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Abstract

:

Condition monitoring of industrial robots has the potential to decrease downtimes in highly automated production systems. In this context, we propose a new method to evaluate health indicators for this application and suggest a new health indicator (HI) based on vibration data measurements, Short-time Fourier transform and Z-scores. By executing the method, we find that the proposed health indicator can detect varying faults better, has lower temperature sensitivity and works better in instationary velocity regimes compared to several state-of-the-art HIs. A discussion of the validity of the results concludes our contribution.
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1. Introduction


Industrial robots are a fundamental part of highly automated production systems, which can be found in the automotive or electronics industry [1]. Since they operate in complex production cells and as a part of linear production lines, robot malfunctions lead to long downtimes for repair or replacement and, hence, to increased costs. In particular, robot gear faults are responsible for the longest downtimes because they often require the replacement of the whole robot [2]. The condition monitoring (CM) of these gears offers the potential to resolve this issue. CM is the monitoring of an asset’s health using sensor data. The health state represents a wear reserve before a failure occurs. This health state is quantified with a health indicator (HI). A significant monitored change in this health indicator can be used as a decision-making aid in the planning of maintenance actions [3].



1.1. State-of-the-Art


In recent years, different HIs based on vibration data for several industrial robot components, such as bearings, gears and motors, and their specific faults have been investigated. Furthermore, several approaches to cope with instationary signals in CM have been presented. The next two sections give a short overview of these topics followed by a section stating the contribution of our publication.



1.1.1. Vibration-Based Robot Condition Monitoring


A fault detection method was developed in [4], which first uses a novel phase-based, time-domain averaging method to remove the deterministic part of the vibration signal. Subsequently, the root mean square (RMS) and power spectrum entropy of the remaining residual signal are calculated as health indicators. A vibration signal based CM system for SCARA robots was implemented in [5], which in the first step uses statistical HIs of the time-domain signal to detect the occurrence of a defect and in the second step uses an artificial neural network to diagnose the fault type. A three-layer architecture for remote fault diagnosis of industrial robot gearboxes was proposed using vibration signals in [6]. In the diagnosis layer, the authors present a performance evaluation approach using a support vector machine (SVM), a remaining useful life prediction by a Markov model and a fault-type diagnosis based on a Bayesian network. The degenerative behavior of an industrial robot gear was observed with vibration sensors by [7] as well as [8] in accelerated wear tests. After pre-processing the signals using order tracking and spectral auto-correlation, the characteristic fault frequencies were calculated and monitored by root mean square analysis, which revealed a trend correlating with increasing wear. In addition to the installation of accelerometers, other additional data sources were investigated in this context. The acoustic emission technology was used to detect robot gearbox faults based on the ball spinning and ball passing frequency of the bearings in [9]. The changes of the RMS-HI and characteristic frequencies for functional and broken strain gears of industrial robots were investigated in [10]. The classification and regression performance of different data-driven models based on frequency-domain data and principal component analysis for dimensionality reduction was evaluated in [11].




1.1.2. Time–Frequency-Based Health Indicators


In addition to vibration data based CM approaches for industrial robots, there also exist several publications considering HIs from the time–frequency-domain. Here, approaches based on the Short-time Fourier transform (STFT), Wavelet transform (WT) or Hilbert Huang transform (HHT) can be divided. STFT is used to derive two HIs named Prominence and Compliance in [12] to detect bearing faults based on their characteristic fault frequencies. A similarity measure between the STFT spectrograms based on standard deviation and correlation is combined with a simple classifier in [13] to detect bearing faults. The same objective was pursued in [14] by means of the marginal time integration of STFTs. Bearing fault classification by means of non-negative matrix factorization or convolutional neural networks and STFT was evaluated in [15,16].



In the field of WT, several approaches exist for different assets. CM of brushless DC motors is investigated based on energies for characteristic frequencies based on both STFT and WT in [17]. A decomposition rate is used in [18] for CM of electric drives based on WT. RMS and Kurtosis are calculated for the WT coefficients for broken bar fault detection in electric drives and combined with a neural network for fault classification in [19]. Bearing fault classification was performed with an SVM based on WT in combination with singular value decomposition for dimensionality reduction in [20]. The spectra of WT coefficients were the basis for the calculation of statistical HIs and frequency specific energy values for the CM of bearing faults in [21]. The similarities of continuous WT spectra are used as an HI for bearing fault detection [22]. The permutation entropy derived from flexible analytical wavelet transform was used as a feature for an SVM for bearing fault classification [23]. Impulse factor, Kurtosis and RMS based on WT coefficients were used for bearing fault detection of helicopters [24]. Statistical features and Hoelder’s exponent were derived from WT coefficients for milling tool health state monitoring. Here, the HIs were the input for an SVM and Decision Tree classifier [25]. HIs were derived by a convolutional neural network for milling tool condition monitoring based on the wavelet decomposition in [26]. Energies of WT coefficients were also used for detecting generator and gear faults in wind turbines [27]. Different entropy-based and statistical features were used in [28] for gearbox health monitoring in combination with an SVM. Energy and entropy values derived from WT for characteristic frequencies are applied for gearbox condition monitoring in [29].



In [30], the Shannon entropy based on HHT was used for the CM of gears. HHT was also used in [31] to derive HIs by an autoencoder based on the Marginal Hilbert Spectrum. A component dependent frequency energy based on HHT was used as a label in [32] for a CNN-based regression model trained on raw vibration time series data for bearing fault detection. Different statistical and entropy-based HIs were calculated from the Intrinsic mode functions (IMFs) derived by HHT in [33].





