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Abstract: In this paper, a tryptophan (Trp) molecularly imprinted chitosan film was prepared on
the surface of an acetylene black paste electrode using chitosan as the functional polymer, Trp as
the template molecule and sulfuric acid as the crosslinking agent. The surface morphologies of
non-imprinted and imprinted electrodes were characterized by scanning electron microscopy (SEM).
The formation of hydrogen bonds between the functional polymer and the template molecule was
confirmed by infrared spectroscopy. Some factors affecting the performance of the imprinted electrode
such as the concentration of chitosan, the mass ratio of chitosan to Trp, the dropping amount of
the chitosan-Trp mixture, the solution pH, and the accumulation potential and time were discussed.
The experimental results show that the imprinted electrode exhibit good affinity and selectivity for
Trp. The dynamic linear ranges of 0.01–4 µM, 4–20 µM and 20–100 µM were obtained by second
derivative linear sweep voltammetry, and the detection limit was calculated to be 8.0 nM. The use of
the imprinted electrode provides an effective method for eliminating the interference of potentially
interfering substances. In addition, the sensor has high sensitivity, reproducibility and stability, and
can be used for the determination of Trp in pharmaceutical preparations and human serum samples.

Keywords: molecularly imprinted chitosan film; electrochemical sensor; tryptophan; selective
determination

1. Introduction

Tryptophan (Trp) is an important amino acid for the human body. Low concentrations of Trp
are essential for many physiological functions. It is a precursor of serotonin and melatonin that
significantly improves the mood, sleep and mental health. It is also an important component of
protein, capable of establishing and maintaining a positive nitrogen balance [1]. Because Trp is seldom
found in vegetable products, this compound is sometimes added to diets, food, and pharmaceutical
formulations. However, if Trp is excessively consumed or cannot be properly metabolized, high
concentrations of Trp would have some harmful effects on the human body, such as producing a
toxic waste in the brain, leading to hallucinations and delusions [2]. In addition, it may be a cause of
schizophrenia for people. Because of its small thresholds between essential and toxic levels in living
organisms, it is of great clinical significance to determine Trp simply, accurately and quickly. Besides,
Trp often coexists with ascorbic acid (AA), dopamine (DA), uric acid (UA), nitrite (NO2

−) and other
amino acids in biological matrixes. Therefore, the selective determination of Trp is also very important.
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At present, there are many analytical methods for Trp determination, such as liquid
chromatography [3], gas chromatography [4] and thin layer chromatography [5]. Chromatographic
techniques are highly selective and accurate, however, they often require pretreatment steps, expensive
and complicated instruments, skilled operators as well as consume more time. Some non-chromatographic
methods such as spectrophotometry [6], fluorescence [7] and chemiluminescence [8] are also used to
determine Trp. However, they suffer from low selectivity. Derivative spectroscopy [9] and multivariate
calibration techniques [10] are sometimes used to solve the problem of poor selectivity. Electroanalytical
techniques have great appeal in monitoring biologically important molecules due to their simplicity, low
cost, portability and sensitivity [11–15]. Because Trp can be oxidized on the electrode, recent studies
have focused on the determination of Trp by electrochemical methods. However, the direct oxidation of
Trp on bare electrodes results in slow electron transfer and high overpotentials [16]. Some chemically
modified electrodes have been reported for the determination of Trp [16–27], and comparative analytical
figures of merit for different electrodes are summarized in Table 1. Although these sensors can offer
high sensitivity and a low detection limit, they suffer from the main drawback, which is the moderate
selectivity. According to these studies, the oxidation peak potentials for some electroactive biomolecules,
such as ascorbic acid (AA), uric acid (UA), dopamine (DA) and tyrosine (Tyr), are very close to that of Trp,
and the voltammetric responses of Trp and these substances exhibit severe overlapping, which makes
their practical applications limited. Since Trp often coexists with these biomolecules in food processing,
pharmaceutical formulations and biological fluids, to determine Trp selectively based on its electroactivity
is of great challenge.

