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Abstract: Bin picking is a challenging problem that involves using a robotic manipulator to remove,
one-by-one, a set of objects randomly stacked in a container. In order to provide ground truth data for
evaluating heuristic or machine learning perception systems, this paper proposes using simulation to
create bin picking environments in which a procedural generation method builds entangled tubes
that can have curvatures throughout their length. The output of the simulation is an annotated point
cloud, generated by a virtual 3D depth camera, in which the tubes are assigned with unique colors. A
general metric based on micro-recall is proposed to compare the accuracy of point cloud annotations
with the ground truth. The synthetic data is representative of a high quality 3D scanner, given that
the performance of a tube modeling system when given 640 simulated point clouds was similar to
the results achieved with real sensor data. Therefore, simulation is a promising technique for the
automated evaluation of solutions for bin picking tasks.

Keywords: bin picking; industrial robots; modeling; pose estimation; robot vision; simulation

1. Introduction

Bin picking consists of using a robotic manipulator to remove, one-by-one, a set of
objects that are randomly stacked in a container. It is a complex problem faced by many
manufacturing and production systems. One of the main challenges of bin picking is
handling objects that are occluded or entangled. When items are entangled, the robot is
prone to picking multiple units at once rather than a single one as expected, which can
cause disruptions in assembly lines, namely by having objects fall outside the working
area. Therefore, bin picking systems dealing with this sort of objects must be able to detect
entanglement issues, so that they can operate reliably. This detection can be performed
using depth sensors.

In order to accurately evaluate the performance of a robot perception algorithm, it
is necessary to use a ground truth system, which consists of meta-data associated with
the measurements acquired by a sensor. This meta-data allows for the comparison of the
output of a perception algorithm with information that is known to be correct. For the
particular case of the perception of the contents of a bin, the ground truth data consists of a
point cloud, where each point is associated with the identifier of the object it belongs to.
The meta-data can also include a geometric representation of each object.

This paper proposes using simulation to generate ground truth data for bin picking
scenarios. Many state-of-the-art research publications on robotics conduct real-world
experiments in order to evaluate the efficiency of their solutions. Using a simulator is an
attractive alternative since a large quantity of experiments can be conducted in a much
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shorter amount of time and without the need for expensive robot hardware or manual
annotation. Annotated data generated via simulation can be used as input and validation
for various methods based on Artificial Intelligence (AI) for bin picking, namely those
based on heuristics or machine learning.

This paper focuses on the case of bin picking of entangled tubes that can have multiple
curvatures throughout their length. As an alternative to using fixed Computer-aided
design (CAD) models of the items, a procedural generation algorithm is presented to
randomly create curved tubes, which fall inside a virtual bin. This enables the creation of
scenarios where there is intra-class variation of the items to be picked and allows for a first
approximation of flexible objects. The Gazebo simulator, coupled with the Open Dynamics
Engine (ODE), is responsible for ensuring the tubes’ movements and spatial configurations
are realistic. A virtual 3D scanner is responsible for acquiring point clouds of the scene.

On previous research, a perception algorithm that estimates the pose and shape of a
set of curved tubes was evaluated manually by human annotators [1]. In order to present
a practical application of the generator, synthetic point cloud data was used to evaluate
this solution in an automated manner. A performance metric is proposed to compare
how accurate the perception algorithm is, by comparing its output with the ground truth.
A rigorous evaluation of the perception algorithm using real-life sensors would require
manually annotating a large amount of point clouds, which would be highly impracticable
and thus justifies the need for simulation.

The efficiency of the entangled tubes dataset generator was measured by creating
two datasets, each one having 320 point clouds and different types of tubes. In addition,
in order to assess the realism of the generated point clouds, the performance of the tube
perception algorithm was compared with the results of previous work [1].

The rest of the paper is organized as follows. Section 2 presents related work on
synthetic 3D data generation and simulation for bin picking. Section 3 presents the proposed
system to generate synthetic point clouds of entangled tubes. Section 4 provides a summary
of the tube modeling algorithm that was developed on previous work, while Section 5
presents the proposed method to evaluate its performance. Section 6 provides experimental
results of the tube generator and the evaluation of the tube perception algorithm. Finally,
Section 7 summarizes the contributions of this work, the main results and several lines of
future research.

