Supplementary materials

Conformation and aggregation of human serum albumin in the presence of green tea polyphenol (EGCg) and/or palmitic acid

Xiaowei Sun ${ }^{1}$, Haley N. Ferguson ${ }^{1}$ and Ann E. Hagerman ${ }^{1, *}$
1 Department of Chemistry \& Biochemistry, Miami University; sun.2766@osu.edu (X.S.); fergush2@miamioh.edu (H.N.F.)
* Correspondence: hagermae@miamioh.edu; Tel.: +001-513-529-2827

Received: September xx, 2019; Accepted: date; Published: date
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Fluorescence spectra of HSA and HSA-prodan with different concentrations of EGCg. Figure S2: Fluorescence emission spectra for HSA $(1 \mu \mathrm{M})$-PA $(5 \mu \mathrm{M})$ and HSA-CPM $(1 \mu \mathrm{M})$-PA $(5 \mu \mathrm{M})$ with $0 \mu \mathrm{M}(\mathrm{a}), 5 \mu \mathrm{M}(\mathrm{b}), 10 \mu \mathrm{M}$ (c), $25 \mu \mathrm{M}(\mathrm{d})$ EGCg. Figure S3: Fluorescence emission spectra for HSA $(1 \mu \mathrm{M})$-PA $(20 \mu \mathrm{M})$ and HSA-CPM (1 $\mu \mathrm{M})$-PA $(20 \mu \mathrm{M})$ with $0 \mu \mathrm{M}(\mathrm{a}), 5 \mu \mathrm{M}(\mathrm{b}), 10 \mu \mathrm{M}(\mathrm{c}), 25 \mu \mathrm{M}(\mathrm{d}) \mathrm{EGCg}$. Figure S4: Fluorescence emission spectra for HSA $(1 \mu \mathrm{M})$-PA $(60 \mu \mathrm{M})$ and HSA-CPM $(1 \mu \mathrm{M})$-PA $(60 \mu \mathrm{M})$ with $0 \mu \mathrm{M}(\mathrm{a}), 5 \mu \mathrm{M}(\mathrm{b}), 10 \mu \mathrm{M}(\mathrm{c}), 25 \mu \mathrm{M}$ (d) EGCg. Figure S5: Overlap of the donor emission spectrum (Trp-214) and the acceptor absorption spectrum (HAS-CPM). Figure S6: CD spectra of $5 \mu \mathrm{M}$ HSA and $5 \mu \mathrm{M}$ HSA in the presence of $25 \mu \mathrm{M} \mathrm{PA}$, and $0-125 \mu \mathrm{M}$ EGCg. Figure S7: CD spectra of $5 \mu \mathrm{M}$ HSA and $5 \mu \mathrm{M}$ HSA in the presence of $100 \mu \mathrm{M} \mathrm{PA}$, and $0-125 \mu \mathrm{M} \mathrm{EGCg}$. Figure S8: CD spectra of $5 \mu \mathrm{M}$ HSA and $5 \mu \mathrm{M}$ HSA in the presence of $300 \mu \mathrm{M} \mathrm{PA}$, and $0-125 \mu \mathrm{M} \mathrm{EGCg}$. Table S1. J, R0 and R values for HSA, HSA-PA and HSA-PA-EGCg ($n=3$). Table S2: The change in distance (\AA) between Trp-214 and CPM induced by addition of EGCg and/or palmitic acid. Table S3: The α-helical content (\%) of HSA with various amounts of EGCg and/or palmitic acid.

Figure S1. Fluorescence spectra of HSA and HSA-prodan with different concentrations of EGCg. EGCg quenched the fluorescence of HSA and HSA-prodan. The difference of intensity (Δ_{em}) between HSA and HSA-prodan (green arrow) indicates the energy transfer.

Figure S2. Fluorescence emission spectra for HSA $(1 \mu \mathrm{M})$-PA ($5 \mu \mathrm{M}$) and HSA-CPM $(1 \mu \mathrm{M})$-PA (5 $\mu \mathrm{M}$) with $0 \mu \mathrm{M}(\mathrm{a}), 5 \mu \mathrm{M}(\mathrm{b}), 10 \mu \mathrm{M}(\mathrm{c}), 25 \mu \mathrm{M}$ (d) EGCg. The difference in intensity at $340 \mathrm{~nm}(\Delta \mathrm{em})$ between HSA-PA and HSA-CPM-PA (green line) indicates the energy transfer.

