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Abstract: Simple protein elastic networks which neglect amino-acid information often yield reasonable
predictions of conformational dynamics and are broadly used. Recently, model variants which incorporate
sequence-specific and distance-dependent interactions of residue pairs have been constructed and
demonstrated to improve agreement with experimental data. We have applied the new variants in
a systematic study of protein fluctuation properties and compared their predictions with those of
conventional anisotropic network models. We find that the quality of predictions is frequently linked to
poor estimations in highly flexible protein regions. An analysis of a large set of protein structures shows
that fluctuations of very weakly connected network residues are intrinsically prone to be significantly
overestimated by all models. This problem persists in the new models and is not resolved by taking
into account sequence information. The effect becomes even enhanced in the model variant which
takes into account very soft long-ranged residue interactions. Beyond these shortcomings, we find that
model predictions are largely insensitive to the integration of chemical information, at least regarding the
fluctuation properties of individual residues. One can furthermore conclude that the inherent drawbacks
may present a serious hindrance when improvement of elastic network models are attempted.

Keywords: protein fluctuations; coarse-grained modeling; elastic networks; B-factors; sequence specificity

1. Introduction

Proteins are involved in most cellular processes. Their functions are often accompanied by
conformational motions which can have timescales ranging from picoseconds (atomic group fluctuations),
nanoseconds (collective movement of residue groups), to micro- and even milliseconds (relative domain
motions). Slow dynamics cannot typically be followed in atomistic molecular dynamics (MD) simulations,
despite the use of supercomputers. Instead, coarse-grained models are often employed [1,2]. In particular,
elastic network models (ENMs) are simple and hence widely used [3-6].
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In a protein elastic network, beads represent amino-acid residues and are connected by elastic
springs, effectively taking into account potential interactions between them. The success of ENMs is
related to their ability to reproduce well the pattern of residue displacement in protein structures due
to thermal fluctuations (B-factors). In the original formulation, and in most current applications too,
a uniform interaction strength is considered for all residue pairs, i.e., all elastic springs have the same
stiffness which is used to scale B-factors. In a plethora of studies, this assumption was lifted aiming
to improve ENM predictions, e.g., by iteratively changing stiffness constants to optimize correlation
between experiment and model [7], or by introducing a dependence on the distance between residues in
the reference structure [8-11]. Elastic network potentials have been also validated and improved using
atomistic MD simulations [12-14].

Recently, based on the analysis of a large set of protein NMR structures, elastic network force constants
which are specific to the amino acids of residue pairs, and also include a dependence on the distance, have
been extracted [15]. This approach appears to be appealing, since first, sequence-dependent interactions
have a plausible physical interpretation, and, second, involving very soft far-ranged interactions seems
to naturally resolve the common problem of a fixed cutoff distance for residue contacts in protein
elastic networks.

While in the original publication [15] an improvement of the new model variants was demonstrated as
a result of averaging over a large set of protein structures, the results obtained for individual proteins were
not presented. Therefore, the interpretation of how the quality in model predictions becomes enhanced
and what the underlying origins are remains incomplete.

We aimed to fill this gap by applying the novel model variants to a specific set of protein structures
which have been considered also in several previous publications of protein ENMs [16-18]. The emphasis
was on how well residue fluctuations obtained in experiments were reproduced by the different models.
We then extended our investigation to a very large set of protein structures to systematically explore the
performance of the new models and compare them to traditional anisotropic network models (ANMs).
We eventually discuss intrinsic drawbacks which present a serious hindrance when improvements of
elastic network models, such as integrating chemical information, are to be evaluated.

2. Elastic Network Normal Mode Analysis

For our analysis, we employ the anisotropic network model of proteins [19,20]. The elastic energy of
the network with N beads is

1 N
U=, ZKij(Sijrd,(]Q)) ~(dij — dfjp))z, )
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where d;; = |R; — R;| is the length of the spring connecting beads i and j at positions R;, R;, and dz(](')) =
©
1

residues. The stiffness «;; of a spring can depend on the combination of amino-acid residues s;; of the bead

pair (i,j) and the natural length dg]).

