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Abstract: Irisin is an adipomyokine that promotes the browning of white adipose tissue and exhibits
protective potential against the development of insulin resistance and type 2 diabetes. In our bodies,
it occurs in its glycosylated form (G-IR): its activity is still poorly understood, because the majority
of studies have used its non-glycosylated counterpart (nG-IR). Glycosylation can affect protein
function: therefore, the present study attempted to compare the actions of both forms of irisin toward
inflammatory activation of the main component of adipose tissue. The study was carried out in a
coculture of 3T3 adipocytes and RAW 264.7 macrophages maintained in the presence of nG-IR or
G-IR. The impact on vitality and the expression and release of key inflammatory mediators important
for insulin resistance and diabetes development were assessed. The studies showed that both forms
effectively inhibited the expression and release of tumor necrosis factor (TNF)-«, interleukin (IL)-183,
IL-6, macrophage chemotactic protein (MCP)-1, high-mobility group box (HMGB1), leptin, and
adiponectin. However, in the case of TNF-«, IL-13, MCP-1, and HMGB], the inhibition exerted
by nG-IR was more prominent than that by G-IR. In addition, only nG-IR significantly inhibited
macrophage migration. Here, nG-IR seemed to be the stronger inhibitor of the development of
obesity-related inflammation; however, G-IR also had anti-inflammatory potential.

Keywords: non-glycosylated irisin; glycosylated irisin; meta-inflammation; obesity; insulin resistance;
metabolic syndrome; adipomyokine; physical exercise

1. Introduction

Obesity is a serious civilization problem that has now reached pandemic dimensions, with nearly
1.9 million people being obese or overweight. Obesity has also resulted in a significant increase in
obesity-related diseases such as type 2 diabetes, insulin resistance, cardiovascular disease, or even
cancer. Up to 50 million children under the age of five could be at risk for obesity [1,2]. Moreover,
studies have shown that excessive accumulation of fat in white adipose tissue (WAT) is accompanied
by the development of moderate chronic inflammation [3] and underlying complications associated
with obesity, and that the macrophage population resident in adipose tissue is the main source of
proinflammatory factors [2,4,5]. Our previous research of an independent culture of adipocytes [6]
and macrophages [7-9] showed that irisin directly affects the intensity of its proinflammatory
activation. Given the proinflammatory basis of numerous complications accompanying obesity,
meta-inflammation is observed in adipose tissue, and this underlies the development of chronic
obesity-related inflammation [6]. Therefore, the search for agents that inhibit meta-inflammation has
become particularly important.
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Irisin is an adipomyokine that was discovered in 2012 by Bostrom et al. [10] as a new factor
promoting thermogenesis through the transformation of white adipose tissue (WAT) into thermogenic
beige adipose tissue (BAT) [3,10,11]. After a controversy related to its actual existence and the possibility
of its detection in humans [12,13], irisin was finally confirmed using a mass spectrometry technique
in 2015 by Jedrychowski et al. [14]. Irisin was quickly characterized as a potential valuable factor in
the fight against obesity, insulin resistance, and type 2 diabetes [11,15-18]. Numerous reports have
indicated a significant downregulation of the irisin level in the above-mentioned states [19-21], but
current evidence suggests that during the course of obesity, the irisin level is elevated and a state of irisin
resistance is observed [22,23]. Studies on irisin activity seem to be particularly important because of the
increase in its release after physical exercise, as confirmed by numerous previous studies (for review,
see Reference [24]). This may suggest the possibility of using physical exercise stimulation to modulate
the irisin level and to achieve a potential therapeutic effect. Irisin is a small protein with a length of only
112 amino acids and results from the proteolytic cleavage of the fibronectin type III domain containing
five proteins (FNDCS5) [10], which has two N-glycosylation sites [25]. Glycosylation affects the properties
of numerous proteins and can affect the modulation of many biological processes [26]. For example,
irisin glycosylation affects its half-life by stabilizing its structure [27,28]. Moreover, some studies have
indicated that the glycosylation of irisin affects its effectiveness [29]. For example, Gannon et al. [29]
showed that irisin glycosylation weakens anticancer activity, which he observed after the administration
of a non-glycosylated form. Despite numerous studies on irisin function [6-9], the mechanism of action of
the glycosylated form is still poorly understood. This lack of understanding is caused by the fact that
most research is performed on the non-glycosylated form of irisin (nG-IR), despite the fact that, according
to Gannon et al. [29], differences in the action of these two forms have been observed.

