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Abstract: Archaeosine (G¥) is a structurally complex modified nucleoside ubiquitous to the Archaea,
where it is found in the D-loop of virtually all archaeal transfer RNA (tRNA). Its unique structure,
which includes a formamidine group that carries a formal positive charge, and location in the tRNA,
led to the proposal that it serves a key role in stabilizing tRNA structure. Although G* is limited to the
Archaea, it is structurally related to the bacterial modified nucleoside queuosine, and the two share
homologous enzymes for the early steps of their biosynthesis. In the Euryarchaeota, the last step of
the archaeosine biosynthetic pathway involves the amidation of a nitrile group on an archaeosine
precursor to give formamidine, a reaction catalyzed by the enzyme Archaeosine Synthase (ArcS).
Most Crenarchaeota lack ArcS, but possess two proteins that inversely distribute with ArcS and
each other, and are implicated in G* biosynthesis. Here, we describe biochemical studies of one of
these, the protein QueF-like (QueF-L) from Pyrobaculum calidifontis, that demonstrate the catalytic
activity of QueF-L, establish where in the pathway QueF-L acts, and identify the source of ammonia
in the reaction.

Keywords: archaeosine; biosynthesis; modified nucleoside; tunneling-fold superfamily;
amidinotransferase

1. Introduction

Transfer RNA (tRNA) is unique among nucleic acids in undergoing extensive nucleoside
modification during maturation of the transcript. Over 100 modified nucleosides have been
characterized [1], and these typically comprise roughly 10% of the nucleosides in a given tRNA, but can
account for as much as 25% [2]. The 7-deazaguanosine nucleosides archaeosine (G*) and queuosine
(Q) are two of the most structurally complex modified nucleosides found in tRNA [3]. Both share a
7-deazaguanosine core (Figure 1), but differ in the extent of further elaboration; archaeosine possesses
an amidine functional group at the 7-position [4] of this core structure, while queuosine possesses
a cyclopentenediol ring appended to an aminomethyl group at the 7-position [5,6], which in some
mammalian tRNAs can be glycosylated with galactose or mannose at one of the hydroxyls of the
cyclopentenediol ring [7,8], or in some bacteria aminoacylated with glutamate [9-12]. Queuosine is
ubiquitous throughout eukaryotic and bacterial phyla and occurs exclusively at position 34 (the wobble
position) in the anticodons of tRNAs coding for the amino acids asparagine, aspartic acid, histidine,
and tyrosine [13]. Its location in the anticodon suggests a role in modulating translational fidelity
and/or efficiency, and physiological studies are consistent with such a role [14-17]. In marked
contrast, archaeosine is present only in archaeal tRNA, and is located at position 15 (and position 13 in
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Thermoplasma acidophilum tRNAL® [18]) in the dihydrouridine loop (D-loop) [19], where it is proposed
to play a key role in tertiary structure stabilization [20].
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Figure 1. The biosynthetic pathways to 7-deazaquanosine modified nucleosides of transfer RNA
(tRNA). The upper branch occurs in the Archaea and leads to archaeosine (G*), while the lower branch
occurs in bacteria and leads to queuosine (Q); the boxed region is common to both. *MptA /B catalyze
the initial steps in Archaea [21,22], while GCYH IA or IB catalyze the initial step in bacteria [23,24].
ArcS: Archaeosine Synthase; preQq: 7-cyano-7-deazaguanine; preQ;: 7-aminomethyl-7-deazaguanine.