Note that the energy has a complex and non-linear dependence on the spatial coordinates of bead
positions. However, near the equilibrium state of the network, the contributions which are quadratic in the
displacements of bead positions are dominant, and network equations of motion reduce to ATHA = A.
Here, H is the 3N x 3N Hessian matrix with elements ;5 = 0*U(Ry,...,RN)/(0R;40R;g)|z_r
(fora, p = x,y,2), A = [a(l), . ..,a(3N)}3NX3N, and A = diag(mw%,. . .,mng). Near the equilibrium,
network dynamics corresponds to 3N independent vibrations (modes) with bead displacements a*) in
mode k (the eigenvectors of H) having frequencies wy, (roots of H’s mass-scaled eigenvalues). Six of these

\REO) - R](.O) | is the natural spring length. Equilibrium positions R;’ coincide with C-atom positions of



Biomolecules 2019, 9, 549 3of 16

modes are trivial and correspond to global translations and rotations. Fluctuations in the positions of

network beads are described by a superposition of all modes. The mean-square fluctuations are given by
MSF; = (|R;(t) — RZ(O) |?) = (kgT/m) Zi& |a§k) |2/ w? for bead i. The corresponding B-factor predicted by
the model is obtained as Bfred = (872/3)-MSF;.

In our study, we compare B-factor predictions from different model variants. For the conventional
anisotropic network model with a distance cutoff /. (termed ANM, ), the spring stiffness in Equation (1)
is xj; = k- O(lc — dg]p)
equilibrium network conformation interact (® is the Heaviside step function). For the sequence-specific

), and only those residues which are separated by a distance less than /. in the

model with a cutoff distance (sSANM; ), we have x;; = x(s;;) - ©(lc — dl(]q) ), and combined with a distance

dependence (sdANM), Kij = K(si]-,dl(]p)), respectively. In the two latter cases, we extract the stiffness
constants from tables provided in [15] (see also Appendix A.1).

2.1. Comparison to Experiments

To score the accuracy of model predictions, the Pearson correlation coefficient between predicted and
experimental B-factors was computed

d - _
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Since elastic network stiffness constants are defined only up to a constant scaling factor, we can
rescale for each protein the predicted B-factors such that BP*d = Be*P, i.e., the corresponding average
values become equal. This was important when predicted and experimental B-factor patterns were directly

compared, either visualizing them or by determining the deviation for each residue during the systematic
analysis of the large protein data set.

2.2. Set of PDB Structures

For the systematic evaluation of predictions from the different elastic networks, we have chosen a
large set of PDB entries which obeyed the following conditions. Only X-ray crystallographic structures
characterized as proteins with no nucleic acids bound and which had a resolution of 2 A or better
were considered. All structures which had missing residues or unconventional amino-acid types in
their sequence were further omitted. After this pre-selection, the elastic network for each PDB file
was constructed for the structure corresponding to the crystallographic asymmetric unit. If further
modes with vanishing eigenvalues, in addition to the trivial 6 zero-modes, were found in the energy
spectrum of the elastic network (indicating the presence of less-sufficient or disconnected network regions),
the corresponding PDB file was rejected. The numbers of eventually accepted structures were 2009 for
ANM;g and sANMj, 2038 for ANM13 and sANMj3, and 2040 for ANM;j4 and sdANM. See Appendix A.2
for further details.

2.3. Data Analysis

We have analyzed how residue fluctuations within a protein elastic network are related to the network
connectivity. Since the network architecture is determined by the cutoff distance for residue interactions,
which is different for the considered models, we had to specify a relative connectivity for each residue
bead within a given protein elastic network. It was defined as the ratio of the degree of each bead, i.e.,
D; = Z};’éi o, — dl(jo) ), and the maximum degree found in the same network, i.e., max{D;}.

The criteria which were applied to classify the chemical specificity of a residue bead and its location
within secondary structural motifs are provided in the Appendix A.5.
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3. Results

We have compared traditional anisotropic network models (ANM) and recently proposed model
variants [15] which include interactions that are sequence-specific and can additionally depend on the
distance (sSANM and sdANM). Each model was applied to a specific set of proteins, and its performance
was evaluated by how well fluctuation dynamics reproduced the experimentally known pattern of B-factors
(see previous section). We could then compare results obtained for a specific protein but also extract
information about the origin of differences in the predictions of model variants.

In particular, we have compared the sequence-specific models sANM;jy and sSANM;j3, which impose a
cutoff distance of 10 A and 13 A for interactions between network beads, to their traditional counterparts
ANM;y and ANM;3. The heterogeneity of sequence related stiffness constants in those models ranges
from values between 0.226 for glycine-glycine pairs to 2.348 for isoleucine-valine pairs, which corresponds
to a dispersion of one order of magnitude as compared to the homogeneous stiffness constants in ANMs.
The stiffness constant between neighboring residues in the protein backbone is artificially set to 10.
The model variant sd ANM includes both a dependence on sequence and the equilibrium distance between
beads, and stiffness constants range from 10~ for very soft far-ranged interactions to very stiff contacts
between neighboring residues in the protein backbone, with the constant 43.52. Since in this model
all pairs of residue beads which are separated by an equilibrium distance larger than 16.5 A have zero
interaction strength, we decided to study also the ANM with 16 A cutoff distance (ANM;). However,
when comparing sdANM to the ANM models, it should be noted that the heterogeneity of stiffness
constants stems from a combination of sequence and distance dependence, while the distinction of ANMs
is solely related to the different cutoff distance and all interactions have homogeneous strength.