In connection with the above, the aim of the research envisaged in this study was to compare
the biological activity of the two different forms of irisin in the case of proinflammatory activation
of adipocyte-macrophage cocultures. Given that the non-glycosylated form of irisin inhibits the
proinflammatory activity of adipocytes [6] and macrophages [7-9], we verified whether its glycosylation
changes the nature of its impact on the equivalent of obesity-related meta-inflammation. In particular,
we evaluated the effect of irisin glycosylation on the expression and release of key proinflammatory
cytokines, including tumor necrosis factor (TNF) «, interleukin (IL)-1f3, IL-6, macrophage chemotactic
protein (MCP)-1, high-mobility group box (HMGB)1, and adiponectin and leptin adipokines. We also
studied the effectiveness of irisin forms in inhibiting the migration activity of macrophages to
supernatants from cocultures as a counterpart to the macrophage influx into adipose tissue.

2. Materials and Methods

2.1. Chemicals and Materials

Dulbecco’s Modified Eagle Medium (DMEM), antibiotics (streptomycin and penicillin), and fetal
bovine serum (FBS) were purchased from PAA (Pasching, Austria). A CellTiter kit was purchased
from Promega (Madison, WI, USA). Lipopolysaccharide (LPS) was obtained from Sigma Aldrich
(St. Louis, MO, USA). The RNeasy Plus Mini Kit (74134) for RNA isolation was purchased from
Qiagen (Hilden, Germany). The High Capacity RNA-to-cDNA Kit (4387406), TagMan Gene Expression
Master Mix (4369026), and oligo(dT) primer (INF-« Assay ID: Mm00443260_g1; IL-6 Assay ID:
Mn00446190_m1; MCP-1 Assay ID: Mm00441242_m1; HMGB1 Assay ID: Mm00805422_m1; adiponectin
Assay ID: Mm00456425_m1; leptin Assay ID: Mm00434759_m1; GAPDH Assay ID: Mm99999915_g1)
were obtained from Applied Biosystems (Foster City, CA, USA). Mouse adiponectin enzyme-linked
immunosorbent assay (ELISA) kits were purchased from NOVEX (ThermoFisher; Foster City, CA, USA).
ELISA kits for TNF«, IL-1§3, IL-6, HMGBI1, and leptin were obtained from IBL International (Hamburg,
Germany). ELISA kits for mouse MCP-1 were purchased from R&D BioVendor (Heidelberg, Germany).



Biomolecules 2019, 9, 394 3o0f12

2.2. Cell Coculture and Experimental Design

The study was conducted on a Mycoplasma-free coculture of 3T3 L1 murine pre-adipocytes
differentiated into mature adipocytes and a murine RAW 264.7 macrophage cell line. The RAW 264.7
cell line was purchased from the European Type Culture Collection (ETCC, Sigma Aldrich), and the
3T3 L1 pre-adipocytes were kindly provided by Professor Alicja J6zkowicz from the Department of
Medical Biology, Jagiellonian University, Krakow. The differentiation of pre-adipocytes into adipocytes
was performed according to a protocol described previously [6]. The efficiencies of adipocyte
differentiation and lipid droplet deposition were assessed using Oil-Red-O staining according to the
manufacturer’s instructions.