In recent years, molecularly imprinted polymers (MIPs) have been widely used in various
fields such as artificial antibodies, chemical sensors and solid phase extraction, due to their excellent
selectivity, good chemical and physical stability, as well as low cost [28–30]. There are also increasing
reports of using MIPs to modify the electrode surface to enhance selectivity [31–34]. In general,
molecular imprinting is the process of polymerizing selected functional monomers around the template
molecules in the presence of a cross-linking agent. After polymerization, the template molecules
are extracted to obtain a polymer matrix that is complementary in shape and functionality to the
template. Thus, the polymer has the ability to selectively attach to the analyte. Chitosan is a natural
polymer (a polysaccharide) obtained by the partial deacetylation of chitin. Because of its excellent
film forming ability, biocompatibility, biodegradability, lack of toxicity and low cost, chitosan has been
widely used in membrane separation, drug delivery and environmental protection [35–37]. In addition,
chitosan can chelate and adsorb with many substances based on a large number of hydroxyl groups
and amino groups. In recent years, chitosan has also been reported for the construction of imprinted
electrochemical sensors and shows good selectivity [38–41]. For example, Guo and his colleagues
fabricated a novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan,
and gold nanoparticles for the detection of patulin. The linear response range of the MIP sensor was
from 1.0 pM to 1.0 nM and the limit of detection (LOD) was 0.757 pM [38]. Wu et al. developed an
electrochemical sensor based on ion-imprinted chitosan-graphene nanocomposites for the sensitive
and selective determination of Cr (VI). The linear range of the MIP sensor was from 1.0 nM to 10 µM,
with a low detection limit of 0.64 nM [39]. Liu et al. constructed a MIPs electrochemical sensor based
on graphene-chitosan composite and used in dopamine measurements. The linear range was from
1.0 nM to 80 nM and 0.1 µM to 100 µM. The sensor exhibited high selectivity for the determination
of dopamine in the presence of some structural analogues and coexisting interferences [40]. Xia and
his colleagues prepared a novel protein molecularly imprinted electrochemical sensor based on a
chitosan/ionic liquid–graphene modified glassy carbon electrode via electrochemical polymerization,
which could be used for the sensitive and selective detection of bovine serum albumin [41]. However,
as far as we know, the design and fabrication of imprinted electrochemical sensors for Trp detection
using chitosan have not been reported in any literature.

Many applications require not only better selectivity, but also higher sensitivity. Acetylene black
(AB) has become an effective sensing platform for the development of electrochemical sensors and
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biosensors in recent years because of its unique advantages such as large specific surface area, good
chemical stability, high mechanical strength and excellent conductivity [42,43]. In this paper, an
electrochemical sensor with high sensitivity and selectivity for the voltammetric determination of Trp
was developed by combining acetylene black with the molecular imprinting technique. Using natural
chitosan as functional polymer and Trp as template molecule, Trp molecularly imprinted chitosan film
was prepared on the surface of an acetylene black paste electrode (ABPE). Various factors affecting
the electrochemical performance of the imprinted electrode were investigated in detail. The new
sensor has the characteristics of good selectivity, simple preparation and easy operation. Finally, this
MIP/ABPE was successfully applied to the quantitative analysis of Trp in pharmaceutical preparations
and human serum samples.

2. Experimental

2.1. Chemicals and Solutions

Trp and other amino acids, uric acid, ascorbic acid, dopamine, sodium nitrite, oxalic acid, glucose,
lactic acid, and tartaric acid were purchased from Aladdin Chemical Reagent Co., Ltd., Shanghai,
China. Acetylene black (AB, purity > 99.99%) was purchased from STREM Chemicals, USA. Chitosan
(95% deacetylation) was purchased from Shanghai Biochemical Co. Ltd., China. The human blood
serum samples were obtained from a local hospital. The standard stock solution (1.0 × 10−3 M) of Trp
was prepared by dissolving Trp into 0.1 M HCl and diluting to 100 mL with water, which was stored at
4 ◦C and was stable for two weeks. The working solution was freshly prepared before use by diluting
the stock solution. All other reagents were of analytical grade and used directly. The water used was
doubly distilled.

2.2. Apparatus

The morphologies of the non-imprinted and imprinted films were observed by a scanning
electron microscope (EVO10, ZEISS, Jena, Germany). Fourier transform infrared spectroscopic
measurements were performed on an IRPrestige-21 Fourier transform infrared spectrometer (Shimadzu
Corp., Tokyo, Japan). Cyclic voltammetry (CV) was carried out on a CHI 660D electrochemical
workstation (Chenhua Instrument Co. Ltd., Shanghai, China) controlled by a microcomputer with
CHI660 software. A model JP-303E polarographic analyzer (Chengdu Instrument Factory, Chengdu,
China) was used to give the second-order derivative linear sweep voltammograms for electroanalytical
measurements. A three-electrode system was used thoughout the electrochemical measurements,
where the MIP/ABPE was used as the working electrode, a platinum wire as the counter electrode and
a saturated calomel electrode (SCE) as the reference electrode. All potentials reported were versus the
SCE. pH measurements were performed with a pH-3c Model pH meter (Shanghai Leichi Instrument
Factory, Shanghai, China) using a combined glass electrode.