1.2. Contribution to the State-of-the-Art


However, none of these publications assess vibration data-based HIs’ ability to detect faults in an industry-like industrial robot application setting. It is characterized by changing robot axes’ velocities, changing temperatures of the gears due to unbalanced robot utilization and unknown robot gear fault types. This is why we present a new HI for robot gear condition monitoring, which potentially copes with these characteristics. Furthermore, we propose a method to evaluate the suitability of HIs for the task of robot gear condition monitoring. We apply this method on the newly formulated HI and several HIs from the state-of-the-art.





2. Materials and Methods


This section is divided in two parts. First, the newly developed HI is presented. Afterwards, the methodologies to evaluate the HI’s performance and data sets used in this context are explained.



2.1. Time–Frequency-Domain-Based Z-Score


The concept of the newly designed HI is based on two cornerstones. To deal with instationary velocity regimes, which are found in robot applications due to the typical movement patterns of a robot, the HI is based on time–frequency-domain data. Simultaneously, the HI must take into account a certain variance of this data due to environmental changes such as temperature fluctuations. This is realized by the concept of Z-scores, a common similarity measure from statistics [34]. The process to calculate the new HI is depicted in Figure 1.



In detail, the new HI is based on high-frequency sampled acceleration sensor data. Data from one measurement are transformed to a time–frequency-spectrogram by usage of the STFT, which is calculated according to Equation (1). Here,  τ  and  ω  are time and frequency indices,   x ( n )   is the time series signal of the vibration signal at timestep n and w is a windowing function with the length R.


   s p e c  ( τ , ω )  = |   ∑  n = − ∞  ∞  x  ( n )  w  ( n − τ R )   e  − j ω n    |   



(1)







To set up the HI, a certain number of vibration signal spectrograms must be collected for the robot to capture its signal signature in a healthy state with its stochastic variations. This takes place in an initialization phase. For this, initially, two measurements must be collected. In this context, a measurement is defined as the collection of vibration data over one single movement. Based on this data, the two spectrograms are calculated. To determine whether this reference quantity of two spectrograms captures the stochastic variation of the signal, the overall mean (Equation (2)) and standard deviation (Equation (3)) of the spectrograms are calculated.


  s p e c   ( τ , ω )   a v g   =  1 k   ∑  i = 0  k  s p e c   ( τ , ω )  i   



(2)






  s t  d  s p e c ,  o v e r a l l   =  1  0.5 F T    ∑  τ = 0  T   ∑  ω = 0   0.5 F       ∑  i = 0  k    ( s p e c   ( τ , ω )  i  − s p e c   ( τ , ω )   a v g   )  2   k    



(3)







In these formulas, k describes the number of measurements in the reference quantity. T is the time length of each measurement, F is the sampling frequency and   s p e c   ( τ , ω )   a v g     is the average value of   s p e c ( τ , ω )   over measurements 0 to k. Afterwards, one measurement is added to the reference quantity at a time, and again   a v  g  s p e c , o v e r a l l     and   s t  d  s p e c , o v e r a l l     are calculated. Plotting these standard deviations over the number of measurements in the reference quantity usually first shows an increase in   s t  d  s p e c , o v e r a l l     and then a saturation as can be seen in Figure 2. If this saturation is reached, the reference quantity can sufficiently represent the stochastic behavior of the signal signature. In the shown example, this saturation is reached after 5 measurements.



After the initialization, an HI can be determined based on a newly collected measurement. For this, the measurement’s spectrogram overall Z-score is determined according to Equation (4).


  H  I  m e a s   =  1  0.5 F T    ∑  τ = 0  T   ∑  ω = 0   0.5 F    |   s p e c   ( τ , ω )   m e a s   − s p e c   ( τ , ω )   a v g , r e f     s p e c   ( τ , ω )   s t d , r e f     |   



(4)







In this context,   s p e c   ( τ , ω )   a v g , r e f     and   s p e c   ( τ , ω )   s t d , r e f     are the mean value and the standard deviation of   s p e c ( τ , ω )   for all measurements in the reference quantity. In Figure 3, the STFT and Z-score spectrograms of exemplary vibration measurements from a healthy and a faulty robot gear are depicted. The Z-score-based spectrogram of the faulty measurement shows more prominent changes compared to the STFT-based spectrogram.




2.2. Hi Evaluation Method


To compare the ability of the newly designed HI to cope with industrial robot application characteristics, we followed a three step approach. First of all, we investigated how well the designed HI can detect different kinds of faults in comparison to HIs from the state-of-the-art. Second, we investigated the temperature sensitivity of HIs from the state-of-the-art meeting this criterion and our HI. Third, we investigated the trend behavior of HIs showing a low temperature sensitivity on data from two accelerated wear tests. These three steps are now described more precisely. The overall process of our investigations is also described in Figure 4.



2.2.1. Varying Fault Detection Analysis


We used the FEMTO data set, which is described in detail in [35], to select HIs capable of detecting different faults. The data set is available in [36]. This data set provides run to failure vibration data from 16 identical bearings and for different faults and working conditions defined by the applied load and the rotational speed. The acceleration sensor sampled data with 25.6 kHz, one measurement has a length of 0.1 s and measurements were taken in equidistant timesteps of 10 s for all bearings. The test run for one bearing ended when the signal from the acceleration sensor exceeded 20 g. Therefore, different numbers of measurements are available per bearing ranging from 230 to 2803. We calculated the HIs summarized in Table 1 for all measurements of one sensor. These HIs were derived from several review papers regarding gearbox and bearing CM [37,38,39,40] and the publications mentioned in Section 1. Therefore, the HI calculation was based either on the raw acceleration signal, an enveloped signal as described in [41] or the residual signal as suggested by [4]. Additionally, the newly designed HI presented in Section 2 was calculated for the measurements based on the raw signals.