For the coculture study, cells were maintained under standard conditions (37 °C, 5% CO,) in a
DMEM medium supplemented with 10% fetal bovine serum (FBS), 1% antibiotics, and 1 ng/mL of
insulin. Fully differentiated adipocytes were cultured in the lower parts of 12-well plates, while the
RAW 264.7 cells were cultured in plate inserts (0.4-um pore size). Cells were cultured in the presence
of glycosylated (G-IR) or non-glycosylated (nG-IR) forms of irisin (0-100 nM) for 24 h. Then, in order
to cause induction of a state of mild inflammation, cocultures were stimulated with lipopolysaccharide
(LPS; 100 ng/mL; Escherichia coli, serotype 0111: B4) for the next 6 (gene expression studies) or 24 h
(protein release studies). Fresh cells were used for cytometric analyses and RNA isolation. Supernatants
and cell pellets were frozen (—60 °C) for future quantification of protein levels.

2.3. Cell Activity and Viability

Overall cell viability and activity were determined after 24 h of coculture using a commercial
CellTiter kit according to the manufacturer’s instructions on a spectrophotometer (Expert Plus,
ASYS/Hitech). The overall cell activity was assessed after 2 h of culture in an irisin-enriched
environment, while proliferation was assessed after 24 h of culture.

2.4. Quantitative Real-Time PCR Assay

Total cell RNA from adipocytes and macrophages was extracted using an RNeasy Plus Mini Kit
with the elimination of genomic DNA according to the manufacturer’s instructions. The concentration
and quality of RNA were measured using a NanoDrop 2000 spectrophotometer (Thermo Scientific,
Waltham, MA, USA). Reverse transcription for cDNA synthesis was performed using a High Capacity
c¢DNA Reverse Transcription Kit in Thermoblock Thermostat Plus (Eppendorf) according to the
manufacturer’s protocol. Real-time PCR gene expression analysis was performed using Taq Man
oligo(dT) primer (for TNF-«, IL-1f3, IL-6, MCP-1, HMGBI, adiponectin, leptin) and TagMan Gene
Expression Master Mix in the StepOne Plus system (Applied Biosystems). The expressions of the
analyzed genes were normalized to endogenous glyceraldehyde phosphate dehydrogenase (GAPDH)
gene expression, which was selected as the housekeeping gene. The relative expression of each gene
(RQ) was calculated using the 278ACt method.

2.5. Examination of Cytokine and Adipokine Release

After 24 h incubation of coculture carried out with or without a LPS presence, the supernatants
were collected, and the levels of cytokines and adipokines were quantified using a commercial ELISA
kit. The levels of TNF«, IL-13, IL-6, HMGB1, MCP-1, adiponectin, and leptin were determined
according to the manufacturer’s instructions and measured using an Expert Plus spectrophotometer
(ASYS/Hitech, Eugendorf, Austria).

2.6. Macrophage Migration

The migration of RAW 264.7 macrophages toward the supernatant collected from the coculture
was evaluated using a 48-well microchemotaxis chamber (Neuro Probe). The test was performed
according to the manufacturer’s protocol. Briefly, the lower wells of the chamber were filled with
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adipocyte or coculture supernatants collected 24 h after LPS stimulation, control supernatants without
LPS stimulation, N-Formylmethionyl-leucyl-phenylalanine (fMLP) as a positive control, or DMEM
medium as a negative control. The lower wells of the chamber were covered with a polycarbonate
membrane (3-pm pore size; Neuro Probe). The wells in the upper chamber were filled with 50 pL
of RAW 264.7 macrophages (2 min/mL) and incubated for 40 min in standard culture conditions.
Thereafter, the membrane was washed in PBS and stained with Diff-Quick solution (Medion Diagnostic).
The macrophages that migrated to the lower side of the membrane were counted in four microscopic
fields in each well. The results are expressed as the mean numbers of migratory macrophages per well.

2.7. Statistical Analysis

Data were tested for the normality of distribution, and differences between groups were determined
using Duncan’s new multiple range test 3.1. All data are expressed as mean + standard deviation (X +
SD), with the level of statistical significance (p) set at 0.05.