2.3. Preparation of MIP/ABPE

A total of 1.20 g of acetylene black powder and 0.30 g of solid paraffin were ground uniformly in a
mortar. Subsequently, the mixture was heated to 75–80 ◦C to melt the solid paraffin. The homogenous
paste was tightly pressed into an electrode tube (1.0 mm in diameter and 3.0 mm in depth) while
it was hot. The surface of the electrode was polished on a weighing paper to remove the excess of
solidified material. For the preparation of the MIP/ABPE, 50.0 mg of chitosan was dissolved in 10.0 mL
1.0% (v/v) acetic acid aqueous solution. At the same time, a certain amount of template molecule Trp
was added. The mixed solution was stirred at room temperature for 4 h. Subsequently, 5 µL of the
obtained solution was drop-coated onto the ABPE surface and the solvent was left to evaporate under
ambient conditions. Then the chitosan film was cross-linked by immersing the modified electrode into
a 0.5 M sulfuric acid solution at room temperature for 24 h [44]. After that, the modified electrode
was subjected to a washing procedure by repetitive immersion in ethanol to remove the Trp template
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entrapped in the polymeric matrix, and then air-dried for 24 h. The obtained imprinted electrode was
tagged as MIP/ABPE. The entire process of electrode preparation was shown in Scheme 1. As a control,
the non-imprinted electrode (NIP/ABPE) was prepared with the same procedure just without adding
the template molecules. In order to show their unique properties, AB, MIP/CPE (CPE refers to carbon
paste electrode throughout the following text) and NIP/CPE, were also prepared in a similar manner,
only graphite powder was needed to replace acetylene black powder.
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Scheme 1. The procedure for fabrication of the molecularly imprinted polymers (MIP)/acetylene black
paste electrode (ABPE).

2.4. Electrochemical Measurements

All electrochemical experiments including cyclic voltammetry (CV) and second-order derivative
linear sweep voltammetry were carried out with a standard three-electrode system, using bare
or modified electrodes, a platinum wire electrode, and a saturated calomel electrode (SCE) as the
working electrode, counter electrode and reference electrode, respectively. The CV was used for
the electrode characterization in a solution consisting of 1.0 mM K3[Fe(CN)6] and 0.5 M KCl. The
sensing performance of Trp on MIP/ABPE and the optimization of measuring conditions, as well as the
selectivity, reproducibility and stability experiments, were carried out by second-order derivative linear
sweep voltammetry. A 10.0 mL volume of the solution, containing an appropriate concentration of Trp
and 0.1 M phosphate buffer (pH 7.0) was transferred into a voltammetric cell. The stirrer was switched
on. The accumulation potential of −0.1 V was applied to the MIP/ABPE for 180 s. Following the
accumulation period, the stirrer was stopped, and after a rest period of 5 s, the second-order derivative
voltammogram was recorded by applying a positive-going potential scan from 0.2 to 1.2 V at 0.1 V s−1,
and the second derivative peak of Trp was obtained at about 0.756 V. After each measurement, the
imprinted electrode was immersed in a 0.1 M phosphate buffer (pH 7.0) and treated with repetitive
potential scanning from 0.2 to 1.2 V at a scan rate of 0.1 V s−1 to remove the template molecules until
the baseline became stable. To demonstrate the MIP/ABPE repeatability, the results were averaged for
three measurements at the same electrode. All the measurements were performed at room temperature.
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3. Results and Discussion

3.1. Template Removal

Figure 1 shows the CVs of the MIP/ABPE and NIP/ABPE in a 0.1 M phosphate buffer (pH 7.0) with
the potential ranging from 0.2 to 1.2 V. Before extracting the template molecules, a broad oxidation
peak at about 0.80 V could be seen (curve a). Because the electrochemical measurement was carried
out in a Trp-free solution, this means that the oxidation peak was caused entirely by Trp embedded in
the chitosan film. When MIP/ABPE was immersed in ethanol and the Trp template molecules were
removed from the chitosan matrix, almost no electrochemical response is observed, as shown in curve
b. The disappearance of the CV signal indicates that Trp is effectively removed. No peaks are observed
at the NIP/ABPE (curve c).
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3.2. FT–IR Spectra

Figure 2 displays the Fourier Transform Infrared FT–IR spectra of chitosan, Trp and the chitosan-Trp
composite. The spectrum of chitosan (Figure 2a) showthe absorption peaks at about 3350 cm−1 for
the –NH2 and –OH groups, at about 2920 and 2879 cm−1 for the aliphatic C–H stretching vibration,
1647 cm−1 for the absorption peak of the rest NH2CO group, and 1077 cm−1 for the C–O group. Figure 2b
demonstrates the FT-IR of Trp. A strong and sharp peak is observed at 3404 cm–1, which corresponds
to the N–H stretching in the indole group of Trp, and two poor resolved bands between 3078–3038
cm−1 correspond to the asymmetric and symmetric stretching modes of the amino group. IR bands
observed at 1667 and 1589 cm−1 correspond to the COO- and NH3

+ asymmetric stretching vibrations,
respectively. The peaks at 1456, 1414 and 1356 cm−1 are assigned to the NH3

+ symmetric stretching
vibration, the COO− symmetric stretching mode and the C–H deformation mode, respectively [45].
In Figure 2c, the broaden absorption peak at about 3500–3000 cm−1 corresponds to the hydrogen
bond strength. In comparison with that of Figure 2a, the C=O absorption peaks moved from 1647 to
1633 cm−1. These changes are due to the formation of hydrogen bonds between the functional polymer
and the template molecule.
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Figure 2. The Fourier Transform Infrared (FT–IR) spectra of (a) chitosan, (b) Trp and (c) the
Trp-chitosan composite.