The results obtained for the studied set of protein structures can be separated into two groups. In one
group of proteins, the correlation coefficient for agreement between model and experiment was very
similar when comparing sequence-dependent variants to ANMs. Representative examples from this group
are shown in the table in Figure 1a. Changes in the correlation were not larger than 0.06 between the
employed models. An exception is the maltodextrin-binding protein, where an improvement from 0.55 for
ANMj to 0.61 for ANM;3 and further to 0.70 for ANM;j¢ was seen. For the sequence-specific variants,
we found 0.56 for sSANMj, 0.62 for sANM;3 and 0.67 for st ANM. Hence, this improvement is related to a
change in the cutoff distance for interactions, i.e., in the network architecture, but not to the presence of
sequence information.

In the second group of protein structures, we found notable differences between predictions by the
new model variants and traditional ANMs. The results for a selected set of structures are shown in the
table in Figure la. For those proteins, the highest correlation coefficient for agreement between model and
experiment was at least 0.7, or the difference between poorest and best correlation was larger than 20%.

In the case of adenylate kinase, both SANM models yield higher correlations than the ANMs and the
highest value 0.76 was obtained with sdANM, corresponding to an improvement of 0.15 compared to the
best performing ANM. The profile of B-factors (see Figure 1b) shows that large deviations between model
predictions and experiment are found at positions which correspond to irregular secondary structures in
this protein, mostly loops in the lid domain. sd ANM improves predictions in some of those parts, but
performs worse than ANM in other parts. In the myosin V motor protein, we find overall high correlation
values (0.68 to 0.79) and negligible differences between SANM and ANM, indicating no sensitivity with
respect to sequence specificity. However, sdANM showed a further increase in correlation to 0.83. As can
be clearly seen in Figure 1c, this improvement can be assigned to a few residues of the highly flexible HCM
loop. In ANM:s, their fluctuations are massively overestimated, likewise still in sd ANM, but less. In the case
of the annexin V protein, the best correlation of 0.61 is found for ANM;3. The same model with sequence
information sSANM;3 showed a decrease to 0.54, which originated from a systematic over-estimation
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of B-factors in loop regions connecting adjacent alpha-helices (see Figure 1d). In the aldose reductase
model, predictions were in well agreement with experiment (correlations 0.70 to 0.85 for ANM() and there
was marginal difference between ANM and the corresponding sANM model. Interestingly, for sd ANM,
the correlation dropped to 0.7 which in this protein results from a massive over-estimation of fluctuations
of a single loop, which are very well reproduced by ANM;. Besides this local effect, the corresponding
B-factor profiles are otherwise very similar (see Figure le).

a ANM1o ANM;3 ANM3s SANM10 SANM:3 SAANM
Kinesin KIF1A motor domain (1i5s) 0.49 0.48 0.51 0.49 0.48 0.51
Human kinesin motor domain (1bg2) 0.68 0.71 0.69 0.67 0.71 0.65
Aspartate aminotransferase (9aat) 0.67 0.66 0.62 0.67 0.62 0.65
Maltodextrin-binding protein (1jw4) 0.55 0.61 0.70 0.56 0.61 0.67
Adenylate kinase (1aky) 0.61 0.56 0.61 0.68 0.62 0.76
Myosin V (1w7)) 0.77 0.77 0.68 0.79 0.79 0.83
Annexin V (1avr) 0.49 0.61 0.58 0.39 0.54 0.47
Aldose reductase (1ads) 0.85 0.77 0.77 0.84 0.74 0.70
b c
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Figure 1. Fluctuation dynamics in studied proteins. (a) Table of correlation coefficients for protein structures
obtained from the considered model variants. For each of the two identified groups, four examples are
shown. In the second group, bold numbers indicate for each protein the highest correlation of experiment
and model predictions. (b—e) B-factor profiles for four protein structures are shown. Model predictions are
displayed as red and blue lines; corresponding experimental data is shown in black. In the B-factor profiles,
positions where model estimates are significantly poor were marked for each protein. The corresponding
regions in the respective protein structure are also indicated.