Archaeosine is found quasi-universally along the archaeal tree, and while all Archaea that possess
G* possess genes encoding homologs of the biosynthetic enzymes up through arcTGT, the enzyme that
catalyzes the exchange of the genetically encoded guanine for the precursor 7-cyano-7-deazaguanine
(preQp) in tRNA (Figure 1), Archaeosine Synthase (ArcS), which is the amidinotransferase responsible
for converting preQp-tRNA to G*-tRNA [25], is not universally distributed. arcS is ubiquitous in
Euryarchaeota, but the majority of sequenced Crenarchaeota lack arcS homologs. Previously we
identified two non-homologous enzymes that, when expressed in Escherichia coli, resulted in the
production of G*-modified tRNA [26]. One of these, GAT-QueC, is a fusion of a glutamine
amidotransferase domain (GAT) with QueC, the enzyme responsible for forming the precursor
preQq. Interestingly, the other enzyme, QueF-like (QueF-L), is a homolog of the bacterial enzyme
QueF, which catalyzes the NADPH-dependent reduction of preQg to 7-aminomethyl-7-deazaguanine
(preQq) [27] in the queuosine pathway (Figure 1). QueF is a member of the tunneling-fold (T-fold)
superfamily [27,28], a small structural superfamily that was already known to support an astonishing
diversity of chemical reactions [29].

Recently, we reported the X-ray crystal structure of QueF-L [30], confirming that it is a member of
the T-fold superfamily with significant structural homology to QueF. Here we describe biochemical
studies of the recombinant QueF-L enzyme from Pyrobaculum calidifontis that clearly demonstrate the
catalytic activity of QueF-L, establish where in the pathway QueF-L acts, and identify the source of
ammonia in the reaction.

2. Results

2.1. Over-Expression of queF-L and Purification of Recombinant Pyrobaculum calidifontis QueF-L

The queF-L gene from P. calidifontis was synthesized (GenScript) with codon optimization for E. coli
expression. We subcloned gueF-L from this construct into a pET30-based vector for over-production
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of QueF-L as a Hisg-affinity tagged recombinant protein. The protein was expressed well, and was
purified to >95% homogeneity by an initial heat treatment (80 °C) to precipitate heat labile proteins
followed by affinity chromatography on Ni?*-nitrilotriacetic acid (NTA) resin.

2.2. Identification of the Substrates for P. calidifontis QueF-L

While our in vivo data clearly demonstrated that QueF-L functions as an amidinotransferase in
the biosynthesis of G*-modified tRNA, even when expressed in E. coli [26], it was not known if the
conversion of the nitrile to the formamidino group occurred before or after preQ) is inserted into tRNA
(Figure 2), or what the source of NH3 was.
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Figure 2. Possible routes to G*-tRNA in Crenarchaeota possessing QueF-like (QueF-L) enzymes.
The top pathway is analogous to the known pathway in Euryarchaeota that utilizes ArcS to carry out
the amidation of preQp-modified tRNA. The bottom pathway is analogous to the known reaction of
bacterial QueF, which carries out the four-electron reduction of the nitrile group in preQ to give the
aminomethyl product preQ;.

Given that ArcS functions on preQp-modifed tRNA in the final step of G* biosynthesis (Figure 1),
it was reasonable to propose that QueF-L functioned analogously (Figure 2, top). On the other hand,
QueF acts on free preQy in bacterial Q biosynthesis, and given the high sequence and structural
homologies with QueF-L [30] it was not unreasonable to consider that QueF-L might utilize preQy
directly (Figure 2, bottom). The fact that G* was formed in bacterial tRNA when QueF-L was expressed
in a AqueF strain [26] is consistent with both proposals. Indeed, the bacterial TGT can utilize preQq
as a substrate [31], and preQp nucleoside is detected in AqueF mutants [26,27]. While biochemical
analysis of the canonical arcTGT has demonstrated that it is not able to utilize G*-base [32], our 3D
homology models of the catalytic domains of arcTGT from Crenarchaeota that lack ArcS [26] revealed
differences from the canonical arcTGT in the active sites [33,34] that might allow accommodation of
the formamidino group of G* base were it available. Thus, both free preQy and preQy-tRNA were
considered viable candidates as the natural substrate for QueF-L (Figure 2).