To detect whether these HIs are sensitive to multiple faults, different techniques can be applied. In addition to filter techniques, ensemble, wrapper and embedded methods exist [42]. However, the latter three techniques combine classification or regression models with HIs for their evaluation. Hence, this evaluation is always dependent on the used models. Thus, we chose to use filter methods for the evaluation. Here, different figures of merit for regression and classification tasks can be applied, such as trendability, robustness, monotony or discriminance [42]. To combine these different performance indicators, we fitted different basic functions on the HIs calculated for the last 20 percent of measurements per bearing. These functions were first and second degree polynoms, exponential and sigmoid functions. For each of the fits, we calculated the R2 value. This means that we received four R2 values per HI and bearing. High R2 values of these fits correlate with a high trendability, monotony, robustness and discriminance, which are desirable for HIs. To evaluate whether an HI can detect several damages, we considered only the best R2 value per HI and bearing. We plotted the statistics of these 16 remaining R2 values per HI as a boxplot. Suitable HIs should show high R2 values with low variance.




2.2.2. Temperature Sensitivity Analysis


HIs showing this behavior were analyzed regarding their temperature sensitivity. For this purpose, we acquired vibration data from an industrial robot test rig. This test rig consists of a KUKA KR510 industrial robot with an attached load of 365 kg. We attached acceleration sensors close to the gearboxes as shown in Figure 5 on the right side. These sensors have a sampling rate of 26 kHz. The acceleration direction of the sensors was orthogonal to their contact area. For data acquisition, the robot performed a trajectory where each joint was moved individually at different speeds in an angle area of 10°, as described in Figure 6, and for different gear temperatures in the range of 25 °C and 60 °C and 5 °C steps. One measurement per axis lasted 8 s. The gear temperature was measured at the gearbox cap with an infrared thermometer. For each temperature step, four measurements were made. For each measurement at each temperature step, the remaining HIs were calculated. To determine the temperature sensitivity, we divided the average HI values calculated from measurements at the highest gear temperatures by the values calculated from measurements at the lowest temperature. HIs with a high sensitivity were eliminated for the last step.




2.2.3. Accelerated Wear Test Analysis


Here, we calculated the remaining HIs for measurements from two data sets from accelerated robot wear tests to see how these HIs perform in a more industry like setting and how they cope with instationary velocity behavior. The first data set was collected during a time range of approximately one year with an ABB robot of type RB 6600-255/2.55. During the data acquisition, the robot performed an isolated movement of the second axis in an angle area of 150° for each measurement. Vibration data were only acquired with a sensor attached axially at the robot axis 2 gearbox. At the end of the experiment, the gearbox was dismantled and faults on the bearings and the shafts of the gear were found. A total of 2290 measurements, equally distributed over time, were taken for our analysis from this data set. One measurement lasted 1.6 s and the sampling rate was 10 kHz. More detailed information about this experiment can be found in [7,8]. The second data set was derived from another experiment. Here, the second axis of an ABB IRB 7600-340/2.8 was moved in an angle area of 80° continuously over the time frame of three months. The vibration sensor attached to the gearbox cap of axis 2 sampled with 20 kHz and one measurement lasted 2.15 s. The measurement setup is presented on the left side in Figure 5. The experiment ended after a roller element of a bearing had cracked and had blocked the gear. In this time range, 920 vibration measurements were taken in total in equidistant time steps. The faults, which occurred in both experiments, can be seen in Figure 7. In both experiments, environmental conditions such as load and trajectory were kept constant. Fluctuations of the temperature were kept at a minimum due to the constant movements of the robots. In this way, signal changes are likely to be correlated to increasing wear.






3. Results


This section is divided in three parts. First, the results from the varying fault detection experiments are shown. Secondly, the results from the temperature sensitivity analysis are presented. Finally, the application of the HIs on the two accelerated wear tests is described.



3.1. Varying Fault Detection Analysis


From the 16 bearing experiments, the HIs presented in Table 1 were calculated. We used the first 100 measurements per bearing as the reference quantity for the Z-score-HI and set R to 128. Figure 8 shows the R2 values for a selection of different HIs as a box plot. The R2 statistics for all HIs can be found in Appendix A. The abbreviations of the HIs are explained in Table 1. The PtP-, Peak-, RMS-, Std- and Z-score-HI show the highest R2 values on average. They also show the lowest variance between the different bearings. This means that these HIs detect different faults most reliably. Other HIs show also high trend values but only for some of the bearings. HIs derived from the frequency-domain (DomF, SpC, SpE, SpF, SpRO) perform worse compared to HIs from the time-domain. The preprocessing steps of enveloping the signal or calculating the residual signal do not affect the HI trend behavior significantly, which can be seen in Table A1, Table A2 and Table A3. The TDI-, and DWTRMS-HI for specific frequency bands also show high average values with changing variance (see Table A4). If these HIs would be used for robot gear condition monitoring, the progress of all frequency band specific HIs would have to be tracked as different faults stimulate changes in different frequency bands.