3. Results

The non-glycosylated form of irisin is known to modulate the proinflammatory activation of both
adipocytes [6] and macrophages [7-9]. However, the endogenous form of irisin typical of eukaryotic
organisms is the glycosylated form. Despite this, there have still been no studies comparing the effects
of these two forms of irisin on the development of obesity-related inflammation. In the present study,
the impact of irisin supplementation was analyzed with respect to the coculture of the above-mentioned
cells: both of these exhibited inflammatory activation and participated in the development of chronic
obesity-related inflammation.

3.1. Overall Activity and Viability of Cell Coculture

The first stage in this research was an evaluation of the influence of the two forms of irisin
(glycosylated and non-glycosylated) on the overall viability and activity of cell cocultures. The studies
showed no differences between the effect induced by either form of irisin, but in both cases an increase
in the overall activity of coculture cells (nG-IR50 and G-IR50), with no effect on cell viability and
proliferation, was observed (Figure 1).
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Figure 1. Effects of various forms of irisin (glycosylated (G-IR) or non-glycosylated (nG-IR)) on overall
cell activity measured in an CellTiter test (A). Viability (B) and proliferation (C) of adipocyte-macrophage
cocultures. Fully differentiated adipocytes (3T3 L1) and macrophages (RAW 264.7) were cultured in
12-well dishes with inserts (0.4-pm pore size) for 24 h with or without the presence of irisin (0, 10,
or 50 nM; IRQ, IR10, or IR50, respectively). The results are expressed as mean + standard deviation
(SD) from five independent tests. Statistical significances were determined with the Duncan t-test.
The asterisks (*) above the bars mark statistically significant differences (p < 0.05) calculated relative to
the IR0 group.

3.2. Cytokine Production Was More Strongly Inhibited by the Non-Glycosylated Form of Irisin

The next stage in the investigation was an evaluation of the effect of irisin on the intensity
of the production and release of key proinflammatory cytokines, such as TNF-«, IL-1§3, IL-6, and
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HMGBI. The studies showed that irisin significantly inhibited both the production and release of
proinflammatory cytokines, regardless of the presence or absence of glycosylation. However, the
non-glycosylated form of irisin had a much stronger effect than its counterpart did (Figure 2; p < 0.05 for
TNF-«, IL-13, and HMGB1). The inhibition of cytokine production was observed in TNF-« (Figure 2A),
IL-1B (Figure 2B), and IL-6 (Figure 2C), as well as in HMGBL1 (Figure 2G). In each of these cases, only
the concentration of 50 nM of irisin was effective. The expression of these cytokines at the mRNA level
showed that the decrease in cytokine release was dependent on the inhibition of the expression of these
cytokines in both macrophage and adipocyte cells (Figure 2D-FH, respectively). Nevertheless, the
level of cytokine expression in macrophages was much higher than in adipocyte cells. This indicated
the coproduction of obesity-related inflammation by both cell populations that build adipose tissue.
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Figure 2. Effects of various forms of irisin (glycosylated (G-IR) or non-glycosylated (nG-IR)) on
lipopolysaccharide (LPS)-induced cytokine release: tumor necrosis factor-alpha (TNF-x) (A), interleukin
6 (IL-6) (B), and interleukin 13 (IL-13) (C). Cytokine mRNA expression: TNF-« (D), IL-6 (E), IL-1j3 (F),
as well as high-mobility group box-1 protein (HMGB1) release (G) and HMGB1 mRNA expression
(H), by adipocyte-macrophage cocultures. Fully differentiated 3T3 L1 adipocytes and RAW 264.7
macrophages were cultured in 12-well dishes with inserts (0.4-um pore size) for 6 h (mRNA expression,
RT-PCR) or 24 h (cytokine release, ELISA tests) with or without the presence of irisin (0, 10, or 50 nM)
administered 2 h before LPS stimulation (100 ng/mL). The results are expressed as mean + standard
deviation (SD) from five independent experiments. Statistical significances (p < 0.05) were determined
with the Duncan t-test. The asterisk (*) above the bar denotes statistically significant differences in
protein or mRNA level calculated relative to the IR0 group, while the hash (#) denotes statistically
significant differences calculated between the G-IR and the nG-IR group.
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3.3. Both Forms of Irisin Similarly Inhibited the Production of Adipokines

