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Abstract: Fast and precise robot motion is needed in many industrial applications. Most industrial
robot motion controllers allow externally commanded motion profiles, but the trajectory tracking
performance is affected by the robot dynamics and joint servo controllers, to which users have no
direct access and about which they have little information. The performance is further compromised
by time delays in transmitting the external command as a setpoint to the inner control loop. This
paper presents an approach for combining neural networks and iterative learning controls to improve
the trajectory tracking performance for a multi-axis articulated industrial robot. For a given desired
trajectory, the external command is iteratively refined using a high-fidelity dynamical simulator to
compensate for the robot inner-loop dynamics. These desired trajectories and the corresponding
refined input trajectories are then used to train multi-layer neural networks to emulate the dynamical
inverse of the nonlinear inner-loop dynamics. We show that with a sufficiently rich training set,
the trained neural networks generalize well to trajectories beyond the training set as tested in the
simulator. In applying the trained neural networks to a physical robot, the tracking performance still
improves but not as much as in the simulator. We show that transfer learning effectively bridges
the gap between simulation and the physical robot. Finally, we test the trained neural networks
on other robot models in simulation and demonstrate the possibility of a general purpose network.
Development and evaluation of this methodology are based on the ABB IRB6640-180 industrial robot
and ABB RobotStudio software packages.

Keywords: deep learning in robotics and automation; industrial robots; iterative learning control;
motion control

1. Introduction

Robots have been widely utilized for industrial tasks including assembly, welding,
painting, packaging, and labeling. In many cases they are controlled to track a given
trajectory by external motion command interfaces, which are available for many industrial
robot controllers, including the MotoPlus of Yaskawa Motoman, low-level interface (LLI)
for Stäubli, robot sensor interface (RSI) of Kuka, and externally guided motion (EGM) of
ABB. Although high-precision industrial robots have been well established for decades
in manufacturing and fabrication applications that require precise motion control, such
as aerospace assembly, laser scanning, and operation in crowded and unstructured en-
vironments, it still remains a challenge to track a given trajectory accurately. In general,
a trade-off exists between reduction of cycle time and improvement of tracking accuracy
for industrial robots.

Trajectory tracking control of robot manipulators is a well-studied problem [1]. The
typical control architecture is based on joint torque control, which is challenging to imple-
ment on industrial robots. The controller structure usually consists of a linear stabilizing
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feedback controller and a feedforward compensation for trajectory tracking. Asymptoti-
cally perfect tracking is achieved by adaptive control [2], given that the robot dynamics are
expressed in the linear-in-parameter form. However, accurate dynamics information for a
robot is rarely available in practice. In this case, either simplified reduced-order models
are identified [3], or machine learning techniques including wavelet networks, Gaussian
Processes, and fuzzy logic systems [4] are utilized to approximate a sophisticated model
for controller design. Iterative learning control (ILC) [5,6] relaxes the requirement of model
information, but the learned representation is not transferable between different trajectories.
Recently, neural network (NN)-based [7] controller design has attracted a great deal of
attention with its potential ability to generalize beyond the training set. A detailed review
of neural-learning control is presented in Section 2.

The goal of this work was to design an outer-loop feedforward controller to com-
pensate for the inner-loop dynamics for the trajectory tracking control of an articulated
industrial robot. Our approach, as illustrated in Figure 1, combines iterative learning
control with a multi-layer neural network (MNN). ILC finds the commanded robot mo-
tion corresponding to a collection of desired robot joint trajectories. These input/output
trajectory pairs are then used to train the inverse dynamics of the inner control loop (with
desired robot joint trajectory as the input and commanded robot motion as the output)
represented as an MNN (Neural Network I, NN-I, in Figure 1). As the inner loop may be
non-minimum-phase (from time delay or non-collocated input/output map due to joint or
structural flexibility), the MNN needs to be able to approximate a non-causal system to
avoid instability. We used a robot dynamics simulator from a robot vendor (RobotStudio
from ABB) to rapidly generate a large set of training trajectories. The simulator was also
used to guide the training process and evaluate the performance of the trained MNN.
When the NN feedforward control is applied to a physical robot, the tracking performance
invariably degrades due to the discrepancy between simulation and reality. To narrow this
reality gap, the output layer of NN-I was adjusted using a moderate amount of additional
data obtained from the physical robot. This process is similar to transfer learning [8].
Using the proposed approach, we have demonstrated significantly improved tracking
performance on a physical robot ABB IRB 6640-180 using NN compensation. We have also
applied the trained NNs (NN-I) to two other robot models in simulation and both show
improved tracking.

