

Supplementary materials

Conformation and aggregation of human serum albumin in the presence of green tea polyphenol (EGCg) and/or palmitic acid

Xiaowei Sun ¹, Haley N. Ferguson ¹ and Ann E. Hagerman ^{1,*}

- ¹ Department of Chemistry & Biochemistry, Miami University; sun.2766@osu.edu (X.S.); fergush2@miamioh.edu (H.N.F.)
- * Correspondence: hagermae@miamioh.edu; Tel.: +001-513-529-2827

Received: September xx, 2019; Accepted: date; Published: date

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Fluorescence spectra of HSA and HSA-prodan with different concentrations of EGCg. Figure S2: Fluorescence emission spectra for HSA (1 μM)-PA (5 μM) and HSA-CPM (1 μM)-PA (5 μM) with 0 μM (a), 5 μM (b), 10 μM (c), 25 μM (d) EGCg. Figure S3: Fluorescence emission spectra for HSA (1 μM)-PA (20 μM) and HSA-CPM (1 μM)-PA (20 μM) with 0 μM (a), 5 μM (b), 10 μM (c), 25 μM (d) EGCg. Figure S4: Fluorescence emission spectra for HSA (1 μM)-PA (60 μM) and HSA-CPM (1 μM)-PA (60 μM) with 0 μM (a), 5 μM (b), 10 μM (c), 25 μM (d) EGCg. Figure S5: Overlap of the donor emission spectrum (Trp-214) and the acceptor absorption spectrum (HAS-CPM). Figure S6: CD spectra of 5 μM HSA and 5 μM HSA in the presence of 100 μM PA, and 0-125 μM EGCg. Figure S8: CD spectra of 5 μM HSA and 5 μM HSA in the presence of 100 μM PA, and 0-125 μM EGCg. Figure S8: CD spectra of 5 μM HSA and 5 μM HSA in the presence of 100 μM PA, and 0-125 μM EGCg. Figure S1: J, R0 and R values for HSA, HSA-PA and HSA-PA-EGCg (n=3). Table S2: The change in distance (Å) between Trp-214 and CPM induced by addition of EGCg and/or palmitic acid. Table S3: The *α*-helical content (%) of HSA with various amounts of EGCg and/or palmitic acid.

Figure S1. Fluorescence spectra of HSA and HSA-prodan with different concentrations of EGCg. EGCg quenched the fluorescence of HSA and HSA-prodan. The difference of intensity (Δ_{em}) between HSA and HSA-prodan (green arrow) indicates the energy transfer.

Figure S2. Fluorescence emission spectra for HSA (1 μ M)-PA (5 μ M) and HSA-CPM (1 μ M)-PA (5 μ M) with 0 μ M (a), 5 μ M (b), 10 μ M (c), 25 μ M (d) EGCg. The difference in intensity at 340 nm (Δ em) between HSA-PA and HSA-CPM-PA (green line) indicates the energy transfer.

Figure S3. Fluorescence emission spectra for HSA (1 μ M)-PA (20 μ M) and HSA-CPM (1 μ M)-PA (20 μ M) with 0 μ M (a), 5 μ M (b), 10 μ M (c), 25 μ M (d) EGCg. The difference in intensity at 340 nm (Δ_{em}) between HSA-PA and HSA-CPM-PA (green line) indicates the energy transfer.

Figure S4. Fluorescence emission spectra for HSA (1 μ M)-PA (60 μ M) and HSA-CPM (1 μ M)-PA (60 μ M) with 0 μ M (a), 5 μ M (b), 10 μ M (c), 25 μ M (d) EGCg. The difference in intensity at 340 nm (Δ_{em}) between HSA-PA and HSA-CPM-PA (green line) indicates the energy transfer.

Figure S5. Overlap of the donor emission spectrum (Trp-214) and the acceptor absorption spectrum (HSA-CPM). The J value was calculated based on the overlap of the emission spectrum donor HSA excited at 295 nm (red) and the absorption spectrum of acceptor HSA-CPM (black).

Figure S6. CD spectra of 5 μ M HSA and 5 μ M HSA in the presence of 25 μ M PA, and 0-125 μ M EGCg. Samples were dissolved in 20 mM phosphate buffer pH 7.

