedure, a robot stops its behavior
when it detects a target. Then, an experimenter restarts the robot at the beginning of its
algorithm after the experimenter removes the detected target. Therefore, the sequence of
the behavior in Lévy flight would change after the robot detects the targets.
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The variances among the target positions’ detection rates demonstrate that it would
be better to keep a long flight not only in the case of obstacle avoidance, as mentioned
in Sections 2 and 5, but also in the case where robots detect targets to enhance the search
performance of the Lévy flight.

34.5m54.0m75.2m102.3m

10

9

8

7 4

5

6

3 1

2

Figure 14. Targets with virtual concentric circles in the outdoor environment. The target numbers are
identified with those in Figure 8.

8. Conclusions

The research questions in this paper are: does the Lévy flight’s exploration ability
outperform the Brownian walk, even when using the crawler robots in indoor environ-
ments? Furthermore, can the swarm crawler robots with the Lévy flight detect the targets
as uniformly distributed in the outdoor environment? To answer the first research question,
we compared the search performance of the swarm crawler robots with the Lévy flight to
the one with the Brownian walk in the indoor environment through a series of real experi-
ments. As a result, the swarm crawler robots with the Lévy flight showed a higher target
detection rate than those with the Brownian walk in the indoor environment, composed of
a long corridor with one target.

To answer the second research question, we investigated the search performance of
the swarm crawler robots with the Lévy flight in the outdoor environment. Several targets
were uniformly distributed on the artificial lawn in the outdoor environment. The swarm
crawler robots with the Lévy flight could detect the target on all of the positions in the
20 trials. The best target detection rate was 60% for each trial. Thus, we confirmed that
target exploration in a large environment would be possible by crawler robots with Lévy
flight. On the other hand, we observed significant variances among the target positions’
detection rates in the outdoor environment, although we did not observe these variances
in the result obtained in the computer simulation of our previous work. For this reason,
we hypothesized that the target positions’ detection rates depend on the periodicity of
distance from the center of the robots’ initial positions. Therefore, we guess that detecting
targets would change the behavior sequence in Lévy flight and not perform well in finding
targets for specific positions. This finding in a real environment may improve the proposed
method’s search performance.

In future works, we will extend our swarm robots’ controller with Lévy flight to
keep the behavior sequence in Lévy flight even after a robot finds a target. In this pa-
per, the targets were distributed uniformly over the field in the outdoor environment.
Thus, we will investigate the search performance of swarm crawler robots with Lévy flight
in large environments where targets are distributed heterogeneously, or many clusters are
distributed. Finally, we will explore an environment with rough terrain or obstacles.
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Abbreviations
The following abbreviations are used in this manuscript:

SR Swarm robotics
SSA Subsumption architecture
LF Lévy flight
BW Brownian walk
CNN Convolutional neural networks

Appendix A. Convolutional Neural Networks

In the outdoor environment, convolutional neural networks (CNN) were employed as
an image classification technique, described in Section 7. We prepared the image dataset
for the CNN learning. We operated the crawler robot with the camera module described
in Section 3 manually in the artificial lawn ground (Figure 6), gathering the two types
of 2000 images: one includes the field, and the other includes the track. Several datasets
containing 3500 training images and 500 test images were created by random selection.
The learning was conducted in 50 epochs by using mini-batches of training data, where
one epoch means a machine learning algorithm has passed over the full training data once.
The batch size was set to 35. The performance of the trained CNN for the classification was
evaluated against the test data. Table A1 shows the results for training and testing.

Table A1. Performance of the CNN for classification between field and track images.

Training Set Test Set

Error Classification [%] Error Classification [%]

2.10× 10−6 100 1.49× 10−2 99.8
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