Figure 1. Overview of the neural-learning trajectory tracking control approach.

Compared to state-of-the-art neural-learning controller design, the contributions of
this paper are as follows.



Robotics 2021, 10, 50 3 of 20

• Non-causal MNN for stable nonlinear inversion: We showed the feasibility of using an
MNN to approximate the non-causal stable inverse for nonlinear non-minimum-phase
robot inner-loop dynamics.

• Model-free iterative learning: We demonstrated a model-free gradient-based ILC law
for nearly diagonal robot inner-loop dynamics. This ILC was used to generate the
training set for the MNN.

• Transfer learning: We narrowed the reality gap by updating the output layer of the
simulation-trained MNN using the data from the physical robot.

• Demonstration: The improved performance using our approach was shown through
simulation and experimental trials with a 6-degree-of-freedom (dof) nonlinear indus-
trial robot.

• Generalizability: Different robots from the same vendor exhibit similar inner-loop
dynamics. We showed that the MNN trained for one robot improves the performance
on other robot models from the same vendor as well.

The rest of the paper is organized as follows. Section 2 summarizes related work
on neural learning for robot trajectory tracking control and highlights our contributions.
Section 3 states the problem, followed by the methodology in Section 4. The simulation
and experimental results are presented in Section 5. Finally, Section 6 concludes the paper
and adds some new insight.

2. Related Work

Numerous techniques have been proposed to control uncertain nonlinear dynamical
systems using universal approximators such as Gaussian processes [9] and neural net-
works [10–12]. In a general framework of neural-learning control, NNs are used to either
approximate the robot forward dynamics or inverse dynamics for controller design [13],
and the control problem falls within the context of either reinforcement learning [14,15],
adaptive control [16], or optimal control [17]. Radial basis function (RBF) NNs, multi-layer
feedforward NNs, and recurrent neural networks (RNNs) have been explored for trajectory
tracking control [18–22]. The concept of incorporating fuzzy logic into NN control has also
grown into a popular research topic [23–26].

Radial basis function NNs are a popular choice in neural adaptive controller de-
sign since they naturally express the dynamics approximation into a linear-in-parameter
form [27]. In [28], an adaptive control strategy in joint torque level using RBF NNs for
dynamics approximation was proposed to compensate for the unknown robot dynamics
and an unknown payload. However, typically, a large amount of parameters are required
to approximate robot dynamics accurately by using the RBF NNs, and it is a non-trivial task
to select the centers and shapes of radial basis function kernels. In addition, users usually
only have access to the joint position or velocity setpoint control for many industrial robots.
In [29], a neural adaptive control technique was introduced for a trilateral teleoperation
system with dual-master/single-slave manipulators. In [30], a NN-based sliding mode
adaptive controller achieved robust trajectory tracking control for robot manipulators
subject to uncertainties. However, torque control was required and only simulation results
were presented. An adaptive controller based on a two-layer feedforward perceptron NN
was proposed in [31,32] for robot manipulator control. The adaptation of the unknown
parameters was derived by the Lyapunov stability analysis and Taylor series expansion.
However, the extension to more layers becomes more complex. Adaptive neural control
methods have also been investigated for humanoid robots [33,34]. Other proposed control
frameworks that use general function approximators for linearizing controller design can
be found in [35–37].

There have been several approaches that use NNs to approximate a system inverse
for dynamical compensation [38–40]. None of these approaches consider the possible non-
causality in stable dynamical inversion. In [41], a double-NN architecture was introduced,
with one NN for the nonlinear system identification and another one learning the system
inverse. However, the structure was complex and led to more parameters. It has also been
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shown that RNN outperforms Gaussian processes [9] in the performance of learning robot
inverse dynamics with linear time complexity, given sufficient training data [42].

Our focus is on inner-loop dynamics compensation rather than torque-level control,
which is more readily applicable to current industrial robots. The inner-loop dynamics are
stable and nearly diagonal, but may be non-minimum-phase due to time delay or unstable
zero dynamics. The use of an MNN for robot control in this setting is new and unique.