3.2. Temperature Sensitivity Analysis


Based on this result, we conducted the temperature sensitivity analysis for the PtP-, Peak-, RMS-, Std-, TDI-, DWTRMS- and Z-score-HI. Here, we used one measurement per temperature step as the reference quantity for the Z-score-HI and set R to 128. Figure 9 shows the change of the HIs per axis in percent for the PtP-, Peak-, RMS-, Std- and Z-score-HI. The RMS- and Z-score-HI show the lowest temperature sensitivity overall. Figure 10 shows the results for the DWTRMS-HIs. Here, high sensitivities for different detail coefficient DWTRMS-HIs exist. Figure A1 shows the temperature sensitivity of the TDI-HIs of different frequency bands. Here, a similar result can be seen compared to the DWTRMS-HIs. The data of Figure 10 and Figure A1 can also be found in Table A5 and Table A6. In general, the data from axis 4 show the highest temperature sensitivity for all HIs. The comparably higher sensitivity of the HI values derived from data at axis 4 can be related to the robot trajectory. During the trajectory, the robot arm was stretched out, which leads to greater elasticity at the position of the sensor at axis 4. This can cause increased vibrations, which are magnified under changing temperature influences. Given the results of the temperature sensitivity analysis, we analyzed the data sets from the accelerated wear tests with only the RMS- and the Z-score-HI. The other HIs were excluded due to their high temperature sensitivity. Even though some frequency band specific DWTRMS-HIs and TDI-HIs show low sensitivity, they were excluded as robot gear faults do not have to stimulate these frequency bands with low sensitivity.




3.3. Accelerated Wear Tests Analysis


In this analysis, we used the first 100 measurements as the reference quantity for the Z-score-HI and set R to 256. For smoothing, we applied a rolling average with a window length of 15 on both HI series. The progress of the HIs in the accelerated wear test of the ABB IRB 7600 is shown in Figure 11. Both HIs show a plateau with increased values at the end of the experiment. It can be assumed that, at this point in time, faults have already been present. Here, the increased HI values over a longer time period could have been used as a decision criterion for maintenance actions.



The measurements at the very end show decreased values again. We assume that this decrease is correlated to a part of the bearing roller. In the end of the experiment, one of the roller elements showed a large pit. During the measurements showing the higher HI values this detached part of the roller element could have been still slightly fixed at the roller element and thus could have caused high vibration. After full detachment, this noise level decreased again. For the measurements before the plateau, the RMS-HI shows higher fluctuations compared to the Z-score-HI. For instance, the RMS-HI shows a first high peak around measurement 100. Such peaks could lead to false alarms in a condition monitoring scenario and should be avoided.



The progress of the HIs in the other accelerated wear test performed with the ABB IRB 6600 is shown in Figure 12. Here, the Z-score-HI shows a trending behavior and the RMS shows a stationary progress. Both HIs show a high increase during the last measurements. In this experiment, the trending behavior of the Z-score could have been a criterion to execute maintenance actions. This information is not present in the RMS-progress. Based on the fact that the Z-score showed a better trend behavior in the ABB IRB 6600 experiment and less noisy behavior in the ABB IRB 7600 experiment, we suggest the use of the Z-score-HI for the condition monitoring of robot gears.





4. Discussion


The discussion is divided in four parts. First, some remarks regarding our designed HI are given. Afterwards, three parts make up the Results subsections.



To derive the spectrograms required for the Z-score-HI, the length of the window function must be defined. High values for R result in a high frequency resolution and low values in a high time resolution. For the individual experiments, we chose window lengths that lead to a good compromise between time and frequency resolution by inspecting spectrograms created with different window lengths. We chose window lengths that lead to spectrograms appearing the least noisy in a visual inspection. In an industrial setting, an automated approach should be developed for this dependent on the robot’s trajectory and the used sensor.



The motivation to use the FEMTO data set to investigate HI performance was to assess HIs’ capability to detect multiple faults. Within a robot gearbox, which are mostly RV reducers, not only bearings but also the gear teeth can have faults. Such faults are not taken into account by our analysis explicitly. However, the bearing faults present in the FEMTO data set, e.g., pitting, are similar to typical gear teeth or shaft damage from a signal analysis point of view. Damage from all components modulate the acceleration signals at a specific frequency and its sidebands. Exactly this capability to track such changes in the signal was investigated in our analysis. There also exist HIs that track energy changes at the specific component fault frequencies. Such HIs were excluded from our analysis because expert knowledge about the geometric characteristics of the gears, e.g., the bearing diameters or the number of roller elements, is required to calculate these HIs. This expert knowledge is usually not available to industrial robot users. We also excluded HIs that could be derived automatically from machine learning models, such as autoencoders, as the physical interpretation of these HIs is difficult and hence a transferability between different robot systems is questionable from our point of view.



Regarding the results of the temperature sensitivity analysis, it must be pointed out that the results are valid only for the chosen robot trajectory. As the dynamic behavior of the robot changes within its working space, this analysis should be performed individually for trajectories and robot systems. However, from a theoretical point of view, the Z-score-HI possesses the ability to cope with these temperature fluctuations independently of the trajectory. Temperature variations lead to variance in the STFT spectrograms. This variance is taken into account in the   s p e c   ( τ , ω )   a v g , r e f     and   s p e c   ( τ , ω )   s t d , r e f     during the initialization phase. Hence, Z-score-HIs derived from measurements from functional robot gears and different temperatures will show only little differences in the Z-score-HI value. This becomes more clear considering Figure 13. Here, the STFT and Z-score spectrograms from two vibration measurements of the temperature sensitivity experiment are shown. On the left side, the spectrograms from a cold gear measurement are depicted. On the right side, the spectrograms from a warm gear measurement are shown. Differences are visible in the STFT spectrograms around seconds 1 and 2. No differences are visible in the Z-score spectrograms. The scales of the STFT spectrograms reach from −5 to 0 and the scales of the Z-score spectrograms from 0 to 1.5. Hence, the relative changes of the STFT spectrograms are bigger compared to the Z-score spectrograms. In this example, the total relative change in energy in the STFT spectrogram is 9.15 percent, whereas the total relative change in the Z-score spectrogram is just 1.63 percent.



