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Abstract: This paper describes the results of dynamic tests performed to study the robustness of
a dynamics model of an industrial manipulator. The tests show that the joint friction changes
during the robot operation. The variation can be identified in a double exponential law and thus
the variation can be predicted. The variation is due to the heat generated by the friction. A model
is used to estimate the temperature and related friction variation. Experimental data collected on
two robots EFORT ER3A-C60 are presented and discussed. Repetitive tests performed on different
days showed that the inertial and friction parameters can be robustly estimated and that the value of
the measured joint friction can be used to estimate the unexpected conditions of the joints. Future
applications may include sensorless identification of collisions, predictive maintenance programs, or
human–robot interaction.

Keywords: robotics; modelling; identification; friction; temperature

1. Introduction

The study of the dynamical performance of robotics machines is one of the most rele-
vant problems in the design of effective robot control strategies. Parameter identification
allows obtaining reliable dynamic models of industrial manipulators [1]. It is worth point-
ing out that a reliable dynamic model can improve position control [2]. Other applications
may concern predictive maintenance, trajectory planning for energy efficiency [3], safety
systems for robotic cells [4], or management of robot interaction with humans or the envi-
ronment [5,6]. Many of these applications may require the knowledge of a good dynamic
model of the robot. The robot’s dynamical parameters include inertial parameters (masses,
centers of mass, and moments of inertia) and friction description. Joints and transmissions
are considered rigid, which is acceptable for many industrial applications. The inertial
parameters can be obtained by developing a model and by performing experiments on
the robot. The authors of [7–9] showed that it is possible to define a set of parameters that
describe the model (torque prediction) for any open-chain robot. The model is linear on
these parameters and their regression matrix depends on the position, velocity, and acceler-
ation of the joints. M. Gautier and W. Khalil proposed to drop the parameters that scarcely
influence then fitting, obtaining a full-rank matrix. The remaining dynamical parameters
involved in the identification are called the base parameters.

The identification process uses the Least Square Method, which provides reliable
performance when models are linear in the parameters. During the test, the robot is moved
on a properly designed excitation trajectory storing the position, velocity, acceleration,
and torque of the joints. Then, the parameters that better predict the measured torques are
estimated. Several criteria have been proposed to optimize the trajectory [10,11]. In this
paper, the excitation trajectory is designed based on the finite Fourier series introduced by
J. Swevers [12], with the benefit of data averaging in the time domain and reducing the
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measurement noise effect. An additional trajectory is appended to the excitation movement
to guarantee the reaching of the joint-velocity bounds.

The linearity in the parameters does not hold in long time intervals, because the
friction might change due to thermal effects. This model mismatch is evident comparing
two experiments, one executed at the robot startup and one after the thermal transient.
Friction is one of the most relevant undesired phenomena to be taken into account to
realize a reliable dynamic model. It arises when there is a relative motion between two
surfaces in contact or when a body moves inside a fluid. Friction depends on the geometry
and the roughness of the surfaces, their materials, the type of lubricant, the velocity,
the humidity, and so on [13]. Friction causes the loss of energy, heating of the surfaces in
contact. This phenomenon introduces nonlinearities that might cause several problems
related to motion control, such as trajectory tracking errors, limit cycles, and dynamic
instabilities (stick-slip). For this reason, many friction models have been proposed in the
technical literature (see [14]) to provide a suitable description of the physical phenomenon
and to obtain effective mathematical formulations. These models can be classified into two
main categories: static models and dynamic models.

The first category is simpler to analyze and concerns the models in which the friction
force is a static function of the velocity. The most known static models are the Coulomb
model, in which the friction action is considered constant and dependent only on the
direction of the velocity, and the viscous friction, in which the force is proportional to veloc-
ity. Other models that belong to this category are the Stribeck model [15–17], in which an
exponential function represents the transition between Coulomb and viscous friction, or the
polynomial model, in which a polynomial expression is used to describe the relationship
between friction force and velocity.

Regarding the dynamic models, on the other hand, the friction force depends on a
state variable that takes into account the history of the system and not only its current
situation. Relevant examples are the Dahl model [18], the Maxwell-slip model [19] and its
extensions [20–22]. and the LuGre model [23–25]. In general, friction models are used in
the control strategies to compensate for the friction effects (see [26,27]).