3. Problem Statement and Approach

Consider an n-dof robot arm under closed-loop joint servo control with input u ∈ Rn,
typically either the joint velocity command q̇c or the joint position command qc, and the
output q ∈ Rn, the measured joint position. The inner-loop dynamics, G, is a sampled-data
nonlinear dynamical system possibly with communication transport delay and quantiza-
tion effects. Our goal is to find a feedforward compensator G† (as shown in Figure 2) such
that, for a given desired joint trajectory qd, the feedforward control u = G†qd would result
in asymptotic tracking: q = Gu→ qd, as t→ ∞.

Figure 2. Robot dynamics with closed loop joint servo control. The goal of the neural-learning control
approach is to find a possibly non-causal feedforward compensator G† using MNNs.

As G is assumed unknown, we will use a multi-layer neural network to approximate
G†. The plant G may be non-minimum-phase (e.g., due to time delay or unstable zero
dynamics from joint flexibility), so the causal inverse would be unstable. In this case,
a stable inverse exists but is non-causal. Therefore, the neural network approximation of
G† must be able to represent the possible non-causal property.

Locally, near a given configuration, G is a linear system that may be represented by
an auto-regressive/moving-average (ARMA) model in the sampled-data implementation.
As the coefficients in the ARMA model may depend on the robot pose, a global representa-
tion of G is a nonlinear ARMA (NARMA) model. Similarly, G† may also be represented by
a stable but possibly non-causal NARMA model. In this case, a multi-layer feedforward
network with a window of past and future inputs is a natural candidate to approximate
G†. Note that since the desired trajectory qd is assumed to be known, future qd may be
used in the non-causal implementation. It is also possible to directly use a recurrent neural
network (RNN) to directly capture the dynamics in G†. A bidirectional recurrent neural
network (BRNN) may be needed to capture the non-causal behavior.

We used an ABB IRB6640-180 robot as a test platform. IRB6640-180 is a robot manipu-
lator with six revolute joints, a 180 kg load capacity and a maximum reach of 2.55 m. It has
high static repeatability (0.07 mm) and path repeatability (1.06 mm) [43]. In this paper, we
assume the robot internal dynamics and delays are deterministic and repeatable, which is
reasonable considering the high accuracy and repeatability of the robot. The ABB controller
has an optional externally guided motion (EGM) module [44], which provides an external
interface of commanded joint angles, u = qc, and joint angle measurements at a 4 ms rate.
ABB also offers a high-fidelity dynamical simulator, RobotStudio [45], with the same EGM
feature included. We used this simulator to implement ILC and in turn generate a large
amount of training data for G† implemented as a multi-layer NN.

EGM sends the commanded joint angle qc ∈ R6 to the low-level servo controller as a
setpoint, and reads the actual joint angle vector, q ∈ R6, measured by the encoders. Ideally,
G should be the identity matrix. However, because of the robot dynamics and the inner
control loop, G is a nonlinear dynamical system.
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4. Methodology

Though Gu may be implemented in simulation and physical experiments, finding
G† is challenging because G is difficult to characterize analytically. Our approach to the
approximation of G† does not require the explicit knowledge of G and only uses Gu for a
specific input u. The key steps include the following.

1. Model-free gradient descent-based iterative refinement: For a specific desired tra-
jectory qd, we approximate G by a linear time-invariant system G(s). The gradi-
ent descent direction G∗(q− qd) (G∗ is the adjoint of G), may be approximated by
G∗(s)(q− qd) = GT(−s)(q− qd). As shown in [46], this can be obtained using Gu for
a suitably chosen u.

2. Approximation of dynamical system using a feedforward neural network: The first
step generates multiple (qd, u) trajectory pairs corresponding to u = G†qd. We would
like to approximate G† by a feedfoward neural network and train the weights using
(qd, u) from iterative refinement. To enable a feedforward net to approximate a
dynamical system, we use a batch of qd to generate a batch of u. Furthermore, the qd
batch is shifted with respect to u to remove the effect of transient responses.