2. Related Work
2.1. Synthetic 3D Data Generation

The need for the generation of synthetic 3D data is not restricted to the field of robotics.
Other areas include autonomous driving [2,3] and machine learning [3]. There are two
main approaches to generating 3D synthetic data: using probabilistic models and sensing a
point cloud from a simulated environment. The work presented in this paper falls into the
second category.

Constructing 3D data with the aid of probabilistic models allows for more efficient
memory representation (than using point clouds). Niemeyer et al. build 3D models
using RGB images and implicit differentiation [4], while Yang et al. learn a probabilistic
distribution for shapes which is then used to learn a distribution for the point cloud
associated with the shape [5].

When generating point clouds using simulation, a virtual sensor is commonly used to
capture 3D information of the scene. The simulation setting can be a video game [2,6], such
as Grand Theft Auto V, or an open-source sandbox, such as Blender [7] or Unity [3]. On the
one hand, acquiring 3D point clouds using video games has the strength of a large amount
of content being readily available [6]. In order to validate the synthetic ground truth data,
Yue et al. compare the data acquired by the sensor with an in-game camera, both placed in
the same 3D position [2], whereas Richter et al. analyze the game’s communication with
the graphics hardware [6]. On the other hand, using an open-source simulator typically
has the advantage of being relatively simple to parameterize the settings for the data
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collection (which allows for a more flexible generation of datasets). Wang et al. [7] use the
descriptions returned by a ray casting algorithm in Blender to extract the points’ labels.

2.2. Simulation for Bin Picking

There already exists some published work on dataset generation for bin picking
using simulation. Schyja et al. [8] propose a framework for generating bins filled with
objects using the DirectControl 3 simulation system that lacks the simulation of a 3D sensor.
Kleeberger et al. [9] use the V-Rep simulator alongside the Bullet physics engine and change
the pose of their bin between the generation of successive test cases. Matsumura et al. [10]
perform simulation using the PhysX physics engine to generate datasets with annotations
of whether a picking attempt was successful or not. This work presents some novelties
with respect to the existing literature:

• All of these works resort to predefined 3D models of the items to be added to the bin,
unlike this work where the shape of the items can be procedurally generated based on
some parameters defined by the user.

• None of these works discuss in detail the time required for dataset generation with
respect to the number of items and their shape.

The utility of simulation is not restricted to dataset generation. When facing the many
challenges of bin picking, simulation techniques are often employed to solve one or more
of its sub-tasks, including grasp planning [11,12], where grasp configurations are generated
and evaluated, and motion planning [13,14], that determines how the robotic manipulator
should move.

3. Entangled Tube Dataset Creation

The generation of labeled point clouds is performed using a plugin for Gazebo [15],
a 3D simulator commonly used by the robotics community and maintained by Open
Robotics. The virtual world created in Gazebo contains a 3D scanner that is positioned
looking downwards towards a bin. This sensor is responsible for acquiring point clouds of
the scene, using methods that are built-in in Gazebo.

A simulated tube is composed of a linked list of cylinders which are connected by
their endpoints. Using multiple cylinders allows for the emulation of curved tubes. The
cylinders have a constant radius. To ensure a tube’s surface is smooth, a sphere with the
same radius as the cylinders is created for each endpoint that connects two cylinders.

In order to create a point cloud for the dataset, the simulated world is initialized with
an empty bin. Algorithm 1 is then called in order to create each tube. This algorithm
calls two auxiliary methods: Algorithm 2 is used to randomly determine the amount and
length of each cylinder of a tube, while Algorithm 3 randomly defines the exact position of
each cylinder endpoint. Figure 1 depicts an example of the main steps of the procedural
generation of a tube. As it can be seen in the input for Algorithm 1, the generator is
highly flexible due to a high amount of parameters that can be adjusted for different bin
picking scenarios. Moreover, the dimensions of the bin and the pose of the virtual sensor
are customizable.

