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Abstract: Enforcing the cessation of motion is a common action in robotic systems to avoid the
damage that the robot can exert on itself, its environment or, in shared environments, people. This
procedure raises two main concerns, which are addressed in this paper. On the one hand, the stopping
procedure should respect the collision free path computed by the motion planner. On the other hand,
a sudden stop may produce large current peaks and challenge the limits of the motor’s control
capabilities, as well as degrading the mechanical performance of the system, i.e., increased wear.
To address these concerns, we propose a novel method to enforce a mechanically feasible, smooth and
path-consistent stop of the robot based on a time-minimization algorithm. We present a numerical
implementation of the method, as well as a numerical study of its complexity and convergence.
Finally, an experimental comparison with an off-the-shelf stopping scheme is presented, showing the
effectiveness of the proposed method.

Keywords: trajectory planning; optimization; robot stopping scheme; stopping trajectory

1. Introduction

Many robotic applications are subject to unforeseen situations that can endanger the
robot itself, its environment or people sharing its workspace. When this happens, one
possible solution is to eliminate the source of risk, i.e., the robot’s motion. Rather than an
arbitrary stop trajectory, it is desirable that the cessation of motion is satisfied at least three
important characteristics of the original trajectory. First, it must be feasible with respect
to the robot’s actuator limits. Second, it has to satisfy the design criteria of the original
trajectories. Finally, it has to preserve the original path in order to avoid possible collisions.

Among different design criteria for trajectories, the enforcement of smoothness through
the minimization of the jerk has a significant place in the robotics community. This criterion
goes back to [1,2] and has been reformulated under different settings [3–9]. Minium jerk
motions reduce the controller’s tracking error [1], limit the vibratory content and the conse-
quent mechanical wear on the robotic system [6] and successfully model human arm/hand
motions [2,10,11]. In addition, it has been proven that these motions improve the human
subjective acceptance of the robot [12], showing a potential application in collaborative
robotics [8,9].

In the literature, path-consistent stop trajectories have been exploited to develop
collaborative robotics applications under the speed and separation monitoring modality, in
agreement with the ISO 10218 and ISO/TS 15066 [13–15]. In such a modality, the robot’s
motion is tuned through a perception system in order to ensure a protective separation
distance from the human [16–18]. Non-path-consistent stop trajectories are used in [19,20].

In order to achieve path consistency, the authors of [21–26] implemented different
techniques inside the control loop to dynamically choose the linear scaling of the desired
trajectory. Multiple safety criteria are also considered in [27] and verified online to formally
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ensure path-consistent fail-safe stops. Other applications of path-consistent stopping
trajectories from the perspective of optimal control have been proposed for autonomous
vehicles in, e.g., [28,29].

Here, we present a novel method for designing path-consistent, smooth stopping
trajectories for robotic systems based on a time-minimization algorithm. In addition, we
present a numerical formulation for the problem and a numerical analysis of the complexity
and unicity of its solution. Finally, an experimental evaluation with a comparison with
the off-the-shelf stop scheme implemented by ros_control [30] is presented. This work
intends to provide a theoretical background, numerical and experimental insights for the
future design of safety-rated, real-time, smooth emergency stop systems on top of smooth
trajectories. Such systems have applications in traditional and collaborative robotics. The
developed approach foresees: (i) planning the stopping trajectory by formulating a time
minimization problem where the optimization variable is a smooth parametrization and
the constraints are the dynamic feasibility and the smoothness of the stop; (ii) sending the
feasible optimal trajectory to the controller which is responsible for actuating the stop.

In literature, minimum time path parametrization approaches have been proposed
in [9,31–34]. In particular, the method developed in [32] has been implemented in [35] with
the constraints of the ISO 15066. With respect to the literature, the proposed approach
shows three main differences and novelties:

• With respect to [9,31–35] we present a simpler formulation that defines a two-parameter
ad hoc set of smooth parametrizations. Such a set does not have a fixed end-point along
the path as a constraint, allowing us to compute the required point of the curve where
the motion stops. Moreover, our approach is compatible with off-the-shelf optimizers,
avoiding the need to develop a custom optimizer to account for the special structure of
these methods. In addition, we do not construct a piece-wise constant parametrization and
provide an analysis of the construction of a fifth-order polynomial parametrization.