Proceeding with the observations made for proteins in the second group, we wanted to check whether
effects related to flexible regions were already present for examples from the first group, where the
variation in predictions by the different models was minor (except for the discussed cutoff-related cases).
In the case of the kinesin KIF1A motor domain, the correlation coefficients between model predictions
and experiments were the same for sd ANM and ANM;j; (0.51). The corresponding pattern of B-factors
(shown in Figure Ala) shows that large deviations between experiment and the models can be directly
associated with the multiple loop regions inside this domain. There the models massively over-predict
fluctuations, which explains the overall poor agreement with the experiment. It is interesting to note that
the pattern obtained with the sequence-specific model sSANM;j3 is almost identical to that corresponding
to the traditional model ANM;3; without sequence information (see Figure Ala). For the human kinesin
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motor domain, we also found the overall well agreement of model and experiment (e.g., 0.68 for ANMjj,
0.69 for ANM;4 and 0.65 for sd ANM) to be nonetheless significantly suffering from over-predictions in the
fluctuations of loop regions (see Figure Alb). We noted in this example that the distance-sequence-specific
model sdANM and the traditional model with a small cutoff distance ANM;, have a similar B-factor
pattern (see Figure Alb).

The results obtained by us for a relatively small set of proteins indicate that the quality of how well
residue fluctuations are predicted by elastic network models appears to be intrinsically linked to poor
estimations in highly flexible protein regions. While we originally attempted to better understand how
sequence-specific elastic networks can improve model predictions, we found this drawback to be present
in the traditional ANMs as well as in the considered proposed model variants with sequence specificity
and distance dependence. Those results point towards a generic problem of elastic network models which
we will refer to in the Discussion section. In the context of how newly proposed models compare to
traditional models, we wanted to go beyond a small set of proteins and further explore the observed
effects in a systematic way by applying all different models to a large set of proteins (>2000 structures) to
compare their predictions with corresponding experimental data. The focus of our analysis was to relate
the agreement between model and experiment to the connectivity within an elastic network. For details on
the chosen set of PDB entries and the analysis of data, we refer to the Methods section. Our results show
that fluctuations of weakly connected network residues are intrinsically prone to be wrongly predicted
by all models, and poorly connected parts are most vulnerable to over-estimation. In Figure 2, results of
sdANM are shown in comparison with those from ANMs. For each residue bead within a protein elastic
network, the deviation of the MSF predicted by the model and the corresponding experimental value
(i.e., the prediction error) is displayed as a function of its relative connectivity (see Methods), taking into
account more than 2000 different structures.

102

(o]

IMSF pred-MSF e+9| (A2)
3 3 3 3

-
<
@

-
<
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0.4
relative degree relative degree

Figure 2. Extensive analysis of predictions by ENM variants. The error in MSF prediction for a set of
more than 2000 protein structures is shown (in logarithmic scale). Each data point represents the absolute
deviation of predicted and experimental MSF obtained for a single residue bead in a protein elastic network,
as a function of its relative degree. (a) Red dots are obtained for ANM;4 and blue dots correspond to
sdANM predictions. (b) ANMj is compared with sd ANM. In both plots, the average absolute errors are
indicated as black lines for s; ANM and as green lines for ANMs.
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Even in elastic networks with a large cutoff distance (ANMjy;), fluctuations of network beads with
a small relative connectivity (<0.2) are predominantly over-predicted to a significant extent, and those
of poorly connected beads are massively over-predicted (see Figure 2a and Figure A3). As we show,
the model with sequence- and distance-specific interaction (sd ANM) performs on average worse than
ANMj; over the entire range of network connectivities. The error became increased in the region of very
poor bead connectivity. The reason may be that the long-ranged interactions which are very soft in sd ANM
effectively increase the occurrence of such poorly connected beads, and the effect of mispredictions thus
becomes enhanced (see Discussion section). Interestingly, the performance of sdANM on the average
closely resembles that of elastic networks with a relatively small cutoff distance of 10 A (see Figure 2b).
When comparing the sequence-specific models sSANM;jy and sANMjj3 to their corresponding traditional
ANM counterparts ANM;g and ANM;3, we could not obtain any notable differences in their performance
(see Figures A2 and A3). Moreover, as above mentioned, in all models fluctuations of those residues which
correspond to weakly connected network regions are prone to be massively over-predicted.

In the last part of our study, we have used the systematic analysis of protein elastic networks to
investigate how model predictions may depend on the chemical nature of the residues and on their
location within certain secondary structures or unstructured regions within the protein. The motivation
for this was that interactions in sequence-specific models implicitly include chemical information of the
involved amino-acid residues. Moreover, as revealed by our results for the smaller set of individual
proteins, mis-prediction of fluctuations appeared to be particularly severe in loop-like regions. The same
set of protein elastic networks used for the above analysis was reanalyzed and the prediction error for
each residue bead was computed.