Each tube is spawned at a certain height above the bin and at a position that enables it
to fall inside the bin. After spawning all of the tubes, the plugin waits for all of them to stop
moving by checking that the linear and angular velocity of their center of mass is below a
certain threshold. This increases the stability of the generation. Making the tubes drop into
the bin rather than simply spawning them without gravity provides much more realism for
the tubes’ spatial configurations. Moreover, spawning all the tubes at once above the bin
replicates the strategy employed by manufacturers to fill the bins, which increases the cases
of entanglement and makes the test cases more similar to reality. The simulator detects and
corrects possible overlaps between tubes.
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Algorithm 1 Tube random generation algorithm.
Input:

n—Number of tubes to generate
r—Tube radius
l—Tube length
clmin—Min cylinder length
cnmin, cnmax—Min/max number of cylinders
θmin, θmax—Min/max angle between two consecutive cylinders

Output:
tubes—Set of generated tubes

1: tubes← ∅
2: for m ∈ {0, . . . , n− 1} do
3: tube← ∅
4: cn← RandomInteger(cnmin, cnmax)
5: lengths← GenerateLengths(cn, l, clmin)
6: endpoints← GenerateEndpoints(lengths, θmin, θmax)
7: for i ∈ {0, . . . , cn− 1} do
8: tube← tube ∪ CreateCylinderWithRadiusAndEndpoints(r, endpoints[i], endpoints[i + 1])
9: if i > 0 then

10: tube← tube ∪ CreateSphereWithRadiusAndCenter(r, endpoints[i])
11: tubes← tubes ∪ tube
12: return tubes

Algorithm 2 Cylinder lengths generation algorithm.
Input:

cn—Number of cylinders
l—Tube length
clmin—Min cylinder length

Output:
lengths—Sequence of cylinder lengths

1: lengths← []
2: remainingLength← l
3: for i ∈ {0, . . . , cn− 2} do
4: cl ← RandomInteger(clmin, remainingLength− (cn− 1− i) ∗ clmin)
5: lengths.Push(cl)
6: remainingLength← remainingLength− cl
7: lengths.Push(remainingLength)
8: return lengths

Algorithm 3 Cylinder endpoints generation algorithm.
Input:

lengths—Sequence of cylinder lengths
θmin, θmax—Min/max angle between two consecutive cylinders

Output:
endpoints—Sequence of cylinder endpoints

1: previousEndpoint← (0, 0, 0)
2: endpoints← [previousEndpoint]
3: for i ∈ {0, . . . , Length(lengths)− 1} do
4: φ← RandomFloat(0, 2π)
5: if i = 0 then
6: θ ← RandomFloat(0, π)
7: unitDirection← (sin(θ) ∗ cos(φ), sin(θ) ∗ sin(φ), cos(θ))
8: else
9: θ ← RandomFloat(θmin, θmax)

10: unitDirection← (sin(θ) ∗ cos(φ), sin(θ) ∗ sin(φ), cos(θ))
11: unitDirection ← RotateVectorAroundAxisWithAngle(unitDirection,

CrossProduct((0, 0, 1), previousDirection), DotProduct((0, 0, 1), previousDirection))
12: nextEndpoint← previousEndpoint + lengths[i] ∗ unitDirection
13: previousDirection← nextEndpoint− previousEndpoint
14: previousEndpoint← nextEndpoint
15: endpoints.Push(nextEndpoint)
16: endpoints← ApplyRandomTranslation(endpoints)
17: return endpoints
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Figure 1. An example of the main steps of the procedural generation of a tube.

A unique color is assigned to each tube that is created. This color is used as a ground
truth system to indicate to which tube each point of the cloud belongs. Shadows and light
sources are disabled (with the exception of an ambient light) to ensure that only (n + 1)
different colors are present in a scene with n tubes: one for each tube and one for the bin.

4. Tube Modeling Algorithm

The tube modeling algorithm that was evaluated was proposed and implemented by
Leão et al. [1]. It receives as input a point cloud of the bin and its contents. The algorithm
has two outputs:

• A data structure that describes the shape and spatial configuration of the tubes (a set
of linked lists of cylinders).

• A subset of the input point cloud where each point is labeled with a color that is
unique to each tube that was constructed. The points of the input point cloud that are
not present in this output correspond to those for which it is not clear to which tube
they belong.

For the purposes of performance evaluation, the latter output was used.
The algorithm was implemented using Point Cloud Library (PCL) [16], a modular C++

library with a vast array of helpful functions for point cloud processing.
The solution performs four main steps: filtering, segmentation, cylinder fitting and

tube joining. Figure 2 presents an example of each step of the algorithm. Figure 3 contains
the color image of the tubes corresponding to the (uncolored) input point cloud (which is
not used by the modeling algorithm).