3. Improvement of neural network based on physical experiments: We perform the first
two steps using a dynamical simulator of G (in our case, RobotStudio). When the
trained NN approximation of G† is applied to the physical system, tracking errors
may increase due to the discrepancy between the simulator and the physical robot.
Instead of repeating the process all over again using the actual robot, we just retrain
the output layer weights of the NN.

The rest of this section describes these steps in greater details.

4.1. Iterative Refinement

Consider a single-input/single-output (SISO) linear time-invariant system with trans-
fer function G(s), input u, and output y. We use the underline of a signal to denote the
trajectory of the signal over [0, T] for a given T. Given a desired trajectory y

d
, the goal is

to find an optimal input trajectory u so that the `2-norm of the output error,
∥∥∥y− y

d

∥∥∥, is

minimized. Given an initial guess of the input trajectory u(0), we may use gradient descent
to update u:

u(k+1) = u(k) − αkG∗(s)ey, (1)

where G∗(s) is the adjoint of G(s), ey := (y(k) − y
d
), and y(k) = G(s)u(k). The step size αk

may be selected using a line search to ensure the maximum rate of descent. Let the state
space parameters of a strictly proper G(s) be (A, B, C), i.e., G(s) = C(sI − A)−1B. Then
G∗(s) = GT(−s) = BT(−sI − AT)−1CT . Since A is stable, GT(−s) would be unstable and
G∗(s)ey cannot be directly computed. For a stable computation of the gradient descent
direction, we use the technique described in [46,47]. We propagate backward in time with
time-reversed ey to stably compute the time-reversed gradient direction. The result is then
reversed in time to obtain the gradient descent direction forward in time. The key insight
here is to perform the gradient generation using Gey instead of an analytical model of G.
As a result, no explicit model information is needed in the iterative input update. The
process of one iteration of gradient descent based on Gey is shown in Figure 2 of [47] and
described below.

(a) Apply u(k) to the system at a specific configuration and obtain the output y(k) = Gu(k)

and corresponding tracking error e(k)y = y(k) − y(k)d .
(b) Time-reverse ey(t) to eyR(t) = ey(T − t).

(c) Define the augmented input u′(k)(t) = u(k)(t) + eyR(t). Let y′(k) = Gu′(k)(t) with the
system at the same initial configuration as in step (a).
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(d) Compute e′(t) = y′(k)(t)− y(k)(t), and reverse it in time again to obtain the gradient
direction G∗(s)ey(t) = e′(T − t).

The above iterative refinement algorithm is easily applied to a single robot joint with
G given by RobotStudio. The first guess of u(0) is simply chosen to be the desired output
trajectory y

d
. The convergence and robustness analysis of the gradient-based ILC can be

referred to in [47]. We may also fit the response of RobotStudio using a third-order system
(an underdamped second-order system cascaded with a low-pass filter) within the linear
regime of the response:

G(s) =
a

s + a
× ω2

s2 + 2ζωs + ω2 . (2)

Within the linear regime, G(s) may be used instead of G to speed up the iteration
(as RobotStudio is more time-consuming than computing a linear response).

Table 1 compares the tracking errors
∥∥∥y− y

d

∥∥∥ in RobotStudio, with using RobotStudio
or the fitted linear model to generate the gradient descent direction. As the amplitude and
frequency of the desired output is still in the linear regime, both approaches work well.
Figure 3 shows the trajectory tracking improvement of a sinusoidal trajectory. Figure 3a
reports the uncompensated case (i.e., y(0) = Gy

d
). RobotStudio output indicates an initial

dead time and transient, but matches well with the linear response afterwards. Because
of the RobotStudio dynamics, there is a significant tracking error in both amplitude and
phase. Figure 3b shows the input u and output y after 8 iterations. After the initial transient,
y and y

d
are almost indistinguishable. The input u has amplitude reduction and phase

lead compared to y
d

(also u(0)) to compensate for the amplitude gain and phase lag of
RobotStudio for the input y

d
.