Despite the numerous efforts supported by research, this phenomenon is still a rel-
evant issue for the control of industrial robots, and it depends on other factors than
velocity. For this reason, some researchers started to focus on the role of temperature in
friction [28–30]. Temperature is very important for those robot operations that require the
manipulator to often stop for a long time, letting the joint temperature cool down and
changing the friction characteristics. As explained in [31,32], friction transforms mechanical
energy into heat, which causes a temperature increase [33], and therefore the behavior
of the speed reducers changes too [34]. The installation of temperature sensors may be
unpractical due to cost and compactness requirements. Thus, a possible solution to observe
the relationship between friction and temperature could be based on the output of motor
torque, which is easy to collect during the movement.

Opposite to friction parameters, inertial parameters should be independent of tem-
perature, but a weak identification procedure and model mismatches may produce the
wrong estimation of inertial parameters in function of the robot temperature. The same
identification procedure can be carried out on multiple robots to verify the differences
between machines and to verify the robustness of the identification. While papers generally
discuss experimental data validated on one robot only, in this paper, we analyze multiple
tests on two industrial robots (two replicas of the same model) to verify the repeatability of
the results. This is important for establishing robust industrial applications. A comparison
analysis allows understanding the differences between the dynamical and the friction
behaviors changing among the robots. The results of the comparison would be useful for
future improvement in manufacturing and maintaining of the machines. A further contri-
bution of this paper is an analysis about the repetitiveness of the parameters estimation in
several repetitions performed in different days and during the warming stage of the robot.
The paper is organized as follows. Section 2 briefly describes the dynamics model of the
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manipulator. Then, the design of the excitation trajectory is presented. Section 3 deals with
the analysis of the collected data and the estimated models. Discussions on results are in
Section 4. Section 5 deals with the conclusion and future work.

2. Materials and Methods

The robots used during the experiments are the EFORT models ER3A-C60 located at
the Robotics Laboratory of the University of Brescia. The two replicas are denoted simply
as “Robot 1” and “Robot 2”. They are 6-DOF industrial manipulators with a maximum
payload of 3 kg and a total weight of 27 kg. The identification of the dynamics model of
the robotic arms can be divided into two sub-problems: the selection of a suitable model,
the required parameters, and the mathematical method to identify them; and the design of
a suitable excitation trajectory to collect meaningful data from the experimental campaign.

2.1. Dynamic Model and Parameters

As is known, the robot dynamic model can be obtained by a Lagrangian or Newton–
Euler formulation [35], and it can be written as:

τin=M(θ)θ̈+V
(
θ, θ̇
)
+G(θ) (1)

where θ, θ̇ and θ̈ are the joint position, velocity, and acceleration vectors, respectively. M(θ)
is the mass matrix of robot arms, V

(
θ, θ̇
)

is the centrifugal and Coriolis force matrix and
G(θ) is the gravity vector. τin is the torque components depending on masses, moments
of inertia, and the centers of mass. It should be pointed out that the friction and the
contribution of the external forces are not included. Thus, the full robot dynamical model is:

τrobot=τin+τf+τext (2)

where τrobot is the torque output of each joint, τf is the torque caused by friction, and τext

could be calculated knowing the Jacobian matrix and the external forces (τext = JT Fext),
but it is assumed equal to zero in this work. To simplify the calculation, the model can be
rewritten by reordering the terms of the equations; since the dynamic terms have a linear
influence, the equation assumes the following matrix form:

τrobot=Kinψin+τf=Kinψin+K f ψ f=
[

Kin K f
][ ψin

ψ f

]
=Kψ (3)

where K matrices, called information matrices, depend on θ, θ̇, and θ̈, and ψ vectors contain
the dynamical parameters that need to be identified. More in detail, the subscript “in”
refers to the inertial parameters, while “ f ” refers to friction. In this paper, the vector ψin is
the minimum set of dynamical parameters selected based on the linearization analysis [36],
on numerical QR and singular value decomposition (SVD) factorizations [9], which benefit
the computation cost. One of the mainly used friction models is based on the extended
Coulomb models [37,38]. It might include the Stribeck effect [39], and it may assume the
following polynomial form, which is a generalization of the Coulomb and viscous model:

τf=k1sign
(
θ̇
)
+k2θ̇+k3θ̇2sign

(
θ̇
)
+k4θ̇3 (4)

where τf is the friction torque of one robot joint and the constants k1, k2, k3, and k4 are
parameters obtained with a identification. Their values changes with the temperature,
as further explained in Section 2.3; sign

(
θ̇
)

is the sign function equal to 1 for positive
velocity, −1 for negative velocity, and zero for null velocity. A three-order polynomial is
generally sufficient to accurately describe the velocity-friction relation, so (4) describes the
friction in function of speed and temperature.