The filtering step removes the points from the point cloud which do not belong to
any of the tubes, but rather to the bin’s walls and bottom. In addition, the cloud may be
downsampled in order to reduce the processing time of the following steps, and the surface
normals may be estimated.

The segmentation step clusters the point cloud into disjoint piece-wise smooth regions,
which correspond to visible portions of a tube. This step uses a region-growing algorithm
based on the surface normals.

The cylinder fitting step associates a set of cylinders to each cluster obtained from
the previous set. Cylinder fitting is performed using a Random Sample Consensus
(RANSAC) algorithm.
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Figure 2. An example of the result of each step of the tube modeling solution.

Figure 3. Corresponding color image of the picking scene for the tube modeling example of Figure 2.

The tube joining step combines the cylinders to form into increasingly longer, more
complete tubes. This is performed using a greedy method that considers all pairs of
endpoints of distinct cylinders, and orders these pairs using a cost function that considers
their Euclidean and angular distance. The pairs are then processed in increasing order of
cost. Each virtual tube created by this step has a unique color assigned to it, the label color.

This modeling solution is described in greater detail in its original publication from
2019 [1].

In order to prepare the labeled point cloud, for each point that was left unlabeled after
the tube joining step, it is determined if they are sufficiently close to a cylinder or joint of
one of the tubes. If they are close to at least one of the objects, then the point is labeled with
the color of the tube that has the closest cylinder or joint to it.
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5. Evaluation

The evaluation of the modeling algorithm’s accuracy is done by comparing two point
clouds returned by this solution: the filtered cloud, which is the result of the filtering step,
and the labeled cloud, which only contains points that were fitted into one of the cylinders.
The points of the former cloud have the same color as the input cloud (i.e., the ground truth
colors), while those from the latter have the same color as the object/tube they belong to
(i.e., the label colors).

The labeled cloud is a subset of the filtered cloud, since some points may not be
used by any of the calls to RANSAC to form a cylinder and may be too far away from
all cylinders and joints. These points are labeled with a null color c∅, which is different
from those of the virtual tubes. Pairs of corresponding points between the two clouds
(i.e., points with the same position) have different colors. Thus, the first step needed to
compare both clouds is to establish a mapping between the ground truth and label colors.
This corresponds to the well-known maximum-cost unbalanced assignment problem in
a weighted bipartite graph, where an edge connecting a ground truth color C to a label
color c has a weight equal to the number of corresponding points with these colors in their
respective clouds. The assignment problem is solved using the Hungarian method [17].

For illustrative purposes, Figure 4 depicts a simplified example of a point cloud with
72 points obtained from scanning a scene with two tubes. The left-hand image contains the
point cloud labeled with two ground truth colors, one for each tube. The right-hand image
contains one possible labeling of the same point cloud by the tube modeling algorithm,
where four colors were defined. Three of these colors are associated with virtual tubes,
which means that the tube modeling algorithm (incorrectly) determined that the scene
contains three tubes, while the fourth color is the null color. For increased clarity, in both
images, distinct shapes are used to represent the points labeled with each color. Figure 5
shows the corresponding bipartite graph for the example, where the edges whose weight is
outlined by rectangles represent the optimal assignment: the ground truth colors C1 and
C2 were associated with the label colors c1 and c2, respectively.

Let M be the inferred matching function between the two color spaces and C the
number of ground truth colors. For the i-th ground truth color Ci, the corresponding label
color is ci = M(Ci). For all i ∈ [1, C], the matched label color ci is never equal to the null
color c∅. If the modeling solution creates too many tubes, some of the label colors may not
be matched with any of the ground truth colors. Conversely, if too few virtual tubes are
built, some of the ground truth colors may not be matched.

Figure 4. Example of a small point cloud with ground truth and label colors.
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Figure 5. Bipartite graph of Figure 4, which represents the matching between the two sets of colors.