• With respect to control-based approaches [20,22–24], the proposed planning perspective
ensures the smoothness of the motion and allows us to decouple the design of the controller
from the planning of the stopping trajectory. This makes our approach compatible with
any controller, which is responsible for tracking the desired stop trajectory and handling
issues such as parametric uncertainties and unmodeled dynamics;

• With respect to [28,29], our methodology is computationally less expensive and does not
formulate the optimal stopping problem as an Optimal Control Problem. On the contrary,
we formulate an optimization problem on a custom set of parametrizations of the path.
In doing so, we avoid the implementation of the differential and path consistency
constraints, allowing a significant reduction in the size of the optimization problem.

The remainder of this paper is structured as follows. In Section 2, we provide a formu-
lation of the problem we address. In Section 3 we choose a set of smooth parametrizations
and provide the means to transform the original problem into an optimization problem in
real variables. In Section 4, the details of the numerical evaluation aspects of our proposed
solution are presented. In Section 5, we present numerical examples of our approach
with a numerical analysis of the time performance and the uniqueness of the solution.
Finally, in Section 6, we present an experimental comparison between our approach and an
off-the-shelf stopping scheme.

2. Problem Formulation

The following approach considers an arbitrary trajectory of a robot described as a
smooth curve p: J −→ Rn, where J = [0, t f ] such as a minimum jerk one. We are interested
in calculating a stopping parametrization sti (t) at the instant ti that will drive the robot
smoothly from its state of motion at ti to rest at T along the path of p. The new stopping
trajectory on the joint space on the interval [ti, T] will be

q = p ◦ sti , (1)
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where ◦ is the function composition operator. We underline that (1) is the traditional
path-trajectory decomposition. The excursion of the robot along the path before the stop is
given by the value of the parametrization achieved at the stopping time s f = sti (T). We
identify the set of parametrizations with the set Cks -Diffeo([ti, T], [ti, s f ]), which is the set of
Cks -diffeomorphisms [9], i.e., invertible Cks maps from [ti, T] to [ti, s f ] with Cks inverse. We
use this notation to emphasize both the requirement of continuity of the parametrization
up to its ks-derivative, and the fact that parametrizations are one-to-one maps. In practice,
the one-to-one requirement prevents that the robot goes back along the path. In other
words, diffeomorphisms is the formal mathematical name of parametrizations in robots
which do not go back along the path.

The stopping procedure must respect two types of constraints. On the one hand,
the dynamics of the system are to be taken into account. During the stopping trajectory, it
must be such that the generalized force on the ith-coordinate Qi is feasible, i.e.:

Q = M(q)
d2q
dt2 + C

(
q,

dq
dt

)
dq
dt

+ g(q) ∈ Q, (2)

where M is the mass matrix, C is the matrix accounting for Coriolis and centrifugal effects,
g accounts for gravity, Q are the joint torques and Q is the set of admissible torques.

On the other hand, we desire to limit possible degradation of the smoothness of the
original trajectory. We account for this with two complementary requirements: firstly,
the resulting trajectory must be continuous up to its kc-th (≥ 2) derivative; secondly, we
introduce a measure of smoothness to be minimized and used for comparison. To do so,
we introduce and use two different kinds of smoothness measures:

• The L2 norm of the jerk, relative to the nominal path

∫ T

ti

∥∥∥∥d3q
dt3

∥∥∥∥2

dt− α
∫ t f

ti

∥∥∥∥d3p
dt3

∥∥∥∥2

dt ≤ 0, (3)

• The max norm of the acceleration, relative to the nominal path

max
t∈[ti ,T]

∣∣∣∣∣d2qj

dt2 (t)

∣∣∣∣∣− α max
t∈[0,t f ]

∣∣∣∣∣d2 pj

dt2 (t)

∣∣∣∣∣ ≤ 0, j = 1, . . . , n (4)

where the term α > 0 in (3)–(4) stands for a proportional factor and ‖ · ‖ is the euclidean norm.
In order to obtain the system dynamics along the path of p during the stopping

procedure, we have to substitute the following relations in (2)

dq
dt

=
dp
dt

dsti

dt
d2q
dt2 =

d2p
dt2

(
dsti

dt

)2
+

dp
dt

d2sti

dt2 .
(5)

We can conclude that our problem is that of finding a stopping smooth parametrization
s(t) capable of driving the robot from its nominal state of motion at the instant ti to rest as
fast as possible considering the constraints commented above. In other words,

min
T

∫ T

ti

dt

s.t. (2) and either (3) or (4)

ṡ(T) = 0

q ∈ Ckc([0, T],Rn)

s ∈ Cks -Diffeo([ti, T], [ti, s f ]),

(6)

where the s.t. means “subject to”.
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Finally, we underline that our approach is intrinsically path-consistent. In fact, be-
cause we directly design the parametrization of the path, it is not possible for our approach
to produce positions that are outside the nominal path.