Figure 1 shows the friction torque versus the joint velocity at different temperatures
of the gearbox of one of the robots used in our tests. To find the numerical value of the
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constants ki, for an assigned temperature, the Least Square criterion is introduced. Least
Square is the standard method to approach the solution of the linear system [40]. The main
purpose of Least Square is to find the parameter values which minimize the sum of the
square of the errors between the given data and estimated results. In practice, the robot
can be moved on suitable joint trajectories and the motor torques can be collected at
predefined sampling instants. Equation (3) can be written for each sampling time and all
the equations can be combined into one. Therefore, with the given data P of n sampling
points, the resulting equation is:

[τ]=


τpoint 1
τpoint 2

...
τpoint n

=


K1
K2
...

Kn

ψ=K̂ψ (5)

The least square estimation ψ̂ of ψ is then:

ψ̂=
(

K̂TK̂
)−1

K̂T [τ] (6)

To consider the joint friction changes, the estimation must be repeated at different
joint temperature to identify the thermal model (see also Section 2.3).
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Figure 1. Friction versus speed changes as the robot warms up for each joint.

2.2. Excitation Trajectory

A well-designed test trajectory has to excite the influence of all the model’s parameters
and must include periods with large ranges of velocities from zero to high values. Since
friction depends on joint temperatures, which changes during robot operation, the test
trajectory must be sufficiently short to avoid altering the temperature significantly. To iden-
tify the dependency of the friction on temperature, the test is repeated during the time
and it is alternated with special high-speed trajectories to warm up the joints. In this
paper, to better identify friction and inertial parameters, the trajectories are divided into
three stages: the first is optimized for inertial parameter estimation, the second is specially
designed for friction estimation, and the third is a warming trajectory to prepare the next
identification step. Figure 2 shows one of these trajectories; it should be noted that the
friction identification is performed one joint at each time.
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Figure 2. One cycle of the test trajectory on all joints. The first section is reserved for the estimation
of the inertial parameters. The second one is specially designed for friction estimation; the joints
are moved individually one after the other to highlight the contribution of the friction component
in the motor output. The last section takes care of heating the joints by performing a high-speed
point-to-point movement for a few minutes.

The portion of the trajectory responsible to estimate the inertial parameters has been
designed to optimize the condition number of the information matrix [12] and has the
following form:

θi(t)=qi,0+
N

∑
l=1

[
al,i

w f l
sin
(

w f lt
)
−

bl,i

w f l
cos
(

w f lt
) ]

(7)

Each joint motion is defined as a constant plus a series of N sines and cosines whose
amplitude and frequency are determined by an optimization algorithms. N was assumed
equal to 5 because a higher number proved to be unnecessary (first part of Figure 3).

To be sure that all the joints reach the maximum velocity, an additional motion section
was added. It is based on a cycloidal law, and it is reversed to assure it includes both
positive and negative velocities. The initial and final points are coincident (second part of
Figure 3). The trajectory equation is the following:

θ=θ0+∆θ

(
t
td
− 1

2π
sin
(

2πt
td

) )
(8)

θ̇=
∆θ

td

(
1−cos

(
2πt
td

) )
(9)

θ̈=
2∆θ

td
2 sin

(
2πt
td

)
(10)

where ∆θ is the motion amplitude and td is the time duration; these parameters were
adjusted to reach the maximum velocity permitted by each joint. The final excitation
trajectories are reported in Figure 3.
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Figure 3. Position performed by each joint during the execution of the final excitation trajectory.

Since the duration of the trajectories is not identical for all joints, some idle periods
were added. To measure the friction torque, which depends on speed, a special trajectory
with six trapezoidal velocities was designed (see central section of Figure 2); each segment
includes periods with a constant velocity at 5%, 20%, 40%, 60%, 80%, and 100% of the
maximum joint velocity. The acceleration parts of the trajectory are ignored to avoid
dynamics effects. The influence of the weight in the constant velocity periods was removed
using the technique explained briefly below and in detail in [41]. To obtain the same number
of data for each velocity all periods are equivalent and, consequently, the amplitude of the
motion is bigger at the higher velocity. Both positive and negative velocities are included.