3.3. Electrode Characterizations by SEM and CV

The surface morphologies of ABPE, NIP/ABPE and MIP/ABPE were studied by scanning electron
microscopy (SEM). As shown in Figure 3A, the surface of ABPE is rough and uneven, and AB particles
show an irregular and large flake structure. The surface of NIP/ABPE is smooth and flat (Figure 3B),
which is attributed to the formation of a compact chitosan film on the electrode surface. As illustrated
in Figure 3C, the top view of MIP/ABPE changes significantly compared to NIP/ABPE. After removing
the template molecules, a three-dimensional network porous structure is observed on the MIP/ABPE,
indicating that the specific cavities are formed in the chitosan matrix.

Biomolecules 2019, 9, x FOR PEER REVIEW 6 of 18 

 
Figure 2. The Fourier Transform Infrared (FT–IR) spectra of (a) chitosan, (b) Trp and (c) the Trp-
chitosan composite. 

3.3. Electrode Characterizations by SEM and CV 

The surface morphologies of ABPE, NIP/ABPE and MIP/ABPE were studied by scanning 
electron microscopy (SEM). As shown in Figure 3A, the surface of ABPE is rough and uneven, and 
AB particles show an irregular and large flake structure. The surface of NIP/ABPE is smooth and flat 
(Figure 3B), which is attributed to the formation of a compact chitosan film on the electrode surface. 
As illustrated in Figure 3C, the top view of MIP/ABPE changes significantly compared to NIP/ABPE. 
After removing the template molecules, a three-dimensional network porous structure is observed 
on the MIP/ABPE, indicating that the specific cavities are formed in the chitosan matrix. 

 
Figure 3. The scanning electron microscopy (SEM_ images of (A) ABPE, (B) NIP/ABPE and 
(C) MIP/ABPE. 

The cyclic voltammetric behaviours of 1.0 mM K3[Fe(CN)6] containing 0.5 M KCl at different 
electrodes were studied at a scan rate of 0.1 V s−1. Figure 4 shows the corresponding cyclic 
voltammograms obtained at CPE (curve a), ABPE (curve b), MIP/ABPE before and after extraction of 
the template molecules (curve c and cruve d), respectively. K3[Fe(CN)6] shows a pair of quasi-
reversible CV peaks on bare CPE. The cathodic peak potential (Epc) is 111 mV, the anodic peak 
potential (Epa) is 302 mV, and the peak separation (ΔEp) is 191 mV. Compared with bare CPE, the 
peak current of K3[Fe(CN)6] on ABPE increases significantly and the peak separation decreases to 75 

Figure 3. The scanning electron microscopy (SEM_ images of (A) ABPE, (B) NIP/ABPE and (C)
MIP/ABPE.

The cyclic voltammetric behaviours of 1.0 mM K3[Fe(CN)6] containing 0.5 M KCl at different
electrodes were studied at a scan rate of 0.1 V s−1. Figure 4 shows the corresponding cyclic
voltammograms obtained at CPE (curve a), ABPE (curve b), MIP/ABPE before and after extraction of
the template molecules (curve c and cruve d), respectively. K3[Fe(CN)6] shows a pair of quasi-reversible
CV peaks on bare CPE. The cathodic peak potential (Epc) is 111 mV, the anodic peak potential (Epa)
is 302 mV, and the peak separation (∆Ep) is 191 mV. Compared with bare CPE, the peak current of
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K3[Fe(CN)6] on ABPE increases significantly and the peak separation decreases to 75 mV, indicating
that AB can improve the electron transfer rate in the redox process of [Fe(CN)6]3−/4−. This is because
AB has good conductivity and a large specific surface area, which provides a suitable bed for MIP
immobilization. Before Trp extraction, the CVs of MIP/ABPE show two distinct redox peaks, the
current is higher than that of ABPE, and the peak separation is 99 mV. This may be due to the affinity
of positively charged chitosan to negative charge [Fe(CN)6]3−/4− [46]. As compared with MIP/ABPE
before Trp extraction, the current of MIP/ABPE after Trp extraction increases further. This can be
explained because when Trp is extracted from the chitosan film, the three-dimensional imprinted
cavities matching with Trp is formed not only in the spatial structure, but also in the functional groups.
With these cavities, [Fe(CN)6]3−/4− can easily reach the surface of ABPE through the chitosan film
due to its small size. Therefore, the increase in current observed at MIP/ABPE is attributed to the
imprinting characteristics.
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3.4. The Imprinting Effect and the Electrode Process Mechanism