The value used to compute the tube modeling algorithm’s performance is presented
in Equation (1). It corresponds to the micro-recall metric recallµ used for multi-class classi-
fication [18]. This metric was used for evaluation since it provides a more intuitive value
for the ratio of points that were correctly labeled with respect to other classic alternatives
used in multi-class classification.

recallµ =
number of correctly labeled points

total number of points
=

∑C
i=1 tpi

∑C
i=1(tpi + f ni)

(1)

In Equation (1), tpi denotes the amount of points whose colors in the ground truth
and labeled cloud are respectively Ci and ci = M(Ci), and f ni are the points with the color
Ci and a label color distinct from ci. In other words, the micro-recall metric divides the
number of correctly labeled points by the total amount of points in the filtered cloud. The
labeled cloud is compared with the filtered cloud and not with the one used as input for
the modeling algorithm to avoid penalizing the solution unfairly for filtering points it does
not require for its computations (during the filtering step). In the example from Figure 5,
the value for the micro-recall is equal to 26 + 24

26 + 2 + 11 + 24 + 2 + 7 = 50
72 ≈ 0.694.

It should be noted that the performance metric proposed in this section is generic
and can be applied to the result of any algorithm that labels the elements of a point cloud
according to which item they belong to, by comparing it with the ground truth.

6. Results

Two sets of experiments were conducted. The first set aims to assess the efficiency of
the simulator on creating datasets. The second set aims to apply the created datasets to
evaluate in a more rigorous manner the tube perception solution described in Section 4.

All of the results were obtained with an Intel Core i7-8750H processor (2.20 GHz), a
32 GB DDR4 RAM (2667 MHz), and a NVidia GeForce GTX 1050 Ti GPU.

6.1. Dataset Generation Efficiency

Figure 6 depicts two examples of simulated scenes in Gazebo with bins filled with
7 randomly generated tubes. As shown in the figure, two datasets were created, each one
with a set of tubes with different properties: sets A and B. For each dataset, 20 point clouds
(i.e., test cases) were created for different amounts of tubes, ranging from 1 to 15 tubes. In
addition, for each dataset, 20 test cases of clouds with 20 tubes were created, to further
test the generator’s capacities. As a result, each dataset contains 320 test cases. All of the
generated datasets were made publicly available: the Entangled Tubes Bin Picking dataset
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is available at https://github.com/GoncaloLeao/Entangled-Tubes-Bin-Picking-Dataset
(accessed on 13 January 2022).

(a) Set A (b) Set B

Figure 6. Example of a set of 7 tubes for each synthetic dataset.

The tubes of sets A and B have similar properties to the real-life tubes made of
Polyvinyl Chloride (PVC) used on the experiments of previous research [1], which are
depicted in Figure 7. Point clouds of these tubes captured by real-life sensors on previous
work are also publicly available (within the Entangled Tubes Bin Picking dataset). These tubes
have a diameter of 2.5 cm and a length of 50 cm. They do not contain any bifurcations and
are bent with arbitrary angles. The difference between sets A and B lies on the minimum and
maximum angle between consecutive cylinders (parameters θmin and θmax of Algorithm 3).
For set A, the angles range from 0◦ to 30◦, and for set B, they range from 0◦ to 45◦. Thus,
the tubes of set B have more curvatures throughout their length than those of set A.

Figure 7. PVC tubes used on previous research [1] and geometrically similar to those of sets A and B.

For the generation of all the datasets, the dimensions of the bin were 55 cm (length) ×
37 cm (width) × 20 cm (height). The bin was slightly larger than the one used on previous
research to better accommodate larger amounts of tubes. To allow the virtual 3D scanner to
perceive the whole working area, it was positioned looking downwards towards the bin,
with a vertical distance of 2 m relative to the bin’s bottom. The model of the virtual sensor
was set to mimic the properties of a Zivid One Plus L scanner, which was used on previous
work [1]. It produces depth images with dimensions 1920 × 1200.

https://github.com/GoncaloLeao/Entangled-Tubes-Bin-Picking-Dataset
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Gazebo’s dynamics engine was set to run three times faster than real-time. This factor
was set empirically to balance simulation stability and the time needed for the tubes in the
bin to stop moving.

As expected, according to Table 1, the time needed to generate a point cloud increases
with the amount of tubes in the bin, since more time is needed to allow the tubes to stabilize
after being dropped in the bin. On average, set B requires slightly less time than set A to
generate a test case. The authors theorize this is due to the tubes of set B occupying, on
average, a smaller bounding box than those of set A, due to having larger curvatures. This
may reduce the amount of collisions between the tubes, and thus decrease the time needed
for the items to stabilize within the bin.