It should point out that the collected torque contains the gravitational component for
some joints. To eliminate its effect, the robot was put into specific configurations so that
the rotation axes of Joints 1, 4, 5, and 6 are vertical. For the remaining joints, Joints 2 and 3,
the gravity effect was eliminated by a Least Squares procedure. During the motion at a
constant velocity of an individual joint (see Figure 4), the motor torque is:

τno−gravity=τmotor−
−→
P ycos(θ) −−→P xsin(θ) (11)

where
−→
P x and

−→
P y are the parameters to identify.

Once these parameters are determined, the gravity effects can be subtracted to obtain
only the friction component. Examples of original data for Joints 2 and 3 are shown in
Figure 5a). Figure 5b shows the same data after removing the gravity effect. The differ-
ent curves represent the torque with different temperature of the joint. The tests were
performed at 60% of the maximum velocity. The warming up of the joint is obtained by
repeating movements at high speed that increases the internal temperature due to the
power dissipated by the friction. This heating is achieved by running a robot working
program with all joints moved simultaneously and repeatedly. Based on the experiments
and the study of Pagani et al. [41], the first group of test cycles was performed at a temporal
distance of about 3 min and the last group at a time interval of about 5 min. The merge
of all the trajectory sections (inertial, friction, and warming) generates one cycle, which
has a duration of 4.5 min roughly. To acquire enough data for the analysis, 24 cycles were
performed, which correspond to about 2 h per experiment.
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Figure 5. Experimental data. (a) The torque motor output of Joints 2 and 3 during the friction
measure cycle. Data collected from one test on “Robot 1” (60% of the velocity). (b) The same data
without the gravity effect.

2.3. Temperature Effects

The friction parameters are highly dependent on temperature. The temperature of
the gearbox is not available in most of the industrial robots in the market. Thus, it is
necessary to estimate both the temperature and the thermal model from the experimental
data. The estimation is possible by executing several warm-up tests with different root-
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mean-squared values of the joint torque, as proposed in [42] for a first-order thermal model
and extended by Legnani et al. [43] for second-order models.

The second-order thermal model has two thermal capacities, which exchange heat
linearly with the temperature differential. The exchanged heat with the environment is
assumed linearly dependent on the temperature of the thermal capacities. Finally, the heat
generated by friction is the product W f = τf θ̇. Thus, the temperature evolves as described
by the following transfer function:

T(s)
W f (s)

=
c1

s + τ−1
1

+
c2

s + τ−1
2

(12)

where s is the Laplace variable, T is the gearbox temperature, and τ1, τ2, c1, and c2 are
model parameters.

According to Pagani et al. [41], when one robot is actuated on a repetitive working
cycle, sufficiently shorter than the time constants t1 and t2, the joint temperatures changes
as the step response of (12) where the heat is given by the root-mean-square value W f ,rms
computed in the working cycle:

T=T0+

(
c1τ1

(
1− e−

t
t1

)
+c2τ2

(
1− e−

t
t2

))
W f ,rms (13)

where t is the time and T0 is the initial temperature. Given an estimated temperature,
the friction changes as:

τf=τ0(1+α(T−T0)) (14)

where α is a constant dependent on the thermal model and τ0 is friction torque at the initial
temperature T0. By combining (4) with (14), we obtain a friction estimation formula as

τf=(1+α(T−T0))
(

k1sign
(
θ̇
)
+k2θ̇+k3θ̇2sign

(
θ̇
)
+k4θ̇3

)
(15)

this relation is valid both for constant velocity situations as well as for transients, as de-
scribed in Algorithm 1. Line 3 of the algorithm is the finite difference equation obtained by
discretizing (12).

It is worth noticing that, in the special case of repetitive short cycles shown in
Figures 6 and 7, the friction torque changes as:

τf=

(
1 + αW f ,rms

(
c1τ1

(
1− e−

t
t1

)
+c2τ2

(
1− e−

t
t2

)))
τ0 (16)

Thanks to (13) and (15), it is possible to identify the parameters α, c1, c2, τ1, and τ2 of
the thermal model following the procedure described in [41], where a genetic algorithm
tunes the model parameter to fit multiple warming cycles with different values of W f ,rms.