2.2.1. Thioimide Formation with preQg and preQp-tRNA

The conservation of Cys21 in QueF-L (P. calidifontis QueF-L numbering) and QueF (Cys55 in
Bacillus subtilis QueF numbering) [26], which in QueF participates in the catalytic mechanism via
nucleophilic attack of the thiol group on the nitrile of preQy to form a covalent thioimide intermediate
(Figure 3) [28,35], suggested that QueF-L might utilize a similar intermediate in the mechanism to
form the formamidine of G*. Given that the preQy-QueF thioimide has a distinct absorption at 376 nm,
we reasoned that probing for this absorption spectroscopically might allow us to determine whether
preQg or preQp-tRNA were capable of forming such an intermediate, and thus was the actual substrate.
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Figure 3. Structure and characteristics of the covalent thioimide intermediate formed in the

QueF-catalyzed reaction in the biosynthesis of queuosine.

Therefore, we titrated solutions of QueF-L with preQg or preQp-tRNA and measured the
absorption from 200 to 450 nm. Interestingly, titration with either potential substrate resulted in the
formation of a new absorption at 376 nm that grew in intensity with increasing preQy or preQo-tRNA
(Figures 4A and 5), suggesting that thioimide adducts formed with both. In the case of the preQy
titration, the absorption exhibited a saturation curve (Figure 4B), consistent with specific binding
to QueF-L (apparent Kp = 8 uM); due to limiting preQy-tRNA we did not titrate this to saturation.
Notably, these data are consistent with our subsequent observation of a thioimide intermediate in the
X-ray structure of QueF-L crystalized in the presence of preQg [30].
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Figure 4. Cont.
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Figure 4. Ultraviolet-Visible (UV-Vis) spectroscopy of titration of a QueF-like with preQO0.
(A) The thicker lower trace corresponds to the protein (20 M) absorbance prior to preQ addition.
The finer traces correspond, from bottom to top, to preQ0 concentrations of 10, 20, 40, 60, 80, and 120 uM,
respectively. Inset shows the region around 376 nm expanded for clarity; (B) Plot of absorbance at 376

nm vs. [preQq] exhibits a saturation curve.
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Figure 5. UV-Vis spectroscopy of a titration of QueF-L with preQ(-tRNA. The traces correspond,
from bottom to top, to preQy-tRNA concentrations of 1, 2, 3, and 4 uM, respectively. QueF-L was
present at a concentration of 20 uM. Inset shows the region around 376 nm expanded for clarity.

2.2.2. Reactivity of preQq and preQo-tRNA Thioimides with Various Nitrogen Sources

The archaeosine base is very unstable, readily undergoing deamination to form preQq [32],
making the direct observation of archaeosine base problematic if it was in fact the product of
the reaction. However, the thioimide intermediate formed in the QueF-catalyzed reaction is quite
stable [28,35], and this adduct can be isolated and probed free of excess substrate. Therefore, if the
QueF-L adducts with preQp and preQ(-tRNA were similarly stable, it would be possible to investigate
their fate when incubated in the presence of different ammonia sources.

To test this, we preformed the thioimide adducts of QueF-L with preQq and preQy-tRNA and
investigated their behavior with potential NH3 sources. Glutamine, and occasionally asparagine,
function as NH3 donors in virtually all amidotransferases [36,37] with the concomitant formation
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of glutamate and aspartate, respectively, and therefore were potential sources of NHj3 for QueF-L.
However, all amidotransferases that utilize these amino acids as a source of NHj3 also possess a
conserved cysteine residue that is essential in the chemical mechanism for the overall hydrolysis
of the amide groups, and QueF-L possesses only one conserved cysteine, which, as discussed
above, is implicated in thioimide formation. Therefore, we also investigated NH4Cl as a source
of free ammonia.