Figure S7. CD spectra of 5 μ M HSA and 5 μ M HSA in the presence of 100 μ M PA, and 0-125 μ M EGCg. Samples were dissolved in 20 mM phosphate buffer pH 7.

Figure S8. CD spectra of 5 μ M HSA and 5 μ M HSA in the presence of 300 μ M PA, and 0-125 μ M EGCg. Samples were dissolved in 20 mM phosphate buffer pH 7.

HSA:PA:EGCg	J (E14)	R0 (Å)	R (Å)
1:0:0	2.31±0.39	28.09±0.82	30.19±1.51
1:0:5	2.77±0.27	28.98±0.49	32.13±1.01
1:0:10	2.85±0.22	29.12±0.39	32.32±1.09
1:0:25	3.14±0.17	29.59±0.28	33.03±0.8
1:5:0	1.94±0.53	27.22±1.34	29.73±1.63
1:5:5	2.17±0.43	27.78±0.97	31.75±1.17
1:5:10	2.22±0.35	27.92±0.77	31.91±1.35
1:5:25	2.44±0.28	28.37±0.53	34.22±1.27
1:20:0	2.06±0.64	27.45±1.58	32.34±1.90
1:20:5	2.22±0.61	27.84±1.39	33.04±2.11
1:20:10	2.28±0.55	27.98±1.21	33.60±1.61
1:20:25	2.55±0.41	28.56±0.78	36.18±1.92
1:60:0	2.65±0.33	28.75±0.60	35.60±1.12
1:60:5	2.77±0.34	28.98±0.60	36.08±1.51
1:60:10	2.83±0.38	29.08±0.67	36.59±1.15
1:60:25	3.11±0.48	29.52±0.79	37.83±1.13

Table S2. The change in distance (Å) between Trp-214 and CPM induced by addition of EGCg and/or palmitic acid. Within each column of data, the lower case letters indicate the statistical differences for the change in inter-domain distance for a constant palmitic concentration and different EGCg concentrations. Within each row, the upper case letters indicate the statistical differences for the change in inter-domain distance for a constant EGCg concentration and different palmitic acid concentrations. All samples contained 1 μ M HSA.

	Palmitic acid concentration				
	0 μΜ	5 μΜ	20 µM	60 µM	
0 μM EGCg	0.00 ^{a,A}	-0.46±0.12 ^{a,B}	2.15±0.46 ^{a,C}	5.40±0.46 ^{a,D}	
5 μM EGCg	1.94±0.51 ^{b,AB}	1.56±0.38 ^{b,A}	2.85±0.65 ^{ab,B}	5.89±0.06 ^{a,C}	
10 μM EGCg	2.12±0.42 ^{b,A}	1.72±0.27 ^{b,A}	3.41±0.49 ^{c,B}	6.40±0.37 ^{b,C}	
25 μM EGCg	2.84±0.72 ^{b,A}	4.03±0.41 ^{c,B}	5.98±0.64 ^{d,C}	7.64±0.39 ^{c,D}	

Table S3. The α -helical content (%) of HSA with various amounts of EGCg and/or palmitic acid. Within each column of data, the lower case letters indicate the statistical differences for % α -helix for a constant palmitic acid concentration and different EGCg concentrations. Within each row, the upper case letters indicate the statistical differences for the % α -helix for a constant EGCg concentration and different palmitic acid concentrations. All samples contained 5 μ M HSA.

	Palmitic acid concentration				
	0 μΜ	25 μΜ	100 µM	300 μM	
0 μM EGCg	41.46±1.47 ^{a,A}	41.30±1.04 ^{a,A}	41.08±0.39 ^{a,A}	38.98±1.23 ^{a,B}	
25 μM EGCg	40.19±1.17 ^{ab,A}	37.89±1.24 ^{b,A}	37.99±0.31 ^{b,A}	37.23±0.22 ^{ab,B}	
50 μM EGCg	38.34±1.08 ^{bc,A}	36.17±0.52 ^{b,B}	36.47±0.43 ^{с,в}	36.44±0.52 ^{b,B}	
125 μM EGCg	34.23±0.90 ^{d,A}	33.20±0.19 ^{c,AB}	31.49±1.20 ^{d,B}	32.77±0.44 ^{c,B}	