Finally, the results from the accelerated wear tests show noisy progress over time. This hinders a simple or automated detection of faults in a condition monitoring behavior. To establish an automated CM system, a suitable trend detection in combination with an outlier detection system must be set up. A trend detection system could identify HI progress shown as in Figure 12, whereas an outlier detection system could detect progress as depicted in Figure 11. The development of such a system also marks the outlook of our future work.




5. Conclusions


Condition monitoring of robot gears has the potential to decrease production system downtimes. The state-of-the-art provides many health indicators to track the health state of gears. We analyzed these health indicators regarding specific requirements rising from typical industrial robot applications. These requirements are the ability to detect different faults, low temperature sensitivity and the capability to deal with instationary velocity behavior. Additionally, we suggested a new health indicator based on STFT spectrograms and Z-scores that can cope with these requirements. Our analysis showed that the RMS health indicator and our suggested health indicator meet the defined requirements the best. Data from accelerated wear tests show that for an automatic condition monitoring system a combination of a trend detection and an outlier detection system that can deal with a noisy signal is required.
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Table A1. R2 statistics for HIs derived from the normal signal.
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	CrF
	DomF
	ImpF
	Kurt
	MarF
	Mean
	Med
	MedF
	Peak
	PtP
	RMS
	Skew
	SpC
	SpE
	SpF
	SpRO
	Std
	Z-Score





	Mean
	0.231
	0.354
	0.287
	0.336
	0.296
	0.034
	0.063
	0.467
	0.822
	0.844
	0.887
	0.242
	0.599
	0.488
	0.514
	0.491
	0.887
	0.934



	Std
	0.246
	0.351
	0.289
	0.334
	0.298
	0.076
	0.147
	0.311
	0.173
	0.145
	0.215
	0.289
	0.298
	0.281
	0.225
	0.322
	0.215
	0.080



	Min
	0.005
	0.013
	0.007
	0.004
	0.006
	0.003
	0.007
	0.024
	0.259
	0.397
	0.082
	0.004
	0.025
	0.067
	0.135
	0.035
	0.082
	0.644



	Max
	0.706
	0.998
	0.764
	0.869
	0.773
	0.323
	0.618
	0.941
	0.987
	0.985
	0.990
	0.888
	0.944
	0.971
	0.900
	0.984
	0.990
	0.983
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Table A2. R2 statistics for HIs derived from the enveloped signal.
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	CrF
	DomF
	ImpF
	Kurt
	MarF
	Mean
	Med
	MedF
	Peak
	PtP
	RMS
	Skew
	SpC
	SpE
	SpF
	SpRO
	Std





	Mean
	0.215
	0.139
	0.284
	0.299
	0.296
	0.776
	0.819
	0.496
	0.816
	0.816
	0.872
	0.275
	0.605
	0.464
	0.462
	0.514
	0.898



	Std
	0.229
	0.248
	0.283
	0.328
	0.291
	0.296
	0.248
	0.318
	0.178
	0.178
	0.227
	0.303
	0.286
	0.298
	0.276
	0.309
	0.131



	Min
	0.005
	0.001
	0.006
	0.001
	0.005
	0.010
	0.014
	0.023
	0.246
	0.246
	0.074
	0.008
	0.046
	0.013
	0.012
	0.007
	0.427



	Max
	0.635
	0.997
	0.741
	0.919
	0.766
	0.977
	0.983
	0.981
	0.988
	0.988
	0.989
	0.905
	0.939
	0.978
	0.901
	0.987
	0.987
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Table A3. R2 statistics for HIs derived from the residual signal as suggestet by [4].
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	CrF
	DomF
	ImpF
	Kurt
	MarF
	Mean
	Med
	MedF
	Peak
	PtP
	RMS
	Skew
	SpC
	SpF
	SpRO
	Std
	SpE





	Mean
	0.329
	0.423
	0.348
	0.365
	0.355
	0.032
	0.088
	0.608
	0.847
	0.859
	0.884
	0.237
	0.701
	0.609
	0.605
	0.884
	0.534



	Std
	0.270
	0.348
	0.303
	0.337
	0.312
	0.089
	0.187
	0.292
	0.178
	0.153
	0.221
	0.319
	0.196
	0.202
	0.213
	0.221
	0.316



	Min
	0.010
	0.021
	0.003
	0.007
	0.018
	0.001
	0.001
	0.016
	0.211
	0.328
	0.082
	0.003
	0.425
	0.147
	0.132
	0.083
	0.023



	Max
	0.802
	0.992
	0.828
	0.858
	0.830
	0.374
	0.671
	0.988
	0.987
	0.987
	0.990
	0.943
	0.959
	0.930
	0.977
	0.990
	0.969
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Table A4. R2 statistics for HIs derived from the time–frequency-domain. DWT-, IMF-, and TDI-based HIs were calculated for different frequency bands. The frequency bands are encoded in the abbreviation of the HI name. Large numbers correspond to high frequency bands for TDI-HIs and low frequency bands for DWT- and IMF-HIs.
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	Mean
	Std
	Min
	Max