Time (second)

0 5 10 15

A
n

g
le

 (
d

e
g

re
e

)

-10

-8

-6

-4

-2

0

2

4

6

8

10
desired output (input)

output of linear model

output of RobotStudio

(a)

Time (second)

0 5 10 15

A
n

g
le

 (
d

e
g

re
e

)

-10

-8

-6

-4

-2

0

2

4

6

8

10
desired output

input

output of RobotStudio

(b)
Figure 3. Trajectory tracking improvement with iterative refinement after 8 iterations. The desired
trajectory is a sinusoid with ω = 3 rad/s. (a) Desired output (also the input to externally guided
motion (EGM)), RobotStudio output, and linear model output. (b) Desired output, RobotStudio
output, and modified input based on iterative refinement.
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Table 1. Comparison of the `2 norm of tracking errors for a single-joint trajectory, by using iterative
refinement implemented with RobotStudio and with the fitted linear model G(s). The initial tracking
error was 31.6230◦. The linear model offers a reliable approximation of the EGM linear region.

Iteration # Tracking Error Tracking Error
Using RobotStudio (◦) Using Linear Model (◦)

1 26.0699 25.0585
2 21.0735 20.0049
3 17.1372 15.9724
4 13.6738 12.7540
5 11.2821 10.1849

The inner-loop control for industrial robots typically tightly regulates each joint, and
the system is almost diagonal as seen from the outer loop. Therefore, the single-axis
algorithm may be directly extended to the multi-axis case by using the same iterative
refinement procedure applied to each axis separately.

4.2. Feedforward Neural Network

Despite the significantly improved tracking performance, iterative refinement finds
u = G†qd only for a local specific qd. Our aim is to obtain a global approximation of G†

directly by learning from a set of (u, qd) obtained from iterative refinement. To this end, we
use multi-layer NNs to represent G†. Due to the decoupled nature of G (command of joint
i only affects the motion of joint i), we have n separate NNs, one for each joint. We train
these NNs from scratch using a large number of sample trajectories covering the robot
workspace, and the corresponding required inputs are obtained by iterative refinement as
described in Section 4.1.

We hypothesize that G may be represented as a nonlinear ARMA model. We use a
feedforward net to approximate this system, similar to [48]. At a given time t, the input
of the NN is a segment of the desired joint trajectory q

d
(t) := {qd(τ) : τ ∈ [t− T, t + T]}.

The output is also chosen as a segment of u: u := {u(τ) : τ ∈ [t, t + T]}. Updating a
segment of the outer loop control instead of a single time sample reduces computation
by avoiding frequent invocation of the NN. The choice of the future segment of q

d
is to

allow approximation of non-causal behavior needed in inverting the non-minimum phase
or strictly proper G.

We explored the NN architectures, particularly the number of hidden layers and the
number of nodes in each layer, by experiment. The selection of T (identically, the input
dimension of NNs) should guarantee that the input of NNs contains enough information
for the NNs to model the dynamics, and at the same time should not be too large or it
requires a lot more training data. By testing, we chose T to correspond to 25 samples (in the
case of EGM with a 4 ms sampling rate, T = 0.1 s). The input and output layers therefore
have 50 and 25 nodes, respectively. Table 2 lists the results of mean-squared testing error
on unseen testing data with different architectures.

Table 2. Mean squared testing error of different NN architectures. The architecture with two hidden
layers and 100 nodes in each hidden layer produces the best accuracy.

Number of Number of Nodes Final Testing Error (◦)
Hidden Layers in Each Layer (Mean of Three Tests)

2 50/100 100/100 2.623 2.145
2 100/150 100/200 2.474 2.545
3 100/100/100 100/150/100 2.390 2.486
4 100/100/100/50 2.450
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After testing, we selected a fully-connected network including two hidden layers,
and each hidden layer contained 100 nodes, as illustrated in Figure 4. To cover the
workspace of the robot as much as possible, the robot started at a random configuration and
each trajectory was composed of 3000 samples, or 12 s. A large amount of trajectories, in-
cluding sinusoids, sigmoids, and trapezoids, were collected to train the NNs in TensorFlow
on a NVIDIA GeForce GTX 1050 Ti GPU card, completing in around 45 min. The main
Python file ran on a desktop with an Intel Core i7-7700 CPU with 4 cores and 8 logical
processors. We used a per-GPU batch size of 256, and used L2 norm regularization to avoid
overfitting, and the rectified linear unit (ReLU) function to introduce nonlinearity for the
NNs. A fixed learning rate of 10−4 was employed for the training using AdamOptimizer.
Using trajectories with different velocity and acceleration profiles, we were able to activate
and collect data from both linear and nonlinear regions of EGM.