Algorithm 1: Evolution of the estimated temperature

Input: velocity θ̇(k); estimated temperature T(k− 1) and T(k− 2) at the steps k− 1 and k− 2; discretization
period δt

Output: estimated temperature T(k) at step k
1 τf (k)=(1+α(T(k− 1)−T0))

(
k1sign

(
θ̇(k)

)
+k2

˙θ(k)+k3θ̇2(k)sign
(
θ̇(k)

)
+k4θ̇3(k)

)
;

2 W f (k) = τf (k) ˙θ(k);
3 T(k) =thermal model(W f (k), T(k− 1), T(k− 2), δt);
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Figure 6. (a) Mean value of friction torque versus time for each test on “Robot 1”. Experimental data,
Joint 3, and velocity at 60%. (b) Fitting of the data using (16).

Figure 8 shows the complete model used in torque estimation. The dynamic model (3)
uses the position, velocity, and acceleration of the joints and the measure of external force
(if any) to estimated the actual torque. The friction component τf uses the temperature
prediction obtained by the thermal model thanks to Algorithm 1. A discrepancy between
the estimation and the measured torque is inevitable; however, if this value is considerable,
some other factor intervene: contacts with the environment or a malfunction of the me-
chanical transmissions. Specialized algorithms can deal with these situations (e.g., [44,45]).

The comparison between the estimated torque and the measured one can be the input
of virtual force sensors, collision detectors, or maintenance supervisor.

It is worth pointing out that, once the thermal model is estimated, it is possible to use
the actual friction torque to estimate the joint temperature when there are not unmeasured
external forces acting on the robot employing a state observer [46].



Robotics 2021, 10, 49 10 of 17

0 20 40 80 100 12060 
time (min)

16

18

20

22

24

26

28

30

Fr
ic

tio
n 

To
rq

ue
(N

m
)

J1

Mix
Test 1
Test 2
Test 3
Test 4

0 20 40 80 100 12060
 time (min)

20

25

30

35

40
J2

Mix
Test 1
Test 2
Test 3
Test 4

0 20 40 80 100 12060
 time (min)

8

10

12

14

16

18
J3

Mix
Test 1
Test 2
Test 3
Test 4

0 20 40 80 100 12060
 time (min)

18

20

22

24

26

28

30

32
J4

Mix
Test 1
Test 2
Test 3
Test 4

0 20 40 80 100 12060
 time (min)

5

6

7

8

9

10

11
J5

Mix
Test 1
Test 2
Test 3
Test 4

0 20 40 80 100 12060
 time (min)

3.5

4

4.5

5

5.5

6

6.5
J6

Mix
Test 1
Test 2
Test 3
Test 4

Fr
ic

tio
n 

To
rq

ue
(N

m
)

Fr
ic

tio
n 

To
rq

ue
(N

m
)

Fr
ic

tio
n 

To
rq

ue
(N

m
)

Fr
ic

tio
n 

To
rq

ue
(N

m
)

Fr
ic

tio
n 

To
rq

ue
(N

m
)

Figure 7. Friction torque versus time for all joints in Tests 1–4 performed on “Robot 1”, with the
velocity at 60%. The Mix curve is the results of the curve fitting by merging the data of each test. Joint
6 had a variation on Day 4, probably due to a measurement error, but the reason is under analysis.
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Figure 8. Scheme of the interconnections between the dynamic, the friction, and the thermal model
and the possible use for advanced applications (predictive maintenance, virtual force sensor [46],
and human–robot interaction). Symbols with the “hat” marks the estimated values, symbols without
the “hat” are real values.

2.4. Data Acquisition and Elaboration

Two robots of the same model EFFORT ER3A C-60 were used for the experiments,
named “Robot 1” and “Robot 2”. The data acquisition was repeated four times for each
robot on different days. To have comparable environmental conditions, all tests were exe-
cuted in the morning after at least 8 h of robot rest and with an environmental temperature
of about 20 ◦C. For each movement, a PC-based acquisition system collected the motor’s
positions and torques with a frequency of 4 ms. After the data collection, identification and
analysis were developed using MATLAB programming environment. The data collected
during all the repetitions of the 24 different cycles were analyzed to estimate inertial and
friction parameters. Inertial parameters should be independent of the temperature and
their numerical estimation would be expected to give constant results. The friction instead
depends on temperature which increases with the robot activity, therefore a time-dependent
trend with asymptotic behavior is expected for these parameters. The results show that the
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estimated dynamic parameters also had an asymptotic behavior; however, the range of the
variation is generally minimal.

