Supplementary Materials

Gold Nanoparticle Size-Dependent Enhanced Chemiluminescence for Ultra-Sensitive Haptoglobin Biomarker Detection

Narsingh R. Nirala¹ and Giorgi Shtenberg^{1*}

¹Institute of Agricultural Engineering, ARO, the Volcani Center, Bet Dagan 50250, Israel

Corresponding Author

*E-mail: <u>giorgi@agri.gov.il</u>; Tel: +972-50-7795925

Planned	Before PDT cross-linking	After PDT cross-linking	TableS1.Theaveragediameterof
2.6	5.2	237.5	the produced GNPs
8	9.4	63.0	before and after PDT cross-linking
13	10.9	50.7	obtained by DLS.
25	30.5	47.3	
38	39.9	68.1	

Figure S1. TEM images of the produced GNPs (before PDT cross-linking): (a) 2.6 nm; (b) 8 nm; (c) 13 nm; (d) 25 nm; (e) 38 nm.

Figure S2. Calibration curve of eCL factor for standard Hp concentrations with optimal GNPs-PDT. Data are reported as mean ± standard deviation (n=3).

Sensing platform	Optical technique	Dynamic range	Detection Limit	Ref.
Magnetic nanobeads immunoassay	Capillary electrophoretic laser- induced fluorescence	0.2–3.0 mg mL ⁻¹	N/A	[1]
CdTe QDs immunoassay	Fluorescence resonance energy transfer	0.1–0.6 nM	0.02nM	[2]
Gold nano layer	Surface plasmon resonance	N/A	1.1 μg mL-1	[3]
Gel electrophoresis	Chemiluminescence	0.1-13.3 μg mL ⁻¹	0.08 µg mL- 1	[4]
Enzyme-linked immunosorbent assay	Absorbance	N/A	0.01 µg mL ⁻ 1	[5]
GNPs/CdTe- QDs/SWCNTs/Chitosan nanocomposite	Electro- chemiluminescence	0.1 pg mL ⁻¹ to 10 ng mL ⁻¹	0.1 pg mL ⁻¹	[6]
Cross-linked GNPs	Chemiluminescence	1 pg mL ⁻¹ to 10 μg mL ⁻¹	0.19 pg mL ⁻	This work

Table S2. Analytical performance of optical techniques utilizing nanoparticles for haptoglobin detection

References

- Wang, Y.-R.; Yang, Y.-H.; Lu, C.-Y.; Chen, S.-H. Utilization of magnetic nanobeads for analyzing haptoglobin in human plasma as a marker of Alzheimer's disease by capillary electrophoretic immunoassay with laser-induced fluorescence detection. *Anal. Chim. Acta* 2015, 865, 76-82, doi:https://doi.org/10.1016/j.aca.2015.01.030.
- Abadieh, R.; Safi, S.; Mohsenifar, A.; Bayat, M. Designation of a fluorescence-based nanobiosensor for detection of bovin haptopglobin. *Bull. Georg. Natl. Acad. Sci.* 2015, 9, 222-228.
- 3. Åkerstedt, M.; Björck, L.; Waller, K.P.; Sternesjö, Å. Biosensor assay for determination of haptoglobin in bovine milk. *J. Dairy Res.* **2006**, *73*, 299-305.

- Huang, G.; Ouyang, J.; Delanghe, J.R.; Baeyens, W.R.G.; Dai, Z. Chemiluminescent Image Detection of Haptoglobin Phenotyping after Polyacrylamide Gel Electrophoresis. *Anal. Chem.* 2004, *76*, 2997-3004, doi:10.1021/ac035109e.
- Nakagawa, H.; Yamamoto, O.; Oikawa, S.; Higuchi, H.; Watanabe, A.; Katoh, N. Detection of serum haptoglobin by enzyme-linked immunosorbent assay in cows with fatty liver. *Res. Vet. Sci.* 1997, 62, 137-141, doi:https://doi.org/10.1016/S0034-5288(97)90135-1.
- Rizwan, M.; Keasberry, N.A.; Ahmed, M.U. Efficient double electrochemiluminescence quenching based label-free highly sensitive detection of haptoglobin on a novel nanocomposite modified carbon nanofibers interface. *Sens. Biosensing Res.* 2019, 24, 100284, doi:https://doi.org/10.1016/j.sbsr.2019.100284.