Figure 4. The architecture of the employed neural network that has two fully-connected hidden
layers and 100 nodes in each hidden layer. The input and output layer contains 50 and 25 nodes,
respectively.

4.3. Transfer Learning

A reality gap exists between RobotStudio and the physical robot due to model inac-
curacies and external physical load (such as grippers and cameras) on the physical robot.
RobotStudio captures the dynamics of the physical robot very well for a trajectory with
low velocity, as in Figure 5a. However, for trajectories with large velocity and accelera-
tion, discrepancies between RobotStudio and physical robot responses become obvious
(mainly in the output magnitude) as shown in Figure 5b.

To narrow down the reality gap between the simulator and the physical plant, we
applied the iterative refinement procedure on the physical robot for 20 different trajectories
and used the results to fine-tune the output layer weights of the trained NNs. The trained
NNs are essentially regarded as a feature extractor. As only the amplitudes of the response
showed discrepancies (as shown in Figure 5), it was reasonable to only fine-tune the output
layer weights using data from the physical robot, with the parameters of the first two layers
of NNs fixed.
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Figure 5. Comparison of responses between RobotStudio (red curve) and the physical robot (blue
curve). Desired inputs are sinusoids with amplitude of 2◦ and angular frequency ω of 2 rad/s (a) and
10 rad/s (b). (a) RobotStudio captures the dynamics of the physical robot well when commanded a
slow trajectory. (b) Discrepancy exists between RobotStudio dynamics and the physical robot when
commanded a fast trajectory.

5. Results
5.1. RobotStudio Simulation Results on IRB6640-180
5.1.1. Single-Joint Motion Tracking

As multiple sinusoids were used in the training of the NN (with discrete angular
frequencies ranging from 0.5 to 15 rad/s), we tested its generalization ability on a chirp
(multi-sinusoids) that was not part of the training set (with continuous angular frequencies
ranging from 0.628 to 1.884 rad/s). Figure 6 illustrates the result for joint 1 of the simulated
robot with NN compensation. Figure 6a shows the uncompensated output with the
robot output lagging behind the desired output. The nonlinear effects are denoted by the
deviation of the linear model output from the RobotStudio output. Figure 6b shows that, by
compensating for the lag effect and amplitude discrepancies, the command input generated
by the NN drives the output to the desired output closely after a brief initial transient.
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Figure 6. Comparison of tracking performance without and with the NN compensation for a chirp
signal in RobotStudio. The NN feedforward controller addresses the issues of lag effect and amplitude
discrepancies induced by robot inner loop dynamics. (a) Uncompensated case: desired output (also
the input into EGM), RobotStudio output, and linear model output. (b) Compensation with NN:
desired output, RobotStudio output, and the input generated by the NN.

To test the generalization capability of the trained network beyond the sinusoidal tra-
jectory, Figure 7 shows the tracking result of a random trajectory generated from a uniform
distribution for joint 1 of the simulated robot. The trained NN works for compensating for
the lag effect and amplitude degradation, though not as well as for the chirp signal.
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Figure 7. Comparison of tracking performance with and without the NN compensation of a random
joint trajectory for joint 1 in RobotStudio. The generalization capability of the NN feedforward
controller is demonstrated through the improved tracking accuracy.

5.1.2. Multi-Joint Motion Tracking

Figure 8 compares the tracking of a 6-dimensional sinusoidal joint trajectory (ω = 5 rad/s,
and with different amplitudes and phases from the training data) without and with NN
compensation. Table 3 lists the corresponding tracking errors in terms of `2 and `∞ norms
(using error vectors at each sampling instant). The `∞ error was calculated by ignoring the
initial transient.

To further test the generalization capability of the trained NNs, we conducted another
test of tracking 6-dimensional joint trajectories planned by MoveIt! for a large-structure
assembly task [49] in RobotStudio. The comparison of tracking performance without
and with NN compensation is shown in Figure 9. Table 4 reports the corresponding
tracking errors.
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Figure 8. Comparison of tracking performance with and without the NN compensation of a multi-joint sinusoidal trajectory
in RobotStudio. The NN feedforward controller improves the trajectory tracking accuracy for all 6 joints.
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Table 3. `2 and `∞ norm of tracking errors of the 6-dimensional sinusoidal joint trajectory without
and with NN compensation in RobotStudio. The tracking performance is improved for all 6 joints
with NN compensation.