Examples of the results for inertial parameters are presented in Figure 9. The figure
clearly shows that the estimated values of parameters change with cycles, but the variation
is very little and the steady-state value is reached after about 15 cycles that correspond
approximately to 1.5 h of the experiment. The coefficient ki of (4) change with behavior
similar to (16). This trend is due to the model mismatches introduced by the thermal effect
and the resulting identification error. In fact, the friction torque of Joint 3 at 60% of the
velocity and its estimation are reported in Figure 6. It is worth pointing out that the friction
torque at the cold state can be 70% higher than the final value, highlighting the relevance
of the phenomenon.
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Figure 9. Experimental data. (a) Evolution of the identified values Py of Joint 3 for all the tests on
“Robot 2”. (b) The evolution of the same parameter, but slightly widening the scale of the value. It is
worth noting that the difference between the initial and final estimations is less than 5%.

3. Results

As first results, Figure 10 reports the different friction torque for different velocities
in cold and hot conditions for the six joints. According to our experiments, the estimated
temperature obtained by the thermal model could change from about 15 ◦C (cold state)
to about 50 or 60 ◦C (depending on the joint) in hot state. Moreover, these values were
confirmed by the data collected using temperature sensors located near the gears.
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Figure 10. Velocity and torque versus time during a working cycle in cold and hot conditions: experimental data for all 6
Joints.

As stated in Section 2.4, the described analysis was applied to two manipulators of
the same model named “Robot 1” and “Robot 2”. The two robots showed very similar
behavior with the exception of the few cases mentioned in the paper and dependent on a
mechanical problem in ”Robot 1”. The results of the friction estimation on ”Robot 1” for all
the six joints at 60% of the maximum velocity are presented in Figure 7. The time constants
of the curve fitting are reported in Table 1. The identification was performed for each test
repetition as well as on the merge of the complete set of the collected data (mixed data). It
is worth noting that the behavior of the robot is quite repetitive for all the joints. Each of
them has regular heating which leads to a steady condition in about 1–2 h depending on
the joint.

Table 1. Time constants (experimental estimation) of “Robot 1”.

Time Constants
[minutes] Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

t1

Test 1 2.7225 0.8660 0.5744 3.7650 0.2517 0.3447
Test 2 2.5567 0.3759 0.3843 3.7030 0.2517 8.1392
Test 3 1.6965 0.2764 1.7228 2.9969 2.0369 3.4120
Test 4 2.6349 0.2411 1.6935 2.7938 0.3501 2.9116
Mix 2.4465 0.2949 0.9172 3.3109 0.3254 7.9114

t2

Test 1 35.2402 16.6674 22.7429 25.8915 20.2852 12.4031
Test 2 38.9724 18.2785 24.5982 25.7891 20.2852 27.4701
Test 3 35.1088 17.0822 24.1063 22.4337 21.1967 25.4714
Test 4 33.0730 18.1980 23.3652 22.8253 21.9113 19.5745
Mix 35.4424 17.0107 23.7187 24.0566 20.6529 32.5835

The time constant analysis of the six joints shows that one of them is shorter than the
other one. While t1 is in the range of 2–3 min, t2 is in the range of 20–30 min, depending on
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the joint number. Moreover, Table 1 highlights that the different time constants estimation
is mainly located at a narrow range for each joint. The Mix data are the results of curve
fitting by merging the data of all tests. Based on the results of Figure 7, it is proved that
the accuracy of the friction estimation is improved by the mixed data results. The estima-
tion of the temperature during the working cycle permits predicting the correct friction
contribution (see Figure 11 as an example).
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Figure 11. Example of measured and predicted torque (dynamics plus friction) in cold and hot
conditions on the same trajectory with variable velocity (Joint 5, Test 1).

The same procedure was implemented on ”Robot 2”. The results of the estimation
on the friction-temperature characteristic are completely comparable to those obtained
for ”Robot 1”. The curves exhibit similar trends and the ranges of the torque value are
also equivalent. A further comparison between the two robots was performed on the
estimation analysis of the inertial parameters. Results for some dynamic parameters are
reported in Figure 12. The estimated values of these parameters for the two robots are
reported for each of the 24 cycles. It is worth noting that they reach a stable value after
a few cycles. The four repetitions of the test provide quite similar data. Thence, it is
confirmed that the identification procedure is reasonably robust and suggests that the
inertia parameters estimation can be performed after a short warming-up period of about
30–50 min (depending on the robot model).
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Figure 12. Evolution of the identified values Ixx, Ixy, Ixz, Iyz, and Izz of Joint 2 for all the tests on
“Robot 1” and “Robot 2”. The values of the parameters are repeatable and quite similar between the
two robots.

