

Supplementary Materials

Biosynthesized ZnO-NPs from *Morus indica* **Attenuates Methylglyoxal-Induced Protein Glycation and RBC Damage: In-Vitro, In-Vivo and Molecular Docking Study**

Satish Anandan ¹, Murali Mahadevamurthy ², Mohammad Azam Ansari ³, Mohammad A. Alzohairy ⁴, Mohammad N. Alomary ⁵, Syeda Farha Siraj ¹, Sarjan Halugudde Nagaraja ⁶, Mahendra Chikkamadaiah ², Lakshmeesha Thimappa Ramachandrappa ⁷, Hemanth Kumar Naguvanahalli Krishnappa ², Ana E. Ledesma ⁸, Amruthesh Kestur Nagaraj ² and Asna Urooj ^{1,*}

- ¹ Department of Studies in Food Science and Nutrition, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006, India
- ² Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006, India
- ³ Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- ⁴ Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
- ⁵ National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia
- ⁶ Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006, India
- ⁷ Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006, India
- ⁸ Centro De Investigación en Biofísica Aplicada y Alimentos, Universidad Nacional de Santiago del Estero (CIBAAL-UNSE-CONICET), FCEyT, RN 9, km 1125, CP 4206 Santiago del Estero, Argentina
- * Correspondence: asnaurooj@foodsci.uni-mysore.ac.in

Treatments		Inhibition of HbA1c (%)
Hb + δ-Gluconolactone + AG		45.89 ± 1.14 a
	1 mg	1.81 ± 0.87 d
$Hb + \delta$ -Gluconolactone + ZnO-NPs	2.5 mg	13.97 ± 1.30 °
	5 mg	26.54 ± 1.21 ^b
Hb+ δ-Gluconolactone + Zinc Nanopowder	1 mg	0.27 ± 0.48 d
	2.5 mg	0.53 ± 0.86 d
	5 mg	1.13 ± 0.97 d

Table S1. Hemoglobin-δ-Gluconolactone ((δ-Glu) assay.
---	----------------

Values are means of three independent replicates (n = 3) and \pm indicate standard errors. Means followed by the same letter(s) within the same column are not significantly (p < 0.05) different according to Tukey's HSD.

Tractor entr		Relative Intensity (a.u.)	
Treatments	Fluorescence of Total AGEs		Fluorescence of Argpyrimidine
BSA		$508.66 \pm 8.15^{\circ}$	312.15 ± 4.13^{g}
BSA + MGO		1945.70 ± 38.08^{a}	981.50 ± 7.07^{a}
BSA + MGO + AG		$569.90 \pm 7.24^{\circ}$	365.23 ± 7.22^{f}
	1 mg	1616.90 ± 13.89°	$809.91 \pm 7.58^{\circ}$
BSA + MGO + ZnO-NPs	2.5 mg	1369.70 ± 14.55^{d}	705.08 ± 10.16^{d}
	5 mg	1152.30 ± 37.42^{d}	589.60 ± 9.95^{e}
	1 mg	$1838.00 \pm 35.89^{\text{b}}$	976.87 ± 10.06^{a}
BSA + MGO + Zinc Nanopowder	2.5 mg	1806.60 ± 52.02^{b}	939.78 ± 9.22^{b}
	5 mg	1795.10 ± 62.02^{b}	934.09 ± 11.57^{b}

Table S2. Inhibitory effect of biosynthesized ZnO-NPs from *M. indica* on protein glycation.

Values are means of three independent replicates (n = 3) and \pm indicate standard errors. Means followed by the same letter(s) within the same column are not significantly (p < 0.05) different according to Tukey's HSD.

Table S3. N-Acetylglycyl-lysine methyl ester (G.K.) peptide mediated ribose glycation with and without treatment.

Treatments	Relative Intensity (a.u.)
GKP + Ribose	743.19 ± 8.91^{a}
GKP + Ribose + AG	290.41 ± 7.42^{d}
GKP + Ribose + ZnO-NPs	398.41 ± 7.34°
GKP + Ribose + Zinc Nanopowder	693.16 ± 8.94^{b}

Values are means of three independent replicates (n = 3) and \pm indicate standard errors. Means followed by the same letter(s) within the same column are not significantly (p < 0.05) different according to Tukey's HSD.