The extraction of Trp results in the formation of sites in the chitosan matrix that can selectively
recombine the template molecules. The affinity and selectivity of the imprinted electrode were evaluated
by second derivative linear sweep voltammetry. In comparison with differential pulse voltammetry
(DPV) and square wave voltammetry (SWV), the second derivative linear sweep voltammetry has a
higher current, better signal to background characteristics and better resolution of overlapping [42,43].
Figure 5 shows the second derivative linear sweep voltammetry of Trp oxidation at CPE (curve a),
ABPE (curve b), MIP/CPE (curve c), MIP/ABPE (curve d) and NIP/ABPE (curve e) after accumulation
at −0.1 V for 60 s in a 0.1 M phosphate buffer (pH 7.0) containing 0.1 mM Trp. Obviously, CPE has
the lowest peak current (914 mV, 0.02781 µA). When ABPE is used, the peak current of Trp increases
(796 mV, 0.1953 µA) due to the specific surface area and special electrical performance of AB. The current
responses of MIP/CPE (804 mV, 0.1256 µA) and MIP/ABPE (756 mV, 0.8226 µA) are significantly higher
than those of CPE and ABPE, which could be attributed to the existence of MIP. Because of the inherent
three-dimensional cavities formed in the MIP, more Trp molecules were selectively adsorbed on the
specific recognition sites by rebinding groups, and the current response increases greatly. At the same
time, the current response of MIP/ABPE is about 6 times that of MIP/CPE, which further confirm the
current amplification effect of AB. Conversely, the significant decrease of peak current on NIP/ABPE
(0.06313 µA) can be attributed to the absence of specific binding sites and cavities in the NIP. According
to the maximum peak current obtained on MIP/ABPE, MIP/ABPE can be used as a novel sensor for Trp
detection with high sensitivity and selectivity.
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Figure 5. The second-order derivative linear sweep voltammograms of 0.1 mM Trp recorded at different
electrodes: (a) CPE, (b) ABPE, (c) MIP/CPE, (d) MIP/ABPE and (e) NIP/ABPE in 0.1 M phosphate buffer
(pH 7.0). Accumulation potential: −0.1 V, Accmulation time: 60 s, scan rate: 0.1 V s−1.

By analyzing the relationship between the oxidation peak potential or current of Trp and the
scanning rate, useful information concerning the electrochemical mechanism of Trp can be obtained.
The effect of the scan rate ranging from 0.03 to 0.3 V s−1 on the electrochemical performance of Trp was
evaluated by cyclic voltammetry (CV) on MIP/ABPE and the results were shown in Figure 6. It was
found that Trp produced only one oxidation peak on MIP/ABPE, which indicated that the electrode
reaction of Trp was completely irreversible. With the increase of the scan rate, The peak current of
Trp increased linearly with the increase of the scan rate (i = 0.0051 v + 0.2099 (i: µA, v: mV s−1),
R2 = 0.9955), indicating that Trp is an adsorption control process on MIP/ABPE. The relationship
between the oxidation peak potential and scan rate was also investigated, and it can be described as
Ep = 0.02594 lnv + 0.6365 (Ep: V, v: mV s−1), R2 = 0.9949. According to Laviron’s theory [47], the slope
was equal to RT/αnF. The calculated value of αn was 0.9893. For the completely irreversible electrode
reaction process, α is assumed to be 0.5. On the basis of the above discussion, n was calculated to be
1.98, indicating that there are two electrons involved in the oxidation of Trp on MIP/ABPE.
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Figure 6. (A) The cyclic voltammograms of 0.1 mM Trp in 0.1 M phosphate buffer (pH 7.0) obtained on
the MIP/ABPE at different scan rates (a–j: 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 mV·s−1); (B) The
plot of the peak current versus the scan rate; (C) The plot of the peak potential versus the Napierian
logarithm of the scan rate. Accmulation potential: −0.1 V; Accmulation time: 60 s; scan rate: 0.1 V s−1.
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3.5. Optimization of Analytical Conditions

All the following analysis conditions were optimized using the second-order derivative linear
sweep voltammetry. The scanning potential range was 0.2~1.2 V, the scanning rate was 0.1 V s−1, the
supporting electrolyte was 0.1 M phosphate buffer (pH 7.0) and the concentration of Trp was 0.1 mM.

3.5.1. The Effect of the Concentrations of Chitosan

The effect of the concentration of chitosan on the response of Trp on MIP/ABPE was tested.
Five different concentrations of chitosan (0.1 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt%, 3.0 wt%) were examined.
After accumulating at −0.1 V for 180 s in 0.1 M phosphate buffer (pH 7.0), it was found that the peak
current of Trp increased with the increase of the concentration of chitosan up to 0.5 wt%. However, after
the concentration exceeded 0.5 wt%, the peak current of Trp decreased. In the general condition, the
viscosity of the chitosan solution increases with the increase of its concentration. A too high viscosity
would induce a nonuniform thickness of the cast film; on the contrary, an unduly low viscosity would
weaken the combination stability between the imprinting molecules and functional polymer, thereby
debasing the selectivity of the imprinted electrode. Hence, 0.5 wt% of chitosan was selected as the
optimum concentration (Figure 7A).