	DWTRMS5
	0.891
	0.207
	0.099
	0.990



	DWTRMS4
	0.889
	0.223
	0.032
	0.988



	TDI33
	0.882
	0.087
	0.583
	0.965



	DWTRMS6
	0.882
	0.216
	0.117
	0.991



	TDI43
	0.871
	0.156
	0.296
	0.983



	IMFRMS2
	0.869
	0.227
	0.014
	0.991



	TDI36
	0.867
	0.203
	0.095
	0.976



	TDI14
	0.865
	0.154
	0.327
	0.970



	TDI35
	0.864
	0.202
	0.096
	0.981



	TDI22
	0.862
	0.196
	0.135
	0.963



	TDI34
	0.861
	0.197
	0.114
	0.974



	TDI23
	0.860
	0.181
	0.200
	0.961



	TDI21
	0.859
	0.197
	0.147
	0.971



	DWTRMS3
	0.859
	0.245
	0.019
	0.998



	TDI37
	0.857
	0.208
	0.072
	0.969



	TDI39
	0.853
	0.221
	0.017
	0.975



	TDI15
	0.847
	0.218
	0.035
	0.982



	IMFRMS1
	0.845
	0.210
	0.091
	0.978



	TDI44
	0.844
	0.223
	0.004
	0.984



	TDI13
	0.842
	0.224
	0.015
	0.975



	TDI12
	0.841
	0.218
	0.022
	0.969



	TDI40
	0.840
	0.215
	0.072
	0.969



	TDI24
	0.837
	0.223
	0.027
	0.954



	TDI41
	0.836
	0.221
	0.061
	0.970



	TDI16
	0.833
	0.228
	0.022
	0.969



	TDI42
	0.830
	0.221
	0.072
	0.964



	TDI18
	0.830
	0.237
	0.044
	0.976



	TDI10
	0.830
	0.214
	0.025
	0.966



	TDI5
	0.827
	0.273
	0.032
	0.995



	TDI6
	0.825
	0.263
	0.015
	0.983



	TDI8
	0.825
	0.206
	0.051
	0.948



	TDI9
	0.824
	0.209
	0.047
	0.954



	TDI4
	0.823
	0.273
	0.151
	0.995



	TDI45
	0.820
	0.220
	0.013
	0.986



	TDI20
	0.818
	0.277
	0.066
	0.963



	TDI38
	0.816
	0.259
	0.038
	0.972



	TDI32
	0.815
	0.272
	0.090
	0.968



	TDI46
	0.813
	0.218
	0.023
	0.987



	TDI7
	0.813
	0.264
	0.008
	0.973



	TDI47
	0.812
	0.217
	0.013
	0.988



	TDI11
	0.812
	0.251
	0.017
	0.966



	TDI17
	0.808
	0.293
	0.005
	0.967



	DWTRMS2
	0.804
	0.297
	0.101
	0.981



	IMFRMS3
	0.803
	0.243
	0.025
	0.961



	TDI3
	0.803
	0.290
	0.148
	0.987



	TDI49
	0.792
	0.215
	0.018
	0.990



	TDI19
	0.782
	0.304
	0.026
	0.959



	TDI28
	0.782
	0.270
	0.014
	0.960



	TDI50
	0.780
	0.216
	0.026
	0.989



	TDI52
	0.770
	0.216
	0.025
	0.989



	TDI30
	0.769
	0.293
	0.049
	0.964



	TDI25
	0.769
	0.290
	0.025
	0.966



	TDI53
	0.767
	0.215
	0.025
	0.989



	TDI54
	0.766
	0.215
	0.025
	0.990



	TDI48
	0.765
	0.252
	0.024
	0.988



	TDI55
	0.765
	0.215
	0.028
	0.989



	TDI58
	0.762
	0.215
	0.026
	0.990



	TDI57
	0.761
	0.216
	0.028
	0.989



	TDI60
	0.756
	0.222
	0.028
	0.989



	TDI31
	0.747
	0.312
	0.073
	0.971



	TDI51
	0.747
	0.253
	0.022
	0.989



	TDI29
	0.744
	0.297
	0.032
	0.961



	TDI2
	0.744
	0.319
	0.069
	0.977



	DWTRMS1
	0.740
	0.306
	0.026
	0.978



	TDI27
	0.739
	0.292
	0.027
	0.954



	TDI63
	0.736
	0.253
	0.028
	0.989



	TDI62
	0.736
	0.254
	0.026
	0.990



	TDI59
	0.735
	0.254
	0.024
	0.990



	TDI56
	0.735
	0.254
	0.023
	0.989



	TDI61
	0.734
	0.254
	0.024
	0.989



	TDI64
	0.732
	0.254
	0.024
	0.989



	TDI26
	0.712
	0.342
	0.043
	0.964



	IMFRMS4
	0.665
	0.335
	0.035
	0.985



	HHTentr
	0.646
	0.317
	0.021
	0.982



	TDI1
	0.588
	0.313
	0.011
	0.937



	IMFRMS5
	0.567
	0.313
	0.016
	0.934



	IMFRMS6
	0.460
	0.223
	0.110
	0.829



	DecompRate
	0.458
	0.292
	0.075
	0.974



	DWTKurt5
	0.383
	0.296
	0.014