Figure S3. Fluorescence emission spectra for HSA $(1 \mu \mathrm{M})$-PA $(20 \mu \mathrm{M})$ and HSA-CPM $(1 \mu \mathrm{M})$-PA (20 $\mu \mathrm{M}$) with $0 \mu \mathrm{M}$ (a), $5 \mu \mathrm{M}$ (b), $10 \mu \mathrm{M}$ (c), $25 \mu \mathrm{M}$ (d) EGCg. The difference in intensity at $340 \mathrm{~nm}\left(\Delta_{\mathrm{em}}\right)$ between HSA-PA and HSA-CPM-PA (green line) indicates the energy transfer.

— HSA +PA+EGCg 1:60:10 — HSA-CPM+PA+EGCg 1:60:10 — HSA+PA+EGCg 1:60:25 - HSA-CPM + PA + EGCg 1:60:25

Figure S4. Fluorescence emission spectra for HSA $(1 \mu \mathrm{M})$-PA $(60 \mu \mathrm{M})$ and HSA-CPM $(1 \mu \mathrm{M})$-PA (60 $\mu \mathrm{M}$) with $0 \mu \mathrm{M}(\mathrm{a}), 5 \mu \mathrm{M}(\mathrm{b}), 10 \mu \mathrm{M}(\mathrm{c}), 25 \mu \mathrm{M}$ (d) EGCg. The difference in intensity at $340 \mathrm{~nm}\left(\Delta_{\mathrm{em}}\right)$ between HSA-PA and HSA-CPM-PA (green line) indicates the energy transfer.

Figure S5. Overlap of the donor emission spectrum (Trp-214) and the acceptor absorption spectrum (HSA-CPM). The J value was calculated based on the overlap of the emission spectrum donor HSA excited at 295 nm (red) and the absorption spectrum of acceptor HSA-CPM (black).

Figure 66 . CD spectra of $5 \mu \mathrm{M}$ HSA and $5 \mu \mathrm{M}$ HSA in the presence of $25 \mu \mathrm{M} \mathrm{PA}$, and $0-125 \mu \mathrm{M} \mathrm{EGCg}$. Samples were dissolved in 20 mM phosphate buffer pH 7 .

Figure S7. CD spectra of $5 \mu \mathrm{M}$ HSA and $5 \mu \mathrm{M}$ HSA in the presence of $100 \mu \mathrm{M} \mathrm{PA}$, and $0-125 \mu \mathrm{M}$ EGCg. Samples were dissolved in 20 mM phosphate buffer pH 7.

Figure S8. CD spectra of $5 \mu \mathrm{M}$ HSA and $5 \mu \mathrm{M}$ HSA in the presence of $300 \mu \mathrm{M} \mathrm{PA}$, and $0-125 \mu \mathrm{M}$ EGCg. Samples were dissolved in 20 mM phosphate buffer pH 7.

Table S1. J, R0, and R values for HSA, HSA-PA, and HSA-PA-EGCg for three replicates.

HSA:PA:EGCg	J (E14)	RO (Å)	R (${ }^{\text {a }}$)
1:0:0	2.31 ± 0.39	28.09 ± 0.82	30.19 ± 1.51
1:0:5	2.77 ± 0.27	28.98 ± 0.49	32.13 ± 1.01
1:0:10	2.85 ± 0.22	29.12 ± 0.39	32.32 ± 1.09
1:0:25	3.14 ± 0.17	29.59 ± 0.28	33.03 ± 0.8
1:5:0	1.94 ± 0.53	27.22 ± 1.34	29.73 ± 1.63
1:5:5	2.17 ± 0.43	27.78 ± 0.97	31.75 ± 1.17
1:5:10	2.22 ± 0.35	27.92 ± 0.77	31.91 ± 1.35
1:5:25	2.44 ± 0.28	28.37 ± 0.53	34.22 ± 1.27
1:20:0	2.06 ± 0.64	27.45 ± 1.58	32.34 ± 1.90
1:20:5	2.22 ± 0.61	27.84 ± 1.39	33.04 ± 2.11
1:20:10	2.28 ± 0.55	27.98 ± 1.21	33.60 ± 1.61
1:20:25	2.55 ± 0.41	28.56 ± 0.78	36.18 ± 1.92
1:60:0	2.65 ± 0.33	28.75 ± 0.60	35.60 ± 1.12
1:60:5	2.77 ± 0.34	28.98 ± 0.60	36.08 ± 1.51
1:60:10	2.83 ± 0.38	29.08 ± 0.67	36.59 ± 1.15
1:60:25	3.11 ± 0.48	29.52 ± 0.79	37.83 ± 1.13

Table S2. The change in distance ((\AA) between Trp-214 and CPM induced by addition of EGCg and/or palmitic acid. Within each column of data, the lower case letters indicate the statistical differences for the change in inter-domain distance for a constant palmitic concentration and different EGCg concentrations. Within each row, the upper case letters indicate the statistical differences for the change in inter-domain distance for a constant EGCg concentration and different palmitic acid concentrations. All samples contained $1 \mu \mathrm{M}$ HSA.