The results are shown in Figure 3. We first note that on average the agreement between model
predictions and experiment is of mediocre quality. Correlation coefficients for all models range between
0.51 to 0.55 and are lower as compared to values given in the original publication [15]. We find that
on average the difference between sequence-specific and non-specific traditional models is marginal,
in agreement with [15].

Regarding the chemical specificity (see Figure 3), averaged prediction errors by sequence-specific
models sSANM;jg, sANM;3 and their corresponding counterparts ANM;jy, ANM;j3 are similar for polar
and charged residues. There is, however, a difference for hydrophobic residues, where the prediction
error by sequence-specific models is on average larger when compared to ANMs (by 10% for sANM;g
and by 24% for sANMj3). We will refer to this aspect in the Discussion section. For the sd ANM model,
average errors for all residue types were larger than those obtained with all other models, and largest for
charged residues. The classical model with a large cutoff ANM;4 performed best among all models with
the average errors reduced by more than 20% for all residue types as compared to other ANMs.

When model predictions are related to the secondary structural motif within a protein, we found that,
on average, predictions for residue beads belonging to alpha-helices and beta-sheets were systematically
better as compared to those located in unstructured regions (see Figure 3). In the latter case, the average
prediction error was much larger for all considered models. This agrees with our previous observations,
and strengthens the conclusion on the intrinsic vulnerability of flexible regions in predictions by ENMs (see
Discussion section). It is furthermore notable that regardless of the structural motifs, average prediction
errors by the sequence-specific models are throughout larger when compared to the classical ANMs. It is
also not to our surprise that the classical model with a large cutoff of 16 A produced the least prediction
errors on average (reduced by more than 20% as compared to other ANMs). The sdANM model, in
contrast, performed worst among all models (see Figure 3).
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a ANMio ANMi3 ANMis SANM1o SANM;3 SAANM
Average PCC 0.51 0.53 0.55 0.50 0.51 0.52
Chemistry
Hydrophobic 0.32 0.27 0.24 0.35 0.33 0.36
Polar 0.34 0.28 0.25 0.35 0.30 0.36
Charged 0.36 0.31 0.28 0.36 0.31 0.40
Secondary structure
Alpha helix 0.28 0.24 0.22 028 0.27 0.29
Beta sheet 0.24 0.20 0.18 0.26 0.24 0.27
Unstructured 0.45 0.37 0.32 047 0.41 0.51
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Figure 3. Extensive analysis of predictions by ENM variants. (a) The correlation coefficient averaged over all
considered structures is shown for all models (top row). The averaged absolute deviation in MSF predictions
for residue beads from groups with different chemical specificity (hydrophobic, polar, and charged) is
shown for all models. Also shown is the averaged absolute error for residue beads categorized into different
secondary structural elements. In (b,c), corresponding graphs are shown. Solid lines correspond to SANM
data, where values for sdANM are displayed at interaction radius abscissa position 16 A. Dashed lines are
used for ANM data.

Graphs in Figure 3b,c display the cutoff-related improvement of predictions in ANMs (and sANMs).
In ANMs, this effect is particularly pronounced for unstructured protein regions (and for all chemical
types), while it is much less seen for helix and sheet regions. This shows that improvements result from
rigidification within networks, decreasing the frequency of highly flexible parts. In sdANM, which imposes
a large cutoff of 16.5 A, predictions of unstructured regions (and for all chemical types) are on average
much worse compared to ANMj4. In sdANM, rigidification of network structures is absent due to the
softness of long-range interactions, and the frequency of poorly connected problematic parts is enhanced.

For the extensive analysis of a large data set of proteins, we preferred X-ray crystallographic structures,
for their greater presence in the Protein Data Bank as well as the availability of experimental B-factors.
However, the new sequence- and distance-dependent models were constructed based on the analysis
of NMR data. In fact, in the original publication, the improved performance of the sd ANM model was
demonstrated for a set of NMR protein structures [15]. While we found the performance of sd ANM to be
the poorest in reproducing experimental B-factors, we wanted to complement our study by considering
also the application of different model variants to a smaller set of protein structures which are available
from solution NMR experiments (obviously without aiming to repeat the previous study). It is important
to note that the interpretation of NMR experimental data is much different from that of crystallographic
data; instead of B-factors, conformational variation among the NMR models is assumed as the index
of structural fluctuations here, in the same way as in preceding studies [15,21,22]. Therefore, a direct
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comparison of model performances for the different data sets must be treated with caution. We explain the
choice of the protein data set and the methods to compare model predictions with NMR experimental data
in the Appendixes A.3 and A 4.