3. Smooth Stopping Parametrization

In order to obtain smooth stopping, we constrain sti to the set of functions which
minimize the following integral ∫ T

ti

(
d3sti

dt3

)2

dt. (7)

To simplify our notation, we introduce the following change of variable

τ(t) =
t− ti

Ts
, (8)

where Ts = T − ti is the time the robot takes to stop.
The change of variable (8) transforms (7) into

∫ 1

0

(
d3 s̄ti

dτ3

)2

dτ, (9)

where s̄ti is the parametrization of sti in τ, i.e.,

sti = s̄ti ◦ τ(t). (10)

The main advantage of formulating our problem in terms of s̄ti instead of sti , is
that s̄ti has a constant domain [0, 1] and sti a domain [ti, ti + Ts] which varies along the
optimization. Thanks to this, we can formulate the constraints of our problem in fixed
points in the interval [0, 1].

It is known that the minimizers of (9) are of the form [8]

s̄ti (τ) =
5

∑
k=0

akτk. (11)

We underline that by choosing sti = s̄ti ◦ τ we have ks = ∞ and transformed (6) into a
constrained optimization problem in real variables, i.e., the coefficients of (11) and Ts. They
must hold two different kinds of boundary conditions. On the one hand, they must ensure
a smooth transition between the nominal and stopping trajectory. By taking kc = 2 we have

p(ti) =q(ti)

dp
dt

(ti) =
dq
dt

(ti)

d2p
dt2 (ti) =

d2q
dt2 (ti).

(12)

On the other hand, they must ensure the stop condition

dp
dt

(T) =0

d2p
dt2 (T) =0.

(13)
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After substituting the relations (1), (5) and (10) into (12) and (13), we get the bound-
ary conditions on s̄ti , which ensures the smooth transition from the nominal to the stop
trajectory and the stop condition

s̄ti (0) =ti

ds̄ti

dτ
(0) =Ts

ds̄ti

dτ
(1) = 0

d2 s̄ti

dτ2 (0) =0
d2 s̄ti

dτ2 (1) =0.

(14)

The constraints (14) allow us to define our parametrization as

s̄ti (τ) =
(
−3Ts + 6s f − 6ti

)
τ5

+
(

8Ts − 15s f + 15ti

)
τ4

+
(
−6Ts + 10s f − 10ti

)
τ3

+ Tsτ + ti.

(15)

Note that (15) reduces the number of variables of our problem to two, namely the time to
stop Ts and s f . Another advantage of (15) is that it allows us to write the diffeomorphism in
terms of these variables, as follows. Firstly, we note that the parametrization constraints read as
follows [9]

ds
dt

> 0. (16)

Secondly, as we desire to cease the robot’s motion, we restrict our attention to those
parametrizations that slow down the robot with the following constraint

d2s
dt2 < 0. (17)

Finally, we note that (17) implies (16). In fact, if the velocity becomes negative, it has
to be constrained to accelerate in order to respect (14). As a consequence, the constraint (17)
account for both the diffeomorphism and deceleration constraints. In our variables (Ts and
s f ), (17) reads

3Ts − 5s f + 5ti >0

−2Ts + 5s f − 5ti >0
(18)

We underline that the implementation of (16) alone would require an analysis of the roots
of a fourth-order polynomial and the subsequent implementation of non-linear constraints.

4. Numerical Implementation

In order to approximate the constraints as well as the required integrals, we take a
sufficient dense grid of Gauss–Lobatto points {tj}nc

j=1 ⊂ [ti, T] [36,37]. Thus, we enforce (2)
at these points and approximate (3)–(4) as follows

• The L2 norm of the jerk, relative to the nominal path[
nc

∑
j=1

wi

∥∥∥∥d3q
dt3 (tj)

∥∥∥∥2]
− α

∫ t f

ti

∥∥∥∥d3p
dt3

∥∥∥∥2

dt≤ 0, (19)

where wi are the Gauss–Lobatto weights [37].
• The max norm of the acceleration, relative to the nominal path∣∣∣∣d2qk

dt2 (tj)

∣∣∣∣− α max
t∈[0,t f ]

∣∣∣∣d2 pk
dt2 (t)

∣∣∣∣ ≤ 0, k = 1, . . . , n (20)
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Then, the problem (6) may be written as

min Ts

s.t.(2), (18) and either (19) or (20).
(21)

We implement the presented approach using the GSplines library [38] for curve
representation and the IPOPT optimizer [39] using the options in Table 1.