An assessment of the effect of irisin treatment on the production and release of adipokines showed
that the presence or absence of glycosylation did not affect the nature of irisin action. However, it was
noted that irisin at 50 nM effectively inhibited both the expression (Figure 3A) and the release of leptin,
referred to as a proinflammatory adipokine (Figure 3B), while it increased the expression and release
of the anti-inflammatory adiponectin (Figure 3C,D, respectively). It was not observed that any of the
forms of irisin had a stronger effect: their effects were comparable.
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Figure 3. Effects of various forms of irisin (glycosylated (G-IR) or non-glycosylated (nG-IR)) on
LPS-induced leptin release (A) or mRNA expression (B) and adiponectin release (C) or mRNA
expression (D) by adipocyte-macrophage cocultures. Fully differentiated 3T3 L1 adipocytes and RAW
264.7 macrophages were cultured in 12-well dishes with inserts (0.4-pum pore size) for 6 h (mnRNA
expression, RT-PCR) or 24 h (adipokine release, ELISA tests) with or without the presence of irisin (0,
10, or 50 nM; IR0, IR10, or IR50, respectively). The results are expressed as mean + standard deviation
(SD) from five independent experiments. Statistical significances (p < 0.05) were determined with the
Duncan t-test. The asterisk (*) above the bar denotes statistically significant differences in protein or
mRNA levels, calculated relative to the IR0 group.

3.4. Non-Glycosylated Form of Irisin Inhibited Macrophage Migration

Given that macrophage influx into adipose tissue exists as a result of chemotactic factors released
by fat tissue cells and significantly contributes to the development of moderate inflammation associated
with obesity, in the last stage of the study, we assessed the effects of both types of irisin on macrophage
migration. The studies showed that the glycosylated form of irisin at 50 nM significantly reduced
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the degree of macrophage migration toward the coculture supernatant (Figure 4A). The intensity of
macrophage migration to the supernatant from G-IR50 cocultures was slightly reduced, which was
in line with previous studies where effective inhibition was observed only in the IR100 group [6].
The studies also showed that this phenomenon may be associated with a significant reduction in
both the expression and release of the key chemokine, MCP-1, when the coculture was grown in an
environment enriched with irisin at a concentration of 50 nM (Figure 4B). As the study showed, the
expression of MCP-1 was significantly higher in macrophages than in adipocyte cells (Figure 4C).
In addition, the effect of irisin was stronger on macrophage cells than on adipocyte cells.
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Figure 4. Effects of various forms of irisin (glycosylated (G-IR) or non-glycosylated (nG-IR)) on (A)
RAW 264.7 macrophage migration to conditioned medium collected from adipocytes cultured in the
presence of various concentrations of irisin (0, 10, or 50 nM) for 24 h. Normal medium was used as a
negative control (C-); N-Formylmethionyl-leucyl-phenylalanine (fMLP) was used as a positive control
(C+). Irisin effects on LPS-induced monocyte chemotactic protein 1 (MCP-1) release (B) and MCP-1
mRNA expression (C) by adipocyte-macrophage cocultures. Fully differentiated 3T3 L1 adipocytes
and RAW 264.7 macrophages were cultured in 12-well dishes with inserts (0.4-um pore size) for 6 h
(mRNA expression, RT-PCR) or 24 h (MCP-1 release, ELISA tests) with or without the presence of irisin
(0, 10, or 50 nM) administered 2 h before LPS stimulation (100 ng/mL). The results are expressed as
mean + SD from five independent experiments. Statistical significances (p < 0.05) were determined
with the Duncan t-test. The asterisk (*) above the bar denotes statistically significant differences in
protein or mRNA levels calculated relative to the IR0 group, while the hash (#) denotes statistically
significant differences calculated between the G-IR and the nG-IR groups.