Table 1. Average time needed to generate a test case for each dataset with respect to the number
of tubes.

Number of Tubes Set A Set B

1 3.13 s 2.68 s
2 6.32 s 5.84 s
3 8.86 s 7.39 s
4 8.77 s 7.57 s
5 8.25 s 8.90 s
6 11.41 s 9.21 s
7 10.39 s 9.81 s
8 10.58 s 10.75 s
9 10.82 s 10.95 s

10 14.20 s 13.73 s
11 14.95 s 13.45 s
12 16.54 s 15.48 s
13 14.53 s 15.85 s
14 16.16 s 16.81 s
15 16.73 s 16.78 s
20 28.10 s 25.02 s

Increasing the simulation speed tends to decrease the tube stabilization time, but using
overly large values causes the simulation to become unstable and raises the likelihood of a
tube clipping through the bin and falling out of bounds, which invalidates a generation
attempt. Thus, fine-tuning the simulation speed may increase substantially the efficiency of
this dataset generator.

6.2. Tube Modeling Algorithm Performance

Sets A and B were used to evaluate the performance/accuracy of the tube modeling
solution. The parameters used to test the modeling algorithm are identical to the ones used
on previous research [1], with the exception of the filtering step. Since the exact position
and dimensions of the bin are known, a crop box filter was used to remove the points
belonging to the bin, leaving only the points that belong to the tubes. A second filter is
then applied to randomly downsample the point cloud by a fixed ratio, in order to reduce
the computational effort of the solution. For each of the 20 point clouds of sets A and B
with each value for the number of tubes, the tube modeling solution was executed 10 times
with a distinct ratio for the downsampling filter between 0.1 and 1.0 (where the cloud is
not downsampled), with a step of 0.1.

As depicted in Figure 8, the performance of the perception algorithm is reduced
linearly as the number of tubes increases, since the number of cases of occlusions and
entanglement increases, making it harder to accurately construct the tubes. This effect was
also observed on previous research. In addition, the solution consistently performed better
on set A than on set B. This is most likely due to the shape of the tubes on set B being
more complex.
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Figure 8. Average micro-recall for sets A and B with respect to the number of tubes using a down-
sampling ratio of 0.3.

It is interesting to note that the performance of set B for the cases with a single tube
has a significantly lower performance than the cases with 2 to 4 tubes, with an approximate
value of 0.867. The authors hypothesize this is due to issues related to the segmentation
step of the solution that were observed during the experiments, where the region-growing
algorithm was occasionally not able to associate many of the points to a cluster. This
prevented the fitting step from creating a sufficient amount of cylinders to cover the whole
tube. Since the micro-recall metric gives equal weight to all the points, on clouds with a
single tube, the occurrence of this issue is more prevalent on the performance metric, than
on larger point clouds.

The issue with the segmentation step problem can be considerably mitigated by fine-
tuning the parameters of the region-growing algorithm. A calibration procedure could be
developed to adjust the perception algorithm’s parameters according to the geometrical
properties of the tubes.

This particular case of the performance of the solution being considerably lower on
cases with a single tube was also observed on previous research, where the performance
metrics were estimated manually by human annotators:

• According to Table 2 of the previous publication by Leão et al. [1], the ratio of “correctly
labeled tubes” (obtained by dividing the accuracy metric “Number of correctly labeled
tubes” by the actual number of tubes) increased by 25% from 1 to 2 tubes (the largest
relative increase from two consecutive tube amounts) and decreased by 12.5% from 1
to 10 tubes, reaching the lowest accuracy value of those between 1 and 10 tubes.

• In a similar trend, the micro-recall for Set B with a downsampling ratio of 0.3 increased
by approximately 3.9% from 1 to 2 tubes (also the largest relative increase from two
consecutive tube amounts) and decreased by approximately 4.1% from 1 to 10 tubes,
also reaching the lowest accuracy value of those between 1 and 10 tubes.

This helps to establish that the micro-recall metric allows for a reliable evaluation of
the modeling algorithm, or, at the very least, it contributes to show that it has a similar
bias to the performance metrics of previous work. Moreover, the results suggest that
using synthetic datasets allows one to reach similar conclusions as those obtained with
real sensors.