The results of our analysis are shown in Figure A4. We find that, based on the average correlation
coefficient between the model predictions and experiments, the inclusion of sequence information into the
cutoff-based elastic network has a marginal effect, whereas the model with additional distance-dependent
interactions (sd ANM) shows the highest correlation on average. This agrees with the observation from
the original publication [15]. Our results show that the superior performance of sd ANM primarily stems
from a better prediction of the motion of stable secondary structural motifs (alpha-helices and beta-sheets).
The quality of the same model, however, suffers from the mis-prediction of the dynamics of very flexible
unstructured regions. This drawback is found among all considered models, the traditional ANMs as well
as the sequence- and distance-dependent new models, and its presence seriously hampers the quality of
elastic networks to correctly resolve conformational dynamics seen in experiments; which is similar to the
conclusion drawn from the analysis of crystallographic protein structure data.

4. Discussion

We have studied the properties of residue fluctuations in recently proposed sequence-specific and
distant-dependent protein elastic networks, and compared their predictions with those of conventional
anisotropic network models. We first aimed to provide an interpretation of how new descriptions may
enhance model predictions, by applying them to a specific set of classically studied proteins. We then
found that predictions by the new models became improved for some proteins, while the agreement with
experiments dropped in other cases.

This ambiguity originates from ubiquitously present false predictions of residue fluctuations in highly
flexible protein regions. In the elastic network model, those regions correspond to poorly connected parts,
which are highly vulnerable to incorrect predictions. Through a systematic analysis of more than 2000
protein structures, we have shown that this drawback is present in all the considered model variants and
intrinsically affects predictions.

Our analysis furthermore reveals several systematic drawbacks of the new models which are worth
mentioning. (i) False prediction of motions in flexible protein regions is enhanced in the sequence and
distance-specific sd ANM model. The reason is that the softening of long-ranged interactions, reinforced
by the stiffening of short-ranged interactions in this model, effectively increases the occurrence of poorly
connected residue beads. (ii) On the average, the performance of sd ANM resembles that of a traditional
ANM with a small cutoff distance. (iii) Related to the chemical nature of amino acids, fluctuation
predictions of hydrophobic residues by the sequence-specific models are prone to disagree with X-ray
experimental data of protein structures. The sequence-dependent stiffness constants have been determined
for elastic networks corresponding to solution NMR conformational ensembles, where the presence of
hydrophobic core residues is taken into account. In crystal structures, however, this aspect is often not
correctly reproduced, e.g., in a situation when only parts of a larger protein complex became determined
in isolation.

Inherent shortcomings in the prediction of residue fluctuations by anisotropic elastic network models
have been previously discussed. In particular, problems related to structural components which protrude
out of a globular protein structure (e.g., loops) have been identified and referred to as the “tip effect” [23].
It describes motions with abnormally large magnitudes which can occur near those regions at comparably
little cost, due to sparser network connectivity. It has been shown that a model extension which, in addition
to changes in spring lengths, also penalizes angular deviations of the protein backbone can dampen the
“tip effect” through stiffening of too soft regions and improve predictions [23-25].
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A separate study has also shown that mean-square fluctuations of residues at the surface of a
protein are systematically overestimated [26]. False predictions related to hydrophobic residues and those
located in less structured protein regions (loops and turns) have also been observed. It was furthermore
concluded that fluctuation properties are rather insensitive to the chemical properties of amino-acid
residues. A similar observation was made when chemical information of residues was included into the
interactions of Gaussian elastic network models (GNM) of proteins [27]. Robustness of elastic network
performance with respect to variations in the spring constants has been also demonstrated based on
comparison with atomistic MD simulations [14].

On the other side, generic limitations in the accuracy of B-factor patterns determined from X-ray
crystallography are a well discussed issue. In particular, perturbations generated by the crystal packing
should affect the mobility of more flexible residues, located e.g., at the surface of a protein. Including
molecular contacts in the crystal into the model has been demonstrated to improve agreement of GNM
predictions with experiments [10,17]. Similar attempts have been made also for ANM [10,28,29] (see
also [30]). The effect of crystal packing on internal protein motions has been taken into account also in an
extension of GNM which introduced variable weights for the amplitudes of normal modes [31].

