

Table 1a. Cytotoxicity by LDH release

MTX	mean difference to control [%]
caffeine	-0.54
theophylline	-0.28
pentoxifylline	-0.06
theobromine	1.4
propentofylline	3.78

Table 1b. Cell proliferation by XTT release

МТХ	mean difference to control [%]
caffeine	3.8
theophylline	-3.27
pentoxifylline	2.34
theobromine	0.83
propentofylline	-1.91

Supplemental Figure 1. Expression of APP⁶⁹⁵ in SH-SY5Y wt and APP⁶⁹⁵ transfected cells

Supplemental Figure 2. Effects of caffeine, theophylline, pentoxifylline, theobromine and propentofylline on α -secretase. (a) Protein amounts of secreted soluble sAPP α of treated SH-SY5Y cells compared to untreated control cells ($n \ge 9$). Representative WBs including load control are shown on the right. (b) Activity of α -secretase in living SH-SH5Y cells after MTXs treatment ($n \ge 4$). Representative kinetics are shown on the right side. (c) Protein level of ADAM10 ($n \ge 4$). Representative WBs including load control are shown on the right. (d) *ADAM10* gene expression ($n \ge 10$). (e) α -secretase activity in post nuclear fractions of incubated SH-SY5Y cells ($n \ge 4$) and resulting, representative kinetics after MTXs incubation. Error bars represent the standard error of the mean. Asterisks show the statistical significance calculated by unpaired Student's t test (* $p \le .05$; ** $p \le .01$; *** $p \le .001$).

Biomolecules 2019, 9, x FOR PEER REVIEW

Supplemental Figure 3. Influence of MTXs on amyloidogenic APP processing. (a) Protein level of sAPPβ of treated SH-SY5Y APP⁶⁹⁵ cells (n ≥ 13). Representative WBs including load control are shown on the right. (b) sAPPα/sAPPβ ratios. (c) β-secretase activity (n ≥ 19). Representative kinetics for each analyzed MTX are shown on the right. (d) Analysis of the activity of β-secretase in post nuclear fractions from SH-SY5Y cells (n ≥ 6). Example kinetics are illustrated on the right side. (e) Level of *BACE1* mRNA (n ≥ 10). (f) Activity of the γ-secretase (n ≥ 25). Error bars represent the standard error of the mean. Asterisks show the statistical significance calculated by unpaired Student's t test (* p ≤ .05; ** p ≤ .01; *** p ≤ .001).

Supplemental Figure 4. Influence of MTXs on APP level, A β catabolism and aggregation, reactive oxygen species and cholesterol. (a) Gene expression of *APP* (n \ge 10). (b) APP protein level in lysates of treated SH-SY5Y cells (n \ge 6). Representative WBs including load control are shown on the right. (c) Influence of MTXs on ROS level in human neuroblastoma cells (n \ge 8). (d) A β degradation in the presence of MTXs (n \ge 11). Representative WBs including load control are shown on the right. (e) Effect of MTXs on cholesterol level (n \ge 4). (f) Influence of MTXs on A β 42 aggregation (n \ge 20). Epigallocatechin gallate (EGCG) served as positive control. Error bars represent the standard error of the mean. Asterisks show the statistical significance calculated by unpaired Student's t test (* p \le .05; ** p \le .01; *** p \le .001).