4. Discussion

Adipose tissue (AT) is an endocrine organ producing factors that affect multiple structures in our
bodies. In obese individuals, adipose tissue becomes a source of factors underlying the development of
systemic pathologies such as insulin resistance, type 2 diabetes, cardiovascular diseases, cancers, and
others (for review, see Reference [30]). Numerous studies have also indicated that the development
of the above complications is related to the development of chronic inflammation associated with
obesity, the main source of which is a macrophage influx into adipose tissue [4,31]. According to
Weisberg et al. [31], fatty tissue composition differs between lean and obese individuals: it contains
up to 40% of macrophages in obese subjects, while in lean individuals, this is only 10%. Increased
infiltration of blood-derived monocytes into adipose tissue seems to be a key factor in the development
of obesity-associated complications. In lean subjects, there is a prevalence of anti-inflammatory M2
macrophages, which coexist with Treg lymphocytes and eosinophil to create an anti-inflammatory
environment [32]. On the other hand, adipose tissue macrophages in obese individuals present the
proinflammatory M1 phenotype, with lower levels of Treg and eosinophil cells [33]. The research
presented in this paper clearly indicates that both the glycosylated and non-glycosylated forms of irisin
inhibited the inflammatory activation of adipocyte-macrophage cocultures. This was manifested by a
reduction in both the expression and the release of proinflammatory cytokines, which are key in the
development of obesity-related complications, such as TNF-«, IL-1§3, and IL-6 (Figure 2). The main
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source of these factors, given the level of mRNA expression, was macrophages. In both cases, the action
of nG-IR was most prominent and effective only at the 50-nM concentration. Monocyte influx into
adipose tissue is stimulated by the release by adipocytes of chemotactic cytokine MCP-1 [34], while
IL-1p released from adipose tissue macrophages plays a pivotal role in bone marrow macrophage
recruitment [35]. The current study showed that irisin, by affecting the reduction of the expression and
release of both MCP-1 and IL-1§3, also indirectly reduced the potential for recruitment of macrophages
to the adipose tissue environment. Both forms of irisin showed similar effects in this regard; however,
analysis of the macrophage migration to supernatants from the culture showed that actual inhibition
of the migration was observed only when the culture was incubated with nG-IR. The G-IR form was,
in this case, ineffective, although a substantial but statistically insignificant decrease in the value of the
index was noted. This result may suggest a potentially higher efficacy of nG-IR in relation to G-IR
in inhibiting the macrophage influx into adipose tissue. It should also be noted that adipose tissue
can affect distant structures via extracellular microvesicles, especially exosome-like vesicles (ELVs),
which contain both proteins, mRNAs, and miRNAs (for review, see Reference [36]). As presented
by Deng et al. [37], administration to lean mice of exosomes produced by adipocytes taken from
obese individuals resulted in the activation of peripheral blood monocytes and increased release of
proinflammatory TNF-« and IL-6, simultaneously leading to insulin resistance development in lean
individuals. Considering the above-mentioned effects of irisin action, it cannot be excluded that irisin
also has an impact on the quantity and quality of fat-released ELVs (research in progress). Nevertheless,
we observed that myocyte C2C12 cells cultured with the addition of an adipocytic-macrophage
coculture medium showed an improvement in glucose uptake when treated with medium taken from
the nG-IR groups. Glucose uptake after using additional insulin stimulation was also improved when
compared to the group with the addition of the conditioned medium from the groups without irisin.
This effect was not so pronounced when only the addition of irisin was used. Similarly, in this case, the
effect of nG-IR was stronger than that of G-IR (data not shown).