3.5.2. The Effect of the Mass Ratio of Trp to Chitosan

The appropriate ratio of Trp molecule to chitosan determines the number of binding sites for
selective recombination of Trp. In order to improve the sensing performance of MIP/ABPE, the ratio of
Trp to chitosan was discussed. The effect of the mass ratio of Trp to chitosan was studied in the range of
1:4 to 1:20 (Figure 7B). After accumulating at −0.1 V for 180 s in a 0.1 M phosphate buffer (pH 7.0), the
results show that when the ratio decreases, the peak current of Trp increases and reaches its maximum
at 1:8. This is related to the change in the number of available binding sites. When the amount of
chitosan is sparse, the number of binding sites available is small. However, a high concentration of
chitosan might lead to a non-selective electrochemical response to the template. Here, the mass ratio of
1:8 was the best and was chosen for subsequent experiments.

3.5.3. The Effect of Trp-Chitosan Dropping Amount

Different MIP/ABPEs were prepared by coating different volumes of Trp-chitosan on the surface of
ABPE. Figure 7C showed the current response of 0.1 mM Trp on different MIP/ABPEs after accumulating
at −0.1 V for 180 s in a 0.1 M phosphate buffer (pH 7.0). It was found that with the increase of the
Trp-chitosan dropping amount, the peak current of Trp increased and the maximum current was
obtained when the dropping amount reached 5 µL. However, the peak current of Trp decreased
significantly when the dropping amount exceeded 5 µL. It is speculated that a very small dropping
amount will reduce the number of effective imprinting sites on the surface of the electrode. A large
dropping amount will lead to an increase in the film thickness, which will affect the conductivity of the
electrode. For these reasons, the volume of Trp-chitosan suspension loaded on the ABPE surface was
maintained at 5 µL.

3.5.4. The Effect of the Solution pH

The effect of the solution pH on the peak current of 0.1 mM Trp at MIP/ABPE was studied in a
0.1 M phosphate buffer. After accumulating at −0.1 V for 180 s, the relationship between the oxidation
current of Trp and the solution pH in the range of 4.91–7.89 was shown in Figure 7D. It was found that
the oxidation current of Trp reached its maximum at pH 7.0. Therefore, pH 7.0 was chosen as the best
pH value for the Trp measurement in the following experiments.
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3.5.5. Accumulation Potential and Accumulation Time

The effect of the accumulated potential on the peak current of 0.1 mM Trp was studied with a
fixed accumulation time of 180 s in a 0.1 M phosphate buffer (pH 7.0). It can be seen that when the
accumulation potential shifted from −0.3 V to −0.1 V, the peak current increases gradually and the peak
current of Trp was kept almost constant at −0.1 V to 0.3 V (Figure 7E). Therefore, the best accumulation
potential was chosen as −0.1 V. The effect of accumulation time on the oxidation peak current of Trp
was also studied at a fixed accumulation potential of −0.1 V. It was found that the peak current of
Trp increased with the increase of accumulation time. However, the oxidation peak current of Trp
decreased slightly after 180 s (Figure 7F). Therefore, 180 s was chosen as the optimum accumulation
time for Trp detection.
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Figure 7. The effects of the concentration of chitosan (A), the mass ratio of Trp to chitosan (B), the
dropping amount of Trp-chitosan suspension (C), the solution pH (D), the accumulation potential (E)
and the accumulation time (F) on the oxidation peak current of 0.1 mM Trp at MIP/ABPE. When one
parameter was changed, the other parameters were at their optimal values.

3.6. Analytical Performance of the MIP/ABPE

3.6.1. Interference Study

The important performance of MIP sensors is the selective recognition of template molecules.
In order to evaluate the selectivity of MIP/ABPE to Trp, interference experiments were carried out in
the presence of ascorbic acid (AA), uric acid (UA), dopamine (DA) and tyrosine (Tyr), which usually
coexist with Trp in biological fluids and pharmaceutical formulations. The results are shown in
Figure 8. Obviously, the current response of Trp on the MIP/ABPE was higher than other substances.
In addition, as shown in column e, the peak current of Trp did not change significantly after adding
20-fold concentrations of AA, DA, UA and Tyr into the Trp solution, but the current values of Trp
changed greatly on bare ABPE and NIP/ABPE. Additionally, it was found that 100-fold concentrations
of Na+, K+, Mg2+, Cu2+, Ca2+, Al3+, Pb2+, Cl−, NO3