The thioimide absorbance due to the QueF-L/preQq adduct was stable in the presence of all three
potential sources of ammonia (Figure 6A), indicating that the thioimide was unreactive even when
incubated for prolonged periods of time. Similarly, the absorbance due to the QueF-L/preQp-tRNA
adduct was stable in the presence of glutamine and asparagine, but in contrast it decayed rapidly in
the presence of NH4Cl, consistent with turnover to form G"-modified tRNA (Figure 6B).
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Figure 6. Time-course of the thioimide absorbance (376 nm) from QueF-L/preQq, and
QueF-L/preQp-tRNA in the presence of various ammonia donors. (A) The absorbance of the
QueF-L/preQq thioimide adduct in the presence of ammonium chloride (—), glutamine (—),
or asparagine (- ). Data show an example of a single experiment with each ammonia donor;
(B) The absorbance of the QueF-L/preQp-tRNA thioimide adduct in the presence of ammonium
chloride (®,—), glutamine (CJ,—), or asparagine (A, "' ). Data represents the average of three assays,
each carried out in replicate with each potential ammonia donor (error bars represent the standard
error (SE)).

2.2.3. Conversion of preQo-Modified tRNA to G*-Modified tRNA by QueF-L

To provide unambiguous evidence that preQp-modified tRNA was the substrate of QueF-L,
and that it was turned over in the presence of NH4Cl to produce G*-modified tRNA, we carried
out reactions of QueF-L with preQo-tRNA and NH4Cl, followed by isolation of the tRNA,
and, after hydrolysis and dephosphorylation, analysis of the constituent nucleosides by liquid
chromatography mass spectrometry (LCMS) A peak with the expected retention time of G* was
observed in the chromatogram (Figure 7A), and mass spectrometry analysis of that component
provided an my/z of 325.12549 consistent with G* (Figure 7B).
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Figure 7. Confirmation of G* synthesis by QueF-L. (A) An example of the HPLC chromatogram of
nucleoside components of a tRNACI™ transcript modified by incorporation of preQy with arcTGT,
followed by reaction with QueF-L in the presence of NH4Cl. The tRNA was digested and
dephosphorylated prior to HPLC analysis. (B) Partial mass spectrum of the component eluting
at approximately 32 min and labeled G* in the chromatogram. The peak at m/z 325.12549 is consistent
with G*, and the peak at m/z 326.20742 with the isotopic M+1 ion.

3. Discussion

The biosynthetic pathway to the 7-deazaguanosine modified nucleosides of tRNA is one of the
most complex of the known modifications, and the only one in which a significant portion occurs
outside the context of tRNA. While homologs of virtually all of the enzymes that catalyze steps in the
pathway can be readily identified in all organisms that possess these modifications, the first and last
steps of the pathways exhibit considerable diversity. Three distinct enzymes have been identified that
catalyze the first step, although all are members of the same protein superfamily [22,24] and are thus
evolutionarily related. In contrast, the enzymes catalyzing the last step in both the archaeosine [25,26]
and queuosine [38,39] branches are structurally unique and represent distinct evolutionary solutions
to the reactions that they catalyze. QueF-L is especially interesting in this regard as it is closely related
to the bacterial QueF enzyme, an NADPH-dependent oxido-reductase in the queuosine pathway,
and further expands the already diverse chemistry catalyzed by enzymes of the T-fold superfamily.

Although in vivo data implicated P. calidifontis QueF-L as an amidinotransferase involved in
the G* pathway [26], there were two places in the pathway where it could conceivably function
(Figure 2): in the last step analogous to ArcS [25], or earlier in the pathway prior to incorporation into
the tRNA in analogy to QueF [27]. The results presented here clearly establish QueF-L as functionally
analogous to ArcS, and preQjp-modified tRNA as the relevant substrate. Notably, in addition to the
aforementioned new catalytic activity, this represents the first example of a T-fold enzyme utilizing a
nucleic acid substrate.