The linear solver ma27 was chosen, as it was faster for this particular problem. The op-
tion fast_step_computation allows us to avoid fine tuning of the solution from the linear
solver intended for larger problems. To introduce in the problem the analytical derivatives
while using numerical approximations of the hessian, we set jacobian_approximation to
exact and hessian_approximation to limited-memory.

Table 1. IPOPT options used for the optimization of (21).

linear_solver ma27
fast_step_computation yes
jacobian_approximation exact
hessian_approximation limited-memory

5. Convergence and Complexity Analysis

In order to evaluate the convergence and the complexity of our proposed methodology,
we follow a numerical approach. To do so, we optimize (21) for a set of randomly generated
problems, on the set of minimum jerk trajectories. Each problem is constituted by

1. Either one of the dynamic models of the UR3 from Universal Robots [40] and the
robot Franka Emika [41] picked randomly.

2. A random minimum jerk trajectory computed as described in [8].
3. A random desired stopping time ti.
4. Either one of the constraints (19)–(20) picked randomly.

To test the uniqueness of the solution, we solve (21) for each problem using three
different families of initial guesses given by

s f =
3
5

Ts + ti (22)

s f =
1
2

Ts + ti (23)

s f =
2
5

Ts + ti, (24)

with Ts = γ(t f − ti) for γ ∈ {0.01, 0.05, . . . , 1}. For each family in (24) and each value of γ
we compute the solution (Ts, s f ) of (21). Then, we pick one of these solutions randomly

(T∗s , s∗f ) and compute the error e =
√
(T∗s − Ts)

2 + (s∗f − s f )
2. The unfeasible initial guesses

are discarded. We found that, for each problem, all the feasible initial guesses converge
to the same solution (T∗s , s∗f ). In Figure 1 we observe the convergence of the optimizer for
different initial guesses. Here, the iterations of the optimizer for three random problems
are reported on the columns. Each color corresponds to a different initial guess. In the
top row, we show the iterations in the plane (Ts, s f ) for three initial guesses and depict the
constraints (17) with thick black lines. The bottom row shows the convergence as the error
e (computed with respect to the unique solution found (T∗s , s∗f )) with respect to the number
of iterations.
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Figure 1. Evolution and convergence of the optimization algorithm for three different initial guesses
in three randomly sampled problems. Each color represents a different initial guess.

In Figure 2, we present the cumulative distribution of the time employed by IPOPT
to optimize (21) for the random problems described above in different computers. This
experiment was performed using the same Docker [42] image in all computers. We achieved
convergence for all samples, which took less than 20 ms. Moreover, in the best case,
we achieved time performances less than 10 ms for more than 99% of the samples. In
Figure 3, we present the cumulative distribution of the number of iterations required by
the optimization process.
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Figure 2. Cumulative distribution of the optimization time employed by different workstations.

6–9 9–12 12–15 15–18 18–21 21–24 24–27 27–30
0

0.2

0.4

0.6

0.8

1

Number of interations

P
er
ce
n
ta
n
g
e

Intel Core i5-1135G7 4.2GHz 4 Cores (Windows)

Intel Xeon E3-1225 v5 3.30GHz 4 Cores (Linux)

AMD Ryzen 5800X3D 4.5Ghz 8 Cores (Linux)

Figure 3. Cumulative distribution of number of iterations required by the optimization problem in
different workstations.
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6. Experimental Comparison

Our experimental setup is depicted in Figure 4, and consists of a Franka Emika Panda
arm controlled with ros_control [30] performing a random minimum-jerk trajectory. For
the realization of the experiments, we implemented our proposed approach within a ROS
package compatible with ros_control [43]. The ros_control package provides the pos-
sibility of regulating the smoothness of this stop procedure through the ROS parameter
stop_trajectory_duration, which sets the duration of the stopping trajectory. The larger
this parameter is, the smoother the motion stop. We call this mechanism the off-the-shelf
stop. This controller exposes a ROS action which listens for a complete goal trajectory on the
joint space, which is subsequently performed at the specified start time. It also provides two
different pre-emption mechanisms that we use to stop the robot. Firstly, when a cancel request
is received the control enters in position hold mode and stops the robot by trying to place it in
the last known position of the trajectory. Secondly, when a new trajectory goal is received, the
controller takes the useful parts of the currently executed and new trajectories and combines
them, as described in [30]. This is achieved by considering the desired starting time of the new
trajectory and the current time. We used the second mechanism to enforce a path-consistent
stop by sending the stopping segment of the trajectory as a new goal, i.e., the segment on the
interval [ti, ti + Ts] with a starting time at ti. To take into account the time consumed by the
computational effort and the network delays, we considered a time delay d between the time t′i
when the stop signal is received and the time ti = t′i + d. We chose d = 60 ms for our setup.