Joint Original Tracking Error (rad) Final Tracking Error (rad)
`2 `∞ `2 `∞

1 1.4944 0.0391 0.2056 0.0035
2 2.9935 0.0780 0.4993 0.0065
3 6.1128 0.1563 0.8384 0.0101
4 1.5143 0.0390 0.1421 0.0038
5 3.0542 0.0781 0.4555 0.0065
6 5.9629 0.1561 0.8245 0.0102
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Figure 9. Comparison of tracking performance with and without the NN compensation of the MoveIt! planned joint
trajectories in RobotStudio. The inset figures clearly demonstrate the improvement of tracking.
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Table 4. `2 and `∞ norm of tracking errors of MoveIt! planned joint trajectories without and with
NN compensation in RobotStudio. The NN feedforward controller improves the trajectory tracking
accuracy for all joints.

Joint Original Tracking Error (rad) Final Tracking Error (rad)
`2 `∞ `2 `∞

1 3.5937 0.1497 0.5959 0.0278
2 1.3251 0.0443 0.3992 0.0180
3 1.4463 0.0493 0.2846 0.0112
4 0.3303 0.0127 0.0542 0.0033
5 1.4650 0.0511 0.4773 0.0154
6 0.9629 0.0392 0.1894 0.0078

5.1.3. Cartesian Motion Tracking

We also evaluated the performance of the trained NNs on a Cartesian square trajectory
(in the x-y plane, with a z constant of 1.9 m) with bounded velocity and acceleration
(maximum velocity of 1 m/s and a maximum acceleration of 0.75 m/s2). During the
motion, the orientation of the robot end-effector remained fixed. Figure 10 shows that the
trained NNs effectively corrected the tracking errors and Figure 11 highlights the tracking
performance in three Cartesian directions. The corresponding `2 norms of tracking errors
in three Cartesian directions are summarized in Table 5.

1

Figure 10. Comparison of tracking performance without and with the NN compensation of a
Cartesian square trajectory in the x-y plane with z constant in RobotStudio. The improved tracking
performance of each Cartesian axis is reported in Table 5.

Table 5. `2 norm of tracking errors in three Cartesian axes. The NN feedforward controller improves
the trajectory tracking accuracy in all Cartesian directions.

Cartesian Axes Original Tracking Error (m) Final Tracking Error (m)

x 3.2794 0.7938
y 3.1475 0.2490
z 0.1338 0.0737
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Figure 11. Improved tracking performance of Figure 10 in individual Cartesian axis. With the NN
compensation, the tracking errors are significantly reduced for all axes, as reported in Table 5. (a)
Tracking performance in x. (b) Tracking performance in y. (c) Tracking performance in z.

5.1.4. Comparison with MoveL Command

We also compared the NN-based compensation with built-in ABB motion command
MoveL, which is used to move the tool center point linearly to a given destination. Con-
sidering the 0.6∼0.7 s initial dead time of EGM, we compared the tracking of a straight
line with a total movement time of 5 s, using MoveL, EGM without NN compensation, and
EGM with NN compensation, as well as running an extra 3 ILC iterations using the input
generated by the NN as the initial guess u(0). The corresponding RMSE tracking errors are
summarized in Table 6.
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Table 6. RMSE tracking errors of a straight line using 4 different approaches in RobotStudio. A similar
tracking accuracy to MoveL is achieved by running 3 extra ILC iterations using the commanded
trajectory produced by the NNs as an initial guess for the iterative refinement in (1).

RMSE (m) MoveL EGM without NN EGM with NN Extra ILCs

x 0.0027 0.0200 0.0110 0.0083
y 0.0027 0.0200 0.0104 0.0081
z 0.0027 0.0200 0.0105 0.0081

The built-in motion command MoveL achieves accurate tracking, but it is for a fixed
path and cannot be modified on the fly. So it is not applicable to real-time collision
avoidance or sensor-based motion control. EGM, on the other hand, allows for sensor-
guided motion with a high sampling rate, but the tracking performance is compromised
by the delay and internal dynamics. Table 6 indicates that the NN compensation produces
a similar level of tracking performance compared with MoveL, and at the same time it
retains the advantages of the sensor-guided motion of EGM.