	Palmitic acid concentration			
	$0 \mu \mathrm{M}$	$5 \mu \mathrm{M}$	$20 \mu \mathrm{M}$	$60 \mu \mathrm{M}$
$0 \mu \mathrm{M} \mathrm{EGCg}$	$0.00^{a, \mathrm{~A}}$	$-0.46 \pm 0.12^{\mathrm{a}, \mathrm{B}}$	$2.15 \pm 0.46^{\mathrm{a}, \mathrm{C}}$	$5.40 \pm 0.46^{\mathrm{a}, \mathrm{D}}$
$5 \mu \mathrm{M} \mathrm{EGCg}$	$1.94 \pm 0.51^{\mathrm{b}, \mathrm{AB}}$	$1.56 \pm 0.38^{\mathrm{b}, \mathrm{A}}$	$2.85 \pm 0.65^{\mathrm{ab}, \mathrm{B}}$	$5.89 \pm 0.06^{\mathrm{a}, \mathrm{C}}$
$10 \mu \mathrm{M} \mathrm{EGCg}$	$2.12 \pm 0.42^{\mathrm{b}, \mathrm{A}}$	$1.72 \pm 0.27^{\mathrm{b}, \mathrm{A}}$	$3.41 \pm 0.49^{\mathrm{c}, \mathrm{B}}$	$6.40 \pm 0.37^{\mathrm{b}, \mathrm{C}}$
$25 \mu \mathrm{M} \mathrm{EGCg}$	$2.84 \pm 0.72^{\mathrm{b}, \mathrm{A}}$	$4.03 \pm 0.41^{\mathrm{c}, \mathrm{B}}$	$5.98 \pm 0.64^{\mathrm{d}, \mathrm{C}}$	$7.64 \pm 0.39^{\mathrm{c}, \mathrm{D}}$

Table S3. The α-helical content (\%) of HSA with various amounts of EGCg and/or palmitic acid. Within each column of data, the lower case letters indicate the statistical differences for $\% \alpha$-helix for a constant palmitic acid concentration and different EGCg concentrations. Within each row, the upper case letters indicate the statistical differences for the $\% \alpha$-helix for a constant EGCg concentration and different palmitic acid concentrations. All samples contained $5 \mu \mathrm{M}$ HSA.

	Palmitic acid concentration			
	$0 \mu \mathrm{M}$	$25 \mu \mathrm{M}$	$100 \mu \mathrm{M}$	$300 \mu \mathrm{M}$
$0 \mu \mathrm{M} \mathrm{EGCg}$	$41.46 \pm 1.47^{\mathrm{a}, \mathrm{A}}$	$41.30 \pm 1.04^{\mathrm{a}, \mathrm{A}}$	$41.08 \pm 0.39^{\mathrm{a}, \mathrm{A}}$	$38.98 \pm 1.23^{\mathrm{a}, \mathrm{B}}$
$25 \mu \mathrm{M} \mathrm{EGCg}$	$40.19 \pm 1.17^{\mathrm{ab}, \mathrm{A}}$	$37.89 \pm 1.24^{\mathrm{b}, \mathrm{A}}$	$37.99 \pm 0.31^{\mathrm{b}, \mathrm{A}}$	$37.23 \pm 0.22^{\mathrm{a}^{\mathrm{b}, \mathrm{B}}}$
$50 \mu \mathrm{M} \mathrm{EGCg}$	$38.34 \pm 1.08^{\mathrm{bc}, \mathrm{A}}$	$36.17 \pm 0.52^{\mathrm{b}, \mathrm{B}}$	$36.47 \pm 0.43^{\mathrm{c}, \mathrm{B}}$	$36.44 \pm 0.52^{\mathrm{b}, \mathrm{B}}$
$125 \mu \mathrm{M} \mathrm{EGCg}$	$34.23 \pm 0.90^{\mathrm{d}, \mathrm{A}}$	$33.20 \pm 0.19^{\mathrm{c}, A \mathrm{~A}}$	$31.49 \pm 1.20^{\mathrm{d}, \mathrm{B}}$	$32.77 \pm 0.44^{\mathrm{c}, \mathrm{B}}$