According to Figure 9, as expected, for both sets, as the downsampling ratio increases
(i.e., as the number of points used in the segmentation step increases), the performance of
the solution also increases, since the algorithm has more data to work with. Rather than the
performance increasing linearly with the ratio, it is particularly sensitive to lower values for
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the downsampling ratio. For ratios above 0.6 for set A and 0.7 for set B, further increasing
the ratio does not lead to significant increases on the micro-recall.

Figure 9. Average micro-recall for sets A and B with respect to the downsampling ratio for bins with
10 tubes.

As shown in Table 2, the execution time of the modeling algorithm increases with both
the downsampling ratio and the number of tubes, since increasing any of these parameters
leads to the point cloud provided to the segmentation step being larger. This behavior is
similar for set B. The increase of the execution time with the number of tubes was also
observed on previous work, thus reinforcing the similarities in the results between using
simulated and real sensors:

• According to Table 1 of the previous publication by Leão et al. [1], the execution time
increased by approximately 38.6% from 1 to 5 tubes and by 32.0% from 5 to 10 tubes.

• In a similar trend, according to Table 2, the execution time for Set A with a downsam-
pling ratio of 0.1 increased by approximately 68.4% from 1 to 5 tubes and by 50.0%
from 5 to 10 tubes.

By combining the observations from Figure 9 and Table 2, it can be concluded that
there is a trade-off between execution time and modeling accuracy that is regulated by the
size of the input point cloud. Thus, it is important to fine-tune the downsampling ratio
with respect to the application domain.

Table 2. Average execution time of the tube modeling algorithm for set A with respect to the
downsampling ratio and number of tubes.

Ratio

Number of
Tubes 1 5 10 15 20

0.1 0.19 s 0.32 s 0.48 s 0.60 s 0.78 s
0.2 0.19 s 0.41 s 0.69 s 0.90 s 1.23 s
0.3 0.21 s 0.49 s 0.85 s 1.19 s 1.69 s
0.4 0.23 s 0.55 s 1.02 s 1.43 s 2.06 s
0.5 0.24 s 0.61 s 1.12 s 1.69 s 2.37 s
0.6 0.26 s 0.68 s 1.25 s 1.90 s 2.50 s
0.7 0.27 s 0.73 s 1.40 s 2.21 s 2.81 s
0.8 0.29 s 0.82 s 1.56 s 2.43 s 3.11 s
0.9 0.31 s 0.88 s 1.54 s 2.71 s 3.38 s
1 0.32 s 0.91 s 1.65 s 2.84 s 3.66 s
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7. Conclusions

The main contribution of this work is a flexible solution that generates labeled point
clouds of entangled tubes procedurally. This allows for variations on the shape of each tube
in the point cloud, thus producing rich ground truth data. Experimental results showed
that it takes less than 15 seconds to generate a bin with 10 tubes. Therefore, in a single
hour, a high-quality dataset of 240 point clouds can be built, which makes this generator
suitable for input to a wide variety of robotic and AI-based systems, namely those that use
heuristics or machine learning.

The second main contribution is a general metric based on micro-recall to evaluate the
accuracy of an algorithm that labels each point of a point cloud according to which item it
belongs to, such as the tube perception solution developed in previous research [1]. This
metric constitutes a significant improvement over the one proposed by previous work, since
it is objective and can be performed automatically. Experiments with synthetic datasets and
the micro-recall metric produced similar results to those found in previous work, where
the data was acquired by physical sensors and the performance was evaluated manually
with human annotators. This suggests that the generated point clouds are realistic and that
the micro-recall metric is reliable.

This work opens several lines for future research. Firstly, the procedural generator
could be extended to generate objects with other shapes, such as tubes with bifurcations,
spherical items or objects with holes in them. The evaluation metric proposed in this
work is already generic enough to cope with these shapes. Secondly, the dataset generator
could be used to further improve the tube modeling solution by providing input to a
parameter calibration procedure that takes into account the geometric properties of the
items. Finally, as alternatives or complements to the tube modeling solution, supervised
learning systems (namely deep learning systems) could be developed to create a model of
the objects inside the bin using the test cases provided by the generator for training. These
alternative solutions can be capable of modeling a wider variety of objects.
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