When analyzing the impact of irisin on adipocyte—-macrophage interaction and obesity-related
inflammation, proinflammatory alarmin HMGB1 should also be taken into account, whose elevated
level has been noted in obese individuals [38]. The HMGBI level is twice as high in adipose tissue
from obese individuals as it is in lean subjects [39], and its expression rapidly increases after adipocyte
differentiation [40]. Moreover, as presented by Guzman-Ruiz et al. [41], HMGB1 in adipose tissue
and 3T3 L1 adipocytes is abundantly deposited in the cytoplasm and not in the nucleus, as in the
case of, for example, quiescent cells [42], and plays a pivotal role in the polarization of adipose tissue
macrophages to M1 phenotypes [43]. The activation of AT by HMGBI leads to excessive release of
crucial proinflammatory cytokines such as TNF-«, IL-13, or IL-6, which is related to the activation of
the TLR4 pathway by HMGBI [44] (for review, see Reference [45]). The current study demonstrated
that irisin effectively decreased HMGBI release by cocultures; however, nG-IR was much more effective
in this respect than the G-IR form was. Our previous study, which was conducted on an individual
culture of macrophages, showed that nG-IR effectively inhibited the TLR4/MyD88 pathway, leading to
a reduction in the release of proinflammatory cytokines. This may be an additional explanation for
the observed anti-inflammatory action of irisin. However, as shown in the present study, the effect of
nG-IR was stronger in this respect than G-IR.

Moreover, this study also evaluated the effect of irisin on the production and release of key
adipokines, such as leptin and adiponectin. Leptin is an adipokine that acts on the hypothalamus,
exerting a significant influence on both food intake and the expenditure of energy. Under normal
conditions, its elevated level reduces food intake and increases energy expenditure. A decrease
in leptin level induces the opposite effect, i.e., an increase in food intake and a decrease in energy
expenditure [30]. It needs to be highlighted that, in obese individuals, the leptin level is pathologically
increased, and a state of leptin resistance is observed [46]. Moreover, studies have shown that leptin
is an immunomodulating agent that affects both innate and acquired immunity (for review, see
Reference [47]). Leptin increases the proliferation and activation of macrophages [48], which indirectly
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leads to an increase in proinflammatory cytokine release [49]. In our studies, we noted a decrease in
leptin level due to incubation with both nG-IR and G-IR, which may explain, at least in part, the lack of
an increase in macrophage proliferation, which was previously observed in individual macrophage
cultures under nG-IR treatment [7]. In addition, by reducing the release of leptin, irisin reduces
the proinflammatory activation of the entire system and thus reduces the risk of the development
of insulin resistance. Research has shown that, in this respect, the effects of nG-IR and G-IR are
equal. Another important adipokine, adiponectin, is known for its anti-inflammatory effect as well
as for increasing the insulin sensitivity of liver cells, thereby leading to a decrease in hepatic glucose
production [30]. Adiponectin levels in obese individuals significantly decrease, which, in combination
with the observed increase in leptin level and activation of proinflammatory pathways, contributes to
the development of insulin resistance and consequently also to type 2 diabetes [50,51]. Current research
has clearly indicated that irisin eliminates the above-mentioned negative effect of obesity, leading to
a decrease in the level of proinflammatory leptin, with an increase in the level of anti-inflammatory
adiponectin. This effect was observed after the incubation of coculture cells in both the recombinant,
non-glycosylated form of irisin as well as in its glycosylated form, which may suggest the possible
therapeutic potential of irisin. An increased level of adiponectin was also observed in [52], who showed
that irisin improves the function of perivascular adipose tissue by activating the heme oxygenase
(HO)-1/adiponectin pathway. However, further research is necessary to verify the exact mechanisms of
its action and its therapeutic potential.

5. Conclusions

Overall, our study showed that irisin, regardless of the presence or absence of its glycosylation,
effectively inhibited the proinflammatory activation of adipocyte-macrophage cocultures. This may be
the basis for a protective mechanism underlying a reduced risk of insulin resistance and type 2 diabetes
development in obese patients. This study indicates that the therapeutic potential of irisin is not
limited to its synthetic recombinant form. This prompts us to undertake research on the development
of physical exercise programs that may have potentially therapeutic effects mediated by the proper
level of irisin in our body. However, further studies are necessary to enable a detailed explanation of
this phenomenon.
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