5.2. Physical Experiment Results on IRB6640-180

We evaluated the tracking performance of the same chirp signal (in Figure 6) for joint
1 of the physical robot, as demonstrated in Figure 12. The command input was filtered by
the NNs through transfer learning. Figure 12a shows the uncompensated output with the
robot output lagging behind the desired output. Figure 12b shows that, by compensating
for the lag effect, the command input generated by the NNs drives the output to the
desired output closely after a brief initial transient. We found that for trajectories with
low velocity profiles (like this chirp signal and the sinusoid in Figure 5a), there exists a
negligible difference between the filtered inputs of NNs trained by simulation data and
NNs obtained by transfer learning.

However, for trajectories with large velocity and acceleration profiles, transfer learn-
ing plays a key role in generating an optimal input to reduce trajectory tracking errors
for the physical robot. Figure 13 illustrates the tracking of a sinusoidal signal with an
angular frequency of 8 rad/s (with different amplitude and phase from the training data).
The comparison between Figures 13b,c demonstrates that transfer learning is necessary to
correctly compensate for the phase lagging and magnitude degradation for the physical
robot given an aggressive motion profile. Table 7 summarizes the corresponding `2 norms
of tracking errors.
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Figure 12. Comparison of the tracking performance of the same chirp signal as the one in the
simulation (Figure 6) without and with the NN compensation for joint 1 of the physical robot.
(a) Uncompensated case: desired output (also the input into EGM) and the physical robot output.
(b) Compensation with NN: desired output, physical robot output, and the input generated by
the NN.
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Figure 13. Comparison of tracking performance of a sinusoidal trajectory without and with transfer
learning for joint 1 of the physical robot. The `2 norm of the tracking error of each case is shown in
Table 7. Transfer learning plays a key role for tracking a fast trajectory. (a) No NN compensation. (b)
Compensation using the NN trained by the simulation data. (c) Compensation using the NN tuned
by transfer learning.

Table 7. `2 norm of tracking errors in radian for each subplot in Figure 13. The table demonstrates
the improved tracking performance using transfer learning for tracking a fast trajectory.

Uncompensated Case Without Transfer Learning With Transfer Learning

1.0242 0.2445 0.2388

5.3. RobotStudio Simulation Results for Other Robots

One natural question that arises is whether the trained NNs also work on different
robot models. We applied the trained NNs by simulation data to two robot models IRB120
and IRB6640-130 in RobotStudio, and tested their tracking on a chirp trajectory (the same
one as we used in Section 5.1.1) and a sinusoidal signal with an angular frequency of
8 rad/s and a magnitude of 5 degrees, as shown in Figure 14.

The figure demonstrates that the trained NNs effectively compensate for the lag effect
and amplitude discrepancies for these two robot models. For tracking of the chirp signal,
NNs compensate for the delay well for these robots and a possible explanation for this
could be that EGM has the same time delay for all robot models. For tracking of the
sinusoid signal with obvious nonlinear effects, NNs compensate for both the delay and the
magnitude degradation well, since their inner-loop dynamics have similar behavior to the
IRB6640-180 robot.
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Figure 14. The trained NNs using IRB6640-180 also improve the tracking accuracy of a chirp and
a sinusoidal joint trajectories for IRB120 and IRB6640-130 robots in RobotStudio, possibly because
these robots have similar inner loop dynamics.

6. Conclusions and Future Work

In this paper, the possibility of combining multi-layer NNs and ILC to achieve high-
performance tracking of a 6-dof industrial robot was explored. Large amounts of data
for NN training were collected by ILC in a high-fidelity physical simulator. The trained
NNs generalized well to unseen trajectories and tracking performance was improved
significantly. Transfer learning was adopted to narrow down the reality gap, and the
generality of the NNs was further explored on two different robot models.

Future work will include the development of predictive motion and force controllers
based on the trained NNs. Moreover, the tracking accuracy could be further improved by
introducing feedback corrections. Finally, it will be worthwhile to compare the NNs with
other neural-learning controllers, and verify the possibility of the trained NNs serving as a
general dynamics compensator.
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