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[bookmark: OLE_LINK11][bookmark: OLE_LINK12]Fig. S1. Congo Red and hydrophobicity of different LPS mutant E. coli strains. A. Congo Red indicator plates of WT (BW25113), csgA, galU, waaC, waaF, and waaG grown for 2 days at 26°C. A sterile loop was scraped through each strain to show the dry, friable phenotypes. B. Cell hydrophobicity of LPS mutant strains in phosphate buffered saline (PBS) amended with 2 M ammonium sulfate. Similar results were obtained in independent replicates (data not shown).
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Fig. S2. Differences in Congo Red phenotypes of Keio collection strains on YESCA and CFA plates and CFA plates without Coommassie Brilliant Blue counterstain. Niba et al 2007 (46) performed a screen of the Keio collection for biofilm defective mutants. The biofilm mutants were subsequently tested for their motility, Type I pili formation, and curli production. For curli production they grew strains on CFA agar with twice the usual amount of Congo Red and no Coommassie Brilliant Blue (CBB) counterstain. Some of their CR phenotypes which were scored as +, -, or ± were different than ours. We tested these strains on YESCA and CFA plates with CR and CBB and on CFA plates without CBB and twice the CR as in Niba et al 2007 (46). Sets (A) (B) and (C) were scored based on their CR phenotypes from 1-6 at 24, 48, and 72 hours at 26⁰C (See Table S8). Shown here is 48 hours growth. Some of the phenotypic differences are due to plating differences. CBB aids in detecting subtle differences between strains. The crp shown in (C) was found to have a suppressor; a new mutant had a white CR phenotype like cyaA.


[image: ]Fig. S3. qRT-PCR of inner core LPS and nhaA mutants. Relative levels of the indicated transcripts to BW25113 (WT) following 24 hours growth at 26°C as measured by RT-PCR. csgA and csgD transcript levels were graphed. Error bars are standard error of the mean of at least five measurements. * indicates p < 0.05 from student t-test.
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Fig. S4. Effects of σE induction on curli production. A. Diagram of Enteric Common Antigen biosynthetic pathway. B. Curli deficient strains:  rffA, rffC, rffT, wxzE. Strains with increased curli production: rfe. C. Congo Red binding and whole cell Western blots of BW25113, csgG, and rseA mutants probed with antibodies to CsgA and CsgG. The rseA strain has a mucoid phenotype. D. Expression of rseA in trans using pRseA or pRseAB initially increased curli production in BW25113; however, these strains often reverted to normal curli production or variable CR phenotypes and colony morphologies (data not shown). When WT was transformed with pRseB, both pink and white colonies appeared in a near equal ratio of pink to red.  When either colony phenotype was streaked again, both phenotypes appeared with a slight bias towards the original color.  The streak shown was originally a red colony that arose from streaking a pink colony. Retransformation of pRseB plasmids obtained from different colony phenotypes displayed similar mixed phenotypes. E. Addition of ZnCl2 (0.25mM) or divalent mix to CR indicator plates partially rescues the curli defect in sdhA and sdhB.
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Fig. S5. The intergenic region between csgD and csgB has many transcriptional binding sites. A. Histogram of the length of all intergenic regions (blue) with an overlay of histogram of divergent intergenic regions (red). Divergent intergenic regions are shifted to larger sizes. B. Genomic context of csg genes (top) and the mapped transcriptional binding sites for the intergenic region between csgD and csgB (bottom) to scale. The scale of the intergenic region is one base pair per 0.25mm. Binding sites with number designations are from Ecocyc; the labeled CsgD and RcsAB binding sites near the transcription start of the csgDEFG operon have not been mapped (48). CpxR sites are depicted as separate binding sites at Ecocyc; however, they were originally a single large CpxR binding region. This large CpxR binding site and large HNS binding site are not currently annotated in Ecocyc (48, 49). Dan is also proposed to bind in the intergenic region and in the csgB ORF; however, the exact site or sites have not been mapped (65). The HNS and IHF binding sites may be multiple individual sites; their large size is much greater than their consensus sequences of 10 and 13bp, respectively (39).
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Fig. S6. Low ppGpp strains and dksA mutants produce less curli. Congo Red binding and Western blots of strains deficient for producing ppGpp. A. Background is E. coli strain BW25113 (6) unless noted as MG1655. Strain relA::FRT has had the kanamycin cassette of the relA Keio strain (relA::FRT-kan-FRT) excised using pCP20 which encodes Flp recombinase (21). B. The FRT clean deletions were compared to keio collection strains. The spoT::cat (∆spoT207::cat) was moved into the relA::FRT strain by P1 transduction; however, the relA::FRT strain is more defective than the relA Keio strain. The duplicate strains of relA::FRT and relA::FRT spot::cat shown were independent isolates. MG1655 relA::kan denotes MG1655 relA251::kan. Strains were grown on YESCA plates for two days at 26°C. 



Supplemental methods
PCR verification of strains with multiple CR phenotypes.
Strains with multiple phenotypes were chosen for PCR verification. Primers were designed 2-300 bp upstream of each gene and are listed in Table S4. Each strain with an altered CR phenotype was struck from the Keio collection to make a clean freezer stock. At least two independent colonies for each phenotype were resuspended in sterile water and subjected to colony PCR. The individual colony mixtures were added to master mixes of GoTaq Flexi (Promega). Mixture A contained the appropriate upstream primer and primer K1 (6) and was used to verify the location of the kanamycin insert in the genome. Mixture B contained the primers KT and K2 (6) and was used to verify the presence of the insert. If each phenotype gave a positive PCR product for both mixtures then it was added to Table S2. Mutations in energy production, coenzyme metabolism, cell envelope biogenesis, and DNA repair genes were more likely to have more than one CR phenotype (Table S2).
Cell hydrophobicity.
Cell hydrophobicity was measured as described (59) using Xylene (X5-1; Fisher Scientific Co., Pittsburgh, PA), which gave more consistent results than a mixture of linear hexanes (74). The assay was performed with 2 mL of cells resuspended to 1 OD600 in PBS pH 7.4 amended with 2 M ammonium sulfate (57, 58), which helps distinguish between the relatively hydrophilic K-12 strains. Cells were tested in 16x125 mm glass culture tubes overlaid with increasing amounts of Xylene. Following incubation for 10 minutes at room temperature, the mixtures were vortexed for 1 minute using a Barnstead Thermolyne 16700. Following phase separation for 15 minutes at room temperature, a sample from the lower aqueous layer was removed and measured at OD600. Each strain was independently tested at least twice.
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