Although not as systematic as the case of crystallographic structures above, to assess the performance
of these models in reproducing structural fluctuations observed in solution NMR, we additionally analyzed
132 protein NMR structures. We indeed found that sd ANM reproduces fluctuations in stable secondary
structures such as alpha-helices and beta-sheets better than ANMs, supposed to be benefitted more from
the distance-dependence rather than the sequence-dependence of the model’s parameters. The problem
related to predictions of very flexible regions however persisted, as shown by the large prediction errors
for the unstructured regions. In ENMs, the solvent environment is usually not taken into account, and
hence, possible damping effects are ignored. Since the new sequence- and distance-dependent ENM
stiffness constants have been extracted from the analysis of solution NMR conformational ensembles, they
should already include some effective contribution by the solvent. Nonetheless, our results suggest that,
to counter the “tip effect”, additional energy barriers should be introduced to restrict otherwise too soft
motions of protruding protein parts.

While previous works mentioned the liability of elastic networks to correctly reproduce fluctuations
of very flexible protein regions, our study provides a systematic exploration of such inherent
drawbacks. We have also demonstrated that recently proposed models which include sequence- and
distance-dependent interactions do not resolve such problems; they may even be enhanced. Beyond
these effects, our results are another demonstration that predictions of elastic network models are rather
insensitive to the integration of chemical information, strengthening the picture that fluctuation properties
of a protein are largely determined by the architecture of its corresponding elastic network (representing
its stable folded conformation).

A further conclusion from our study is that the inherent drawbacks generally present a serious
hindrance when improvement of elastic network models is attempted. In this study, the comparison of
models was based on the evaluation of fluctuation magnitudes of individual residues. A more complete
picture can in principle be obtained by considering the direction of fluctuations and their correlations
between different sites (see e.g., [22,32,33]). However, those measures would be affected by the intrinsic
shortcomings too. Indeed, we have also attempted to compare the prediction of directional residue
fluctuations between traditional ANMs and the new sequence- and distance-dependent models, but
found the results to be contaminated by the “tip effect” too. Though a comparison with anisotropic
B-factors obtained from very high-resolution experiments is possible, a systematic analysis of the
underlying physical effects would therefore require model modifications, and remains problematic to
conduct within the studied ENM variants. A comparison with other coarse-graining approaches such



Biomolecules 2019, 9, 549 11 of 16

as rotation-translation of blocks [34] (e.g., NOLB [35]), or with collective motions observed in molecular
dynamics simulations [36], may provide additional valuable information to improve the model.

It can be furthermore interesting to discuss the effects of sequence- and distance-dependent stiffness in
dynamical simulations of elastic networks, where conformational changes in a protein are directly resolved
as over-damped relaxation motions of network residues (e.g., [37,38]). These descriptions include the full
non-linear network dynamics beyond the harmonic approximation assumed in the analysis of normal
modes, and allow dynamical probing of anisotropic responses of protein elastic networks generated by
external perturbations or binding of ligands [39,40]. Effects of heterogeneous interaction parameters in
those models have not yet been considered.
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Appendix A

Appendix A.1. Tables of Stiffness Constants

For the sequence-specific model with a cutoff distance (sANM; ) and for the model with sequence
specificity and distance dependence (sd ANM), we extracted the stiffness constants from tables provided
in the paper by Dehouck and Mikhailov [15]. For sANM;, values from the file SuppTable3_sENM10.txt
were used. For sANMj3, values from the file SuppTable4_sENM13 were used. For sd ANM, values from
the file SuppTable5_sdENM.txt were used. We remark that Supplementary Tables S3-S5 (corresponding
PDF files of stiffness tables) from the original publication do not contain information on the stiffness of
bonded interactions (which was different for the models).

Appendix A.2. Set of PDB Crystal Structures (Additional Information)

If, within the ATOM records of a PDB file, a specific amino-acid residue had alternative spatial
coordinates of its atomic groups provided, only the first record was considered in building the
corresponding elastic network model (i.e., from e.g., AALA, BALA, the latter entry was discarded).

Appendix A.3. Analysis of NMR Protein Data and Comparison with Model Prediction

To evaluate the performance by the different model variants, we compared for a given protein the
predicted pattern of residue fluctuations of its elastic network with the conformational variability derived
from the ensemble of corresponding NMR models. The NMR data for a given protein was analyzed
in the following way. Each model was superimposed (aligned) with the first NMR model (model 1) by
minimizing the mean-square displacement (MSD). From this set of superimposed conformations, for each
protein residue i, the average conformation R; = (R;) was determined, and then the MSD from the average
conformation was computed as MSD; = (|R; — R;|?), where (-) denotes the average over the aligned
models. The comparison between model prediction and experiment was undertaken, at the residue level,
by comparing MSF; (see Section 2 in the main text) with MSD;, and, for a protein, by computing the
correlation coefficient. The pattern of mean-square fluctuations MSF; was always computed for the elastic
network corresponding to the first model of a given protein. The underlying assumption is that ENM
predictions are robust with respect to some changes in the network architecture (which would be the result
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of constructing the network for the different NMR models of the same protein) [21]. This assumption is
justified by the imposed selection criteria of protein sets (see below).