Figure 4. Experimental setup: (left) Robot Franka Emika Panda used in the experiments; (right)
example of randomly generated path.

In Figures 5–8, we present two different comparisons between the off-the-shelf stop
and our approach with a bound on the acceleration. In all the figures, we depict the
desired trajectory in black, the trajectory which stops with off-the-shelf stop in red, our
approach with the smoothness degradation constraint (4) in green and our approach with
the smoothness degradation constraint (3) in blue. For all experiments, we took α = 5.0 for
the smoothness degradation constraints (4)–(3). In Figures 5 and 7 we present a comparison
in the joint space and the instant when the stop signal is issued is highlighted as a vertical
dashed line. Figures 6 and 8 present our comparison in the Cartesian space with the instant
when the stop signal is issued highlighted as a black dot.
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with smoothness degradation constraint (4) (green) and (3) (blue). The desired trajectory is depicted
in black. The dashed vertical line is the instant when the stop is requested.
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with smoothness degradation constraint (4) (green) and (3) (blue). The desired path is depicted in black.
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Figure 7. Comparison in the joint space of the off-the-shelf stop (red) with the path-consistent stops
with smoothness degradation constraint (4) (green) and (3) (blue). The desired trajectory is depicted
in black. The dashed vertical line is the instant when the stop is requested.
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Figure 8. Comparison in the Cartesian space of the off-the-shelf stop (red) with the path-consistent stops
with smoothness degradation constraint (4) (green) and (3) (blue). The desired path is depicted in black.
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In our first comparison, depicted in Figures 5 and 6, we show that although it is
possible to achieve small deviations from the desired path with a traditional stopping
mechanism, this comes at the price of large torque variations and subsequent oscillations.
Here, we set our off-the-shelf stop to 50 ms and it can be seen in Figure 6 that our proposed
approach remains on the desired path. Meanwhile, the off-the-shelf stop presents a small
deviation from it. However, in Figure 5, we observe that the off-the-shelf stop shows
evident oscillations in the velocity plot and large variation in the torques; meanwhile,
our approach is smoother and requires fewer torques. Finally, we note that although our
approach implementing (4) shows a larger displacement after the stop signal than the
off-the-shelf stop, it takes a similar amount of time to bring the robot to rest.

In our second comparison, depicted in Figures 7 and 8, we show that although it is
possible to achieve a smooth stop of the motion with a traditional method, this comes at
the price of evident deviations from the desired path. Here, we set our off-the-shelf stop to
200 ms, and it can be seen in Figure 8 that our proposed approach remains on the desired
path and the off-the-shelf stop presents an evident deviation from it. However, in Figure 7,
we observe that the off-the-shelf stop has a similar smoothness and slightly smaller torques
than our approach implementing (4).

In both comparisons, we observe that the stopping trajectory with smoothness degradation
constraint (3) is the smoothest, with fewer torque requirements. However, it is also the one with
the larger excursion along the path after the stop request. From this, we can conclude that the
smoothness degradation constraints (3) is more conservative than (4), which achieves larger
torques and shows minor excursions along the path after the stop request. We underline that
we can achieve different trade-offs between the smoothness and the time to stop the robot by
choosing a different value of α. The final time value, computed by the algorithm presented here,
depends on the particular smoothness measure that we wish to preserve.

7. Conclusions and Outlook

In this work, we presented a time-optimization approach capable of stopping a robot while
preserving the path of the nominal motion and limiting the smoothness degradation. This was
achieved by choosing an a priori set of smooth parametrizations and writing our problem as
a constrained optimization problem in two real variables. A numerical analysis showed that
our implementation converges to a unique solution in finite time (less than 20 ms) on the set
of minimum jerk trajectories. We presented an experimental comparison with the off-the-shelf
stop scheme implemented by ros_control and showed the effectiveness of our approach.

Future work will focus on the following different aspects. The authors will: (i) deepen the
theoretical aspects related to the complexity of the presented approach, as well as evaluating the
effects of the α parameter; (ii) implement the approach in both classical and collaborative robotics
where emergency and safety stops have to be implemented; (iii) study the possibility of imple-
menting this scheme on general trajectory parametrization problems, such as time minimization.
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