	0.821



	DWTKurt2
	0.381
	0.318
	0.007
	0.815



	DWTEntr6
	0.380
	0.319
	0.017
	0.991



	DWTImpF2
	0.377
	0.308
	0.005
	0.806



	DWTKurt4
	0.361
	0.315
	0.007
	0.851



	DWTKurt6
	0.353
	0.330
	0.003
	0.860



	DWTImpF6
	0.327
	0.280
	0.001
	0.796



	DWTImpF5
	0.326
	0.274
	0.001
	0.766



	IMFRMS7
	0.326
	0.271
	0.026
	0.863



	TDI0
	0.325
	0.246
	0.037
	0.906



	DWTImpF3
	0.325
	0.260
	0.017
	0.701



	IMFKurt1
	0.320
	0.314
	0.009
	0.816



	DWTKurt3
	0.319
	0.296
	0.007
	0.827



	DWTImpF4
	0.302
	0.273
	0.004
	0.748



	IMFImpF1
	0.288
	0.280
	0.009
	0.838



	IMFKurt3
	0.287
	0.288
	0.017
	0.843



	IMFKurt4
	0.286
	0.222
	0.024
	0.677



	DWTKurt1
	0.282
	0.217
	0.012
	0.722



	IMFImpF4
	0.277
	0.202
	0.014
	0.601



	IMFKurt2
	0.263
	0.274
	0.010
	0.689



	IMFEntr2
	0.254
	0.265
	0.012
	0.867



	DWTEntr5
	0.254
	0.291
	0.001
	0.989



	DWTImpF1
	0.251
	0.213
	0.006
	0.660



	IMFImpF3
	0.242
	0.253
	0.016
	0.761



	IMFEntr1
	0.232
	0.280
	0.009
	0.944



	IMFImpF2
	0.224
	0.185
	0.011
	0.602



	IMFEntr3
	0.207
	0.269
	0.013
	0.888



	IMFKurt5
	0.184
	0.215
	0.007
	0.822



	IMFRMS8
	0.181
	0.238
	0.000
	0.682



	IMFImpF5
	0.164
	0.187
	0.007
	0.693



	IMFEntr4
	0.153
	0.138
	0.005
	0.524



	DWTEntr4
	0.136
	0.235
	0.005
	0.969



	IMFImpF6
	0.121
	0.118
	0.010
	0.377



	IMFKurt6
	0.121
	0.125
	0.010
	0.428



	IMFEntr6
	0.105
	0.102
	0.009
	0.393



	DWTEntr3
	0.101
	0.187
	0.003
	0.783



	IMFEntr5
	0.095
	0.095
	0.002
	0.367



	IMFEntr7
	0.089
	0.092
	0.003
	0.276



	DWTEntr2
	0.062
	0.111
	0.001
	0.417



	IMFImpF7
	0.048
	0.039
	0.002
	0.134



	IMFKurt7
	0.042
	0.033
	0.002
	0.106



	IMFEntr8
	0.032
	0.111
	0.000
	0.461



	DWTEntr1
	0.031
	0.034
	0.003
	0.141



	IMFImpF8
	0.026
	0.028
	0.000
	0.078



	IMFKurt8
	0.021
	0.031
	0.000
	0.114



	IMFRMS9
	0.000
	0.000
	0.000
	0.000



	IMFKurt9
	0.000
	0.000
	0.000
	0.000



	IMFImpF9
	0.000
	0.000
	0.000
	0.000



	IMFEntr9
	0.000
	0.000
	0.000
	0.000



	IMFRMS10
	0.000
	0.000
	0.000
	0.000



	IMFImpF10
	0.000
	0.000
	0.000
	0.000



	IMFKurt10
	0.000
	0.000
	0.000
	0.000



	IMFEntr10
	0.000
	0.000
	0.000
	0.000



	IMFRMS11
	0.000
	NaN
	0.000
	0.000



	IMFImpF11
	0.000
	NaN
	0.000
	0.000



	IMFKurt11
	0.000
	NaN
	0.000
	0.000



	IMFEntr11
	0.000
	NaN
	0.000
	0.000
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Table A5. Temperature sensitivity of the different DWTRMS-HIs.
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	1
	2
	3
	4





	DWTRMS1
	4.944734
	41.833250
	13.225817
	27.640727



	DWTRMS2
	9.431779
	61.784386
	20.966405
	52.444752



	DWTRMS3
	11.100870
	67.906341
	17.372290
	64.555873



	DWTRMS4
	16.176322
	88.064015
	19.294715
	82.614996



	DWTRMS5
	13.631686
	87.439763
	17.451681
	90.271799



	DWTRMS6
	10.015797
	70.887870
	19.141733
	93.391435
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Table A6. Temperature sensitivity of the different TDI-HIs.
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	Axis 1
	Axis 2
	Axis 3
	Axis 4