−, SO4
2−, oxalic acid, citric acid, glucose, lactic

acid, tartaric acid almost did not interfere with the Trp oxidation signal on MIP/ABPE (signal change
was less than 5%). The effects of other amino acids such as glycine, alanine, valine, leucine, isoleucine,
phenylalanine, histidine, aspartic acid, glutamic acid, lysine, arginine, serine, threonine, cysteine and
proline on the determination of Trp were also studied. The results showed that any one of these amino
acids (100 times content) did not interfere with the determination of Trp on MIP/ABPE. The results
were summarized in Table S4 (Electronic Supplementary Material, ESM). The excellent selectivity
might be attributed to the reason that the MIP/ABPE provided a thin imprinted polymer layer on the
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electrode surface. This layer had functional groups and selective cavities that specifically interacted
with the template molecular Trp. During the imprinting process, the molecular space configuration
was controlled by the large benzene ring in Trp molecules. After removing the imprinting molecules,
the specific cavities were left in the chitosan network. the hydrogen bonds between chitosan and Trp
improve the combination stability between the imprinting molecules and functional polymer, and the
selectivity of MIP/ABPE.
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Figure 8. The selectivity of the MIP/ABPE: (a) 50 µM Trp; (b) 1 mM ascorbic acid (AA); (c) 1 mM uric
acid (UA); (d) 1 mM dopamine (DA); (e) 1 mM tyrosine (Tyr); (f) 50 µM Trp mixed with 5 kinds of
analogues (50 µM Trp + 1.0 mM AA + 1.0 mM UA + 1.0 mM DA + 1.0 mM Tyr). Supporting electrolyte:
0.1 M phosphate buffer (pH 7.0), incubation time: 120 s, scan rate: 0.1 V s−1.

3.6.2. Linear Range and Detection Limit

The second derivative linear sweep voltammograms (Figure 9) show that the peak currents of Trp
increase linearly with the increase of its concentration. Each point of the calibration plots corresponds
to the average value obtained from three independent measurements. The calibration curve shows
three linear regions (0.01–4.0 µM, 4.0–20 µM and 20–100 µM) in this relationship. The linear regression
equations for these ranges were i (µA) = 0.0953c (µM) + 0.0044, i (µA) = 0.0319c (µM) + 0.243 and i
(µA) = 0.0144c (µM) + 0.6212 with R2 = 0.9998, 0.9989 and 0.9960 respectively. The detection limits
(LOD) were estimated by the formula of LOD = 3 s/m, s is the standard deviation of intercept and m is
the slope of the regression line in the low concentration range [48]. The LOD of Trp were calculated to
be 8.0 nM. The performance values of the developed sensor with other electrodes for Trp determination
are compared in Table 1. From the linear range and detection limit, the performance of MIP/ABPE is
superior to or comparable to other reported electrodes. In addition, the simple preparation process,
low cost, high selectivity and environmentally friendly materials make the MIP/ABPE attractive in the
Trp analysis.
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Table 1. The comparison of the efficiency of molecularly imprinted polymers (MIP)/acetylene black paste electrode (ABPE) with other modified electrodes in the
electrochemical determination of Trp.

Electrode Technique Supporting Electrolyte Linear Range/µM Detection Limit/µM Effect of Tyr References
a BuCh/GCE m DPV phosphate buffer (pH 7.0) 2–60 0.6 seriously interfered [16]

b Au-NPs/GCE DPV phosphate buffer (pH 2.5) 0.09–50 0.08 seriously interfered [17]
c nanoAu-MWCNTs/ GCE DPV phosphate buffer (pH 7.4) 5–100 3 seriously interfered [18]

d ETPGE DPV phosphate buffer (pH 3.0) 0.5–50 0.05 10-fold concentration did not interfere [19]
e MWCNTs/GCE DPV phosphate Buffer (pH 3.5) 0.25–100 0.027 5-fold concentration did not interfere [20]

f PGA/CNTPE n CV phosphate buffer (pH 6.0) 0.05–100 0.01 not mentioned [21]
g MWCNTs/CPE Amperometry phosphate buffer (pH 3.0) 0.6–9.0; 10.0–100 0.033 seriously interfered [22]

h PSA/GCE DPV phosphate buffer (pH 3.5) 0.05–10 0.0068 not mentioned [23]
i EGPU-tAuNP DPV Britton-Robinson buffer (pH 7.4) 0.6–2.0 0.053 not mentioned [24]

j ß-CD/MWCNTs/GCE DPV phosphate buffer (pH 3.0) 1.5–30.5 0.07 4-fold concentration did not interfere [25]
k rGO/SnO2/GCE DPV phosphate buffer (pH 7.0) 1–100 0.04 30-fold concentration did not interfere [26]
l Ta2O5-rGO-GCE second-order derivative LSV phosphate buffer (pH 6.0) 1–8; 8–80; 80–800 0.87 N.A [27]