The results obtained from these analyses show the repetitiveness of the experimental
procedure used in this work. The parameters identified by the model are comparable
between the tests carried out on different days and also comparable with those obtained
on different robots but of the same model. It is of utmost importance to obtain a mathe-
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matical model describing the joints torques variations taking into account the temperature
alterations that may occur during the working operation. This could be useful for multiple
applications, such as predictive maintenance, advanced control strategies, the realization
of virtual force sensors, and human–robot interaction. Figure 13 shows a clear example
of the model implementation for predictive maintenance. During one of the tests carried
out on “Robot 2”, a mechanical problem was found in the first joint. After about 60 min
on the second day of the tests, the friction torque had an unexpected increase and then
it settled at a higher value compared with the previous tests. The measurement carried
out the day after shows that the same movement required more energy from the very
start. A possible explanation for this phenomenon may be a mechanical problem inside
the transmission. In this specific case, to restore the correct operation of the machine, it
was sufficient to execute the inspection of the joint following the mechanical maintenance
manual provided by the manufacturer. Further analysis of this issue is shown at the bottom
of Figure 12. It is possible to note how the unexpected increase in friction torque results in
a sudden change in the friction parameters of the dynamic model. The phenomenon just
described suggests how the model provided in this work may be used for the preventive
maintenance of industrial manipulators. By carrying out the identification procedure on
a new robot, it is possible to obtain an initial condition state of the machine. Repeating
this procedure over time, it is possible to compare the new results with the initial ones to
check if the components have been damaged, helping the user to perform the necessary
maintenance. It is worth pointing out that the unexpected increase is about the 32% of
the expected value, while the change due to thermal effect is 60%/70%, thus the damage
cannot be detected by using a model that neglects the thermal effect.
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Figure 13. (Top) The friction torque versus time for “Robot 1” and “Robot 2”. During one of the tests
on “Robot 2”, a mechanical problem occurred. It is possible to see the unexpected increase in torque
on the left-side graph. The graph on the opposite side shows the ordinary behavior of “Robot 1”
performing the same tests. (Bottom) The evolution of the friction parameters (Equation (4)) during
the tests performed on “Robot 2”. It is evident how the mechanical problem results in a change in the
model values.

4. Discussion

The experimental campaign lasted several days using two robots of the same kind.
The experimental data show the repeatability of the thermal phenomenon and the robust
identification of the parameters of the dynamics and thermal models.
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This repeatability allows detecting unforeseen changes of the friction torque due to
minor mechanical damages, as shown in Figure 13. It is worth stressing that the friction
changes from cold to warm conditions are more significant than the changes due to the
damages. Thus, one of the main advantages of integrating a thermal model is to provide a
higher discrimination level than models that neglect temperature effects, allowing early
detections of torque changes due to aging and damages.

Another advantage of the algorithm is the ability to predict the required torque,
improving the performance of control algorithms based on precomputed torque.

The main drawback is the requirement of an extended test campaign on a representa-
tive batch of each robot type.

5. Conclusions

The study of the robot dynamics and, in particular, the friction torques is crucial to
understand the robot behavior, as mentioned in the Introduction. This information is
helpful to analyze the aging and appearance of possible defects during the robot activities.
As is well known, the design of a suitable exciting trajectory is essential to estimate the
robot parameters correctly.

The paper shows the effectiveness of the dynamics model, coupled with the temperature-
based friction model, to match experimental data in multiple robots. The experimental
campaign, performed on several days, showed consistent results. The paper shows that the
estimated parameters are biased during the first part of the thermal transient due to friction
changes. Thus, a model that neglects temperature effects can work properly if and only if
the model is identified and used at the same thermal steady-state. Otherwise, a temperature
estimator is required to compensate for its effect.

Therefore, this paper could help people understand the robot behavior changes during
working cycles and develop a dynamic model of the robot, including the thermal effect.

The model can effectively estimate the friction variation due to temperature. Since this
variation is up to 70%, it is crucial to consider it in the torque estimation to discriminate it
from other changes due to possible damages or aging. It is worth pointing out that this dis-
crimination ability could be relevant in advanced maintenance and performance monitor.

Future works will deal with the study and the identification procedure of the thermal
effects on the friction at lower velocities, the possible usage of the proposed model in
maintenance and performance monitoring scenarios.
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