	TDI0
	7.887680
	3.623626
	4.032428
	9.856386



	TDI1
	7.345230
	13.780192
	1.419329
	15.104011



	TDI2
	5.702217
	46.387687
	23.876372
	24.639909



	TDI3
	6.721355
	47.590460
	22.691756
	42.390072



	TDI4
	10.873829
	59.621503
	24.158641
	38.671919



	TDI5
	13.127752
	74.783219
	17.398075
	54.988992



	TDI6
	14.670516
	59.576255
	12.953424
	75.739203



	TDI7
	18.161779
	57.596831
	17.545132
	65.254182



	TDI8
	15.090433
	70.501830
	11.004508
	68.946535



	TDI9
	19.130819
	94.756567
	10.267873
	63.083458



	TDI10
	19.817337
	140.434648
	22.212611
	48.494003



	TDI11
	31.037879
	152.473705
	28.134321
	75.366125



	TDI12
	33.675873
	93.057559
	18.953184
	98.385403



	TDI13
	26.250892
	79.866002
	17.152706
	92.669107



	TDI14
	11.635896
	58.286933
	24.510069
	86.809206



	TDI15
	23.377379
	46.907903
	16.496553
	72.502066



	TDI16
	30.064213
	55.243855
	11.119799
	59.119520



	TDI17
	21.268743
	64.332588
	7.938803
	79.776374



	TDI18
	9.808639
	52.933143
	4.197856
	87.106639



	TDI19
	3.420408
	57.102301
	3.507140
	94.175140



	TDI20
	0.062629
	58.697728
	5.538016
	107.584154



	TDI21
	17.433815
	60.093605
	12.872000
	112.916761



	TDI22
	23.980438
	65.038102
	9.486835
	164.461250



	TDI23
	23.749318
	91.055389
	11.379480
	152.353906



	TDI24
	11.483126
	109.842746
	21.619409
	121.442989



	TDI25
	6.596706
	85.653753
	23.250270
	111.067700



	TDI26
	16.057350
	68.794132
	20.724566
	88.922105



	TDI27
	16.557670
	68.373539
	18.973086
	114.047417



	TDI28
	19.372075
	65.937430
	13.256130
	140.639806



	TDI29
	22.613427
	68.081118
	27.002980
	129.175849



	TDI30
	15.441241
	68.255349
	31.219217
	111.829705



	TDI31
	4.729546
	68.353458
	28.824115
	116.071704



	TDI32
	1.112630
	69.440683
	18.666493
	104.393062



	TDI33
	3.010018
	66.107354
	13.594603
	104.544706



	TDI34
	6.223136
	49.771212
	14.597765
	135.411471



	TDI35
	10.119042
	33.536590
	4.257545
	167.094574



	TDI36
	0.777079
	33.963467
	0.393118
	158.518025



	TDI37
	0.893584
	47.211867
	18.367647
	110.996278



	TDI38
	8.789406
	39.550853
	33.938136
	55.254421



	TDI39
	18.286551
	4.903817
	23.615781
	35.301715



	TDI40
	28.767525
	34.224059
	6.485524
	47.061077



	TDI41
	21.670495
	39.728416
	9.696093
	33.227046



	TDI42
	4.437817
	59.765908
	18.549288
	79.919517



	TDI43
	0.147523
	52.939389
	19.848252
	83.294446



	TDI44
	0.446057
	53.539446
	19.351326
	79.595920



	TDI45
	0.657082
	52.356513
	19.032092
	77.824663



	TDI46
	0.199947
	55.873800
	19.528656
	75.827413



	TDI47
	1.388775
	57.010168
	19.014225
	76.394986



	TDI48
	2.097117
	57.774286
	18.889822
	76.077127



	TDI49
	3.164926
	58.959065
	18.696796
	75.814731



	TDI50
	3.851514
	59.592621
	18.410404
	75.719379



	TDI51
	4.577587
	60.339446
	18.308180
	75.543086



	TDI52
	5.160258
	60.877095
	18.211340
	75.458546



	TDI53
	5.659315
	61.365144
	18.069126
	75.348426



	TDI54
	6.077128
	61.761218
	17.976632
	75.218693



	TDI55
	6.436426
	62.077612
	17.945549
	75.121278



	TDI56
	6.763257
	62.361230
	17.851473
	75.050770



	TDI57
	7.080730
	62.591447
	17.781367
	74.975471



	TDI58
	7.369667
	62.781646
	17.783673
	74.880725



	TDI59
	7.622924
	62.946830
	17.710259
	74.853578



	TDI60
	7.828532
	63.078384
	17.670637
	74.815067



	TDI61
	7.974544
	63.177746
	17.693925
	74.733074



	TDI62
	8.072173
	63.259698
	17.636933
	74.758740



	TDI63
	8.128858
	63.308959
	17.623715
	74.750804



	TDI64
	8.147158
	63.322210
	17.664456
	74.689287
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Figure A1. Temperature sensitivity for the different TDI-HIs and robot axes. 
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Figure 1. Process to derive the Z-score-based HI. 
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Figure 2. Saturation of the standard deviation in the time–frequency spectrograms. 
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Figure 3. Comparison of STFT and Z-score spectrograms from healthy and faulty robot gear measurements. 
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Figure 4. Overall process of the evaluation method. 
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Figure 5. Robot test beds. 
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Figure 6. Measurement trajectory for the temperature sensitivity analysis. 
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Figure 7. Faults in the accelerated wear tests, lower image following [7]. 
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Figure 8. R2 values for different HIs and bearings from the FEMTO data set based on raw signals. 
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Figure 9. Temperature sensitivity for different HIs and robot axes. 
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Figure 10. Temperature sensitivity for different DWTRMS-HIs and robot axes. 
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Figure 11. Z-score-HI and RMS-HI for the IRB 7600 experiment. 
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Figure 12. Z-score-HI and RMS-HI for the IRB 6600 experiment. 
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Figure 13. Spectrograms from cold and warm gear measurements. 
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Table 1. Calculated HIs.
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	HI Name
	HI Abbreviation
	HI Source





	Crest Factor
	CrF
	[40]



	Dominant Frequency
	DomF
	[37]



	Impulse Factor
	ImpF
	[38]



	Kurtosis
	Kurt
	[39]



	Margin Factor
	MarF
	[38]



	Mean
	Mean
	[40]



	Median
	Med
	[40]



	Median Frequency
	MedF
	[37]



	Peak
	Peak
	[39]



	Peak to Peak
	PtP
	[39]



	Root Mean Square
	RMS
	[39]



	Skewness
	Skew
	[40]



	Spectral Centroid
	SpC
	[37]



	Spectral Flux
	SpF
	[37]



	Spectral Rollover
	SpRO
	[37]



	Spectral Entropy
	SpE
	[4]



	Standard Deviation
	Std
	[39]



	Discrete Wavelet RMS
	DWTRMS
	[19]



	Discrete Wavelet Impulse Factor
	DWTImpF
	[19]



	Discrete Wavelet Kurtosis
	DWTKurt
	[19,38]



	Discrete Wavelet Entropy
	DWTEntr
	[4,19]



	Discrete Wavelet Decomposition Rate
	DecompRate
	[18]



	Hilbert Huang Entropy
	HHTEntr
	[30]



	Intrinsic Mode Function RMS
	IMFRMS
	[33]



	Intrinsice Mode Function Impulse Factor
	IMFImpF
	[33]



	Intrinsic Mode Function Kurtosis
	IMFKurt
	[33]



	Intrinsic Mode Function Entropy
	IMFEntr
	[33]



	Time Domain Integral
	TDI
	[14]



	Z-score
	Z-score
	-
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