MIP/ABPE second-order derivative LSV phosphate buffer (pH 3.0) 0.01–4; 4–20; 20–100 0.008 20-fold concentration did not interfere This work
a butyrylcholine modified glassy carbon electrode; b gold nanoparticles modified glassy carbon electrode; c gold nanoparticles decorated multiwalled carbon nanotube modified glassy
carbon electrode; d electrochemically treated pencil graphite electrode; e acid-treated multi-walled carbon nanotubes modified glassy carbon electrode; f poly-glutamic acid film modified
carbon paste electrode; g multi-walled carbon nanotube modified carbon paste electrode; h Poly(sulfosalicylic acid) modified glassy carbon electrode; iGold nanoparticles modified
graphitepolyurethane composite electrode; j ß-cyclodextrin incorporated with multi-walled carbon nanotube modified glassy carbon electrode; k reduced graphene oxide decorated with
tin oxide nanoparticles modified glassy carbon electrode; l Ta2O5-reduced graphene oxide electrode; m differential pulse voltammetry; n cyclic voltammetry; o linear sweep voltammetry.
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phosphate buffer (pH 7.0) and different concentrations of Trp: (A) from a to f : 10, 20, 40, 60, 80, 100 µM;
(B) from a to e: 1.0, 2.0, 4.0, 6.0, 8.0 µM; (C) from a to j: 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8 µM,
The inset of (A–C) shows the calibration curves of Trp in the range of 20–100 µM, 4–20 µM and 0.01–4
µM, respectively. Accumulation potential: −0.1 V, accumulation time: 180 s, scan rate: 0.1 V s−1.

3.6.3. Reproducibility, Reusability and Long-Term Stability

Reproducibility and reusability are another two critical parameters for evaluating the performance
of a sensor. The current response of 0.1 mM Trp on the same MIP/ABPE was measured repeatedly in a
0.1 M phosphate buffer (pH 7.0). After each measurement, the imprinted electrode was treated with
repetitive potential scanning in a 0.1 M phosphate buffer (pH 7.0) to remove the template molecules.
A relative standard deviation (RSD) of 1.70% (Table S2) was obtained (n = 7), which showed that the
MIP/ABPE had good reusability. The reproducibility of the MIP/ABPE was determined by comparing
the current responses of eight MIP/ABPEs, which were fabricated according to the same steps. An RSD
of 4.18% (Table S3) was obtained, which showed that the reproducibility of the MIP/ABPE was
acceptable. In addition, the stability of MIP/ABPE was also studied. In the first 10 days of storage,
the response of the sensor to Trp did not deteriorate significantly. After 20 days of storage, the sensor
maintained about 91% (Table S4) of its initial current response, indicating that the prepared MIP/ABPE
had good long-term stability.

3.6.4. Practical Application

To explore the practical application of MIP/ABPE, it was used to determine Trp in human serum
samples and compound amino acid injections. A serum sample solution was prepared according to our
previous report [11,49–52]. The compound amino acid injection was diluted 100 times with distilled
water and used directly. A part of the sample solution was added to a 0.1 M phosphate buffer (pH 7.0).
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In order to prevent the matrix effect, the standard addition method was used to determine Trp content
in samples. As shown in Tables 2 and 3, the recoveries of human serum samples and amino acid
injection samples are 97.3–102.4% and 98.3–104.2%, respectively. The results show that the electrode
has high accuracy and selectivity for the determination of Trp in drugs and biological samples.

Table 2. The results for the determination of Trp in compound amino acid injections (n = 4).

Sample ID Label Values/g L−1 Found/gL−1 RSD/% Recovery/%

Aa 0.430 0.438 2.4 102.4
Ba 0.700 0.695 2.8 98.6
Ca 0.900 0.913 3.1 97.3
Db 1.000 0.988 2.2 101.8

a The sample was obtained from Xuzhou, the Fifth Pharmaceutical Corporation. b The sample was obtained from
Guangzhou Green Cross Pharmaceutical Corporation.

Table 3. The results for the determination of Trp in blood serum samples (n = 4).

Sample ID Found/µM RSD/% Added/µM Total
Found/µM Recovery/%

A 2.67 2.7 3.0 5.74 102.3
B 3.45 2.3 4.0 7.52 101.8
C 4.28 2.5 4.0 8.45 104.2
D 3.37 2.9 3.0 6.32 98.3

4. Conclusions

In the present paper, a molecularly imprinted chitosan film was prepared on the surface of an
acetylene black paste electrode by the drop-coating method. After removing the template molecule, the
molecularly imprinted membrane provides a highly tryptophan-affinity interface. Under the optimum
conditions, a wider linear range and a lower detection limit are obtained. In addition, the imprint
electrode has other advantages including simple fabrication, low cost, good repeatability and fast
response; all of them make it hold great promise in the electro-analysis of Trp in real samples.
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