Appendix A.4. Set of PDB Solution NMR Protein Structures

Only data sets specified as proteins were considered. We omitted sets which had missing
atoms/residues or unconventional residue types, less than 20 models, or less than 50 residues. Furthermore,
if the ANM constructed for the first model of a protein data set had additional zero-modes in the spectrum,
this data set was discarded (otherwise no additional zero-modes in all the considered models). It was
also very important to get rid of intrinsically disordered proteins (IDPs) and proteins which have long
intrinsically disordered regions. For those proteins, the elastic network description fails. Therefore, we
have implemented a threshold for the conformational variability within the ensemble of models for a

given protein. It was required that the overall root-mean-square displacement 4/ % YN MSD; < 2 A
After applying all the selection criteria, our data set contained 132 different NMR structures.

Appendix A.5. Data Analysis

To classify the chemical specificity of a residue bead, the following categorization was applied.
Hydrophobic: Alanine (Ala), Isoleucine (Ile), Leucine (Leu), Methionine (Met), Phenylalanine (Phe), Valine
(Val), Proline (Pro), Glycine (Gly). Polar: Asparagine (Asn), Cysteine (Cys), Glutamine (Gln), Histidine
(His), Serine (Ser), Threonine (Thr), Tryptophan (Trp), Tyrosine (Tyr). Charged: Arginine (Arg), Aspartic
acid (Asp), Glutamic acid (Glu), Lysine (Lys).

To classify the location of a residue bead within secondary structural motifs, we have applied a simple
scheme based on the information given in the PDB file of a protein. All residues listed in the HELIX record
were categorized as part of an alpha-helix. All residues in the list of the SHEET record were grouped as
part of a beta-sheet. All other residues were categorized as unstructured.
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Figure A1. Fluctuation dynamics in studied proteins. B-factor profiles for two kinesin protein structures are
shown; the motor domain of (a) kinesin KIF1A and of (b) human kinesin. Model predictions are displayed
as red and blue lines; corresponding experimental data is shown in black. In the B-factor profiles, positions
where model estimates are significantly poor were marked for each protein. The corresponding regions in
the respective protein structure are also indicated.
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Figure A2. Extensive analysis of predictions by ENM variants. The error in MSF prediction for a set of
more than 2000 protein structures is shown (in logarithmic scale). Each data point represents the absolute
deviation of predicted and experimental MSF obtained for a single residue bead in a protein elastic network,
as a function of its relative degree. (a) Red dots are obtained for ANM;, and blue dots correspond to
sANM; predictions. (b) ANMj3 is compared with sSANM;3. In both plots, the average absolute errors are
indicated as black lines for sSANMs and as green lines for ANMs.
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Figure A3. Extensive analysis of predictions by ENM variants. The error in MSF prediction for a set of
more than 2000 protein structures is shown. Each data point represents the deviation of predicted and
experimental MSF obtained for a single residue bead in a protein elastic network, as a function of its relative
degree. (a) Red dots are obtained for ANM;4 and blue dots correspond to sd ANM predictions. (b) ANM;3
is compared with SANMj3. In both plots, the average errors are indicated as black lines for sANMSs and as
green lines for ANMs.
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a ANM1o ANM13 ANMi6 SANM1o SANM:3 SAANM
Average PCC 0.64 0.61 0.60 0.67 0.64 0.72
Chemistry
Hydrophobic 0.68 0.73 0.79 0.64 0.69 0.61
Polar 0.70 0.72 0.75 0.68 072 0.61
Charged 0.76 0.79 0.80 0.74 0.76 0.66
Secondary structure
Alpha helix 0.36 0.44 0.47 0.31 0.39 0.23
Beta sheet 0.23 0.27 0.31 0.18 0.23 0.15
Unstructured 1.21 1.20 1.24 1.20 1.21 1.17
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Figure A4. Analysis of predictions by ENM variants for the NMR structural data set. (a) The correlation
coefficient averaged over all considered proteins is shown for all models (top row). The averaged absolute
deviation in MSF predictions for residue beads from groups with different chemical specificity (hydrophobic,
polar, and charged) is shown for all models. Also shown is the averaged absolute error for residue beads
categorized into different secondary structural elements. In (b,c), corresponding graphs are shown. Solid
lines correspond to sANM data, where values for sd ANM are displayed at interaction radius abscissa
position 16 A. Dashed lines are used for ANM data.
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