While the products of the QueF- and QueF-L-catalyzed reactions are markedly different,
an aminomethyl and a formamidine, respectively, both enzymes share an identical mechanistic path to
analogous covalent thioimide intermediates (Figure 8), a process mediated by conserved active-site
residues that include the cysteine involved in the thioimide and an aspartic acid that serves as a
general acid/base [30]. The paths diverge at the thioimide intermediate, and differ in the identity
of the nucleophile that attacks the thioimide intermediate—a hydride from NADPH in the case
of QueF, and ammonia in the QueF-L reaction—and in the stoichiometry of co-substrate binding:
two equivalents of NADPH to carry out the four-electron reduction, and one equivalent of ammonia.
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Figure 8. The common mechanistic steps leading to covalent thioimide intermediates in the reactions
catalyzed by QueF and QueF-L.

Finally, unlike ArcS, as well as transamidases as a whole, glutamine is not the ammonia donor in
the reaction, and instead the enzyme is only able to utilize free NH,*. The structural basis for this is
now evident, as the X-ray crystal structure [30] shows that NH,* gains access to the putative ammonia
binding site via the central tunnel of the QueF-L decamer, which displays a uniform surface that clearly
lacks any architectural features of an active-site that might bind a substrate that could serve as an
ammonia donor. However, while the data presented here establish that QueF-L itself utilizes only
NH,*, the data does not preclude the potential involvement of a protein partner that might function in
generating NH,* in vivo.

4. Materials and Methods

4.1. General

Buffers, salts and reagents (highest quality grade available), as well as gel filtration molecular
weight standards and NTPs, were purchased from Sigma (St. Louis, MO, USA). Dithiothreitol
(DTT), isopropyl-p-D-thiogalacto-pyranoside (IPTG), kanamycin sulfate, diethylpyrocarbonate (DEPC),
and ampicillin were purchased from RPI Corporation (Chicago, IL, USA). [8-*C]-guanine was obtained
from Perkin Elmer (Waltham, MA, USA). Amicon Ultra 15 and 0.5 centrifugal filter units and NovaBlue
Singles competent cells were acquired from EMD Millipore (Billerica, MA, USA). Nickel-nitrilotriacetic
acid agarose (Ni?*-NTA agarose), silica TLC plates, and Whatman GF-B PVDF syringe filters were
purchased from Fisher Scientific (Pittsburgh, PA, USA). GeneJet Plasmid Miniprep kits, Klenow enzyme
and PageRuler pre-stained protein ladder were purchased from Fermentas (Glen Burnie, MD, USA).
Custom oligonucleotides were obtained from Integrated DNA Technologies (San Diego, CA, USA).
Dialysis was carried out in Slide-A-Lyzer cassettes (ThermoFisher, Waltham, MA, USA). All reagents
for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were purchased from
BioRad (Hercules, CA, USA). SDS-PAGE analysis was carried out using 12% gels and visualized
with Coomassie Brilliant Blue. Diethylpyrocarbonate-treated water was used in the preparation of
all solutions for RN A-related assays. DNA sequencing was carried out at the DNA Services Core at
Oregon Health and Sciences University (OHSU), Portland, OR, USA.

4.2. Enzymes

Bacterial alkaline phosphatase, nuclease P; from Penicillium citrinum, snake venom
phophodiesterase I and DNase were purchased as lyophilized powders from Sigma and stored in 50%
glycerol with the appropriate buffer at the recommended temperature. Pfullltra DNA polymerase was
obtained from Agilent (Santa Clara, CA, USA). Restriction enzymes were purchased from Fermentas
(Glen Burnie, MD, USA) and New England Biolabs (Ipswich, MA, USA). Lysozyme was purchased
from RPI Corporation (Mount Prospect, IL, USA). The plasmid encoding the A(172-173) variant of T7
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RNA polymerase [40] was provided by John Perona. Recombinant Methanocaldococcus jannashii TGT
was over-produced and purified as described previously [41].

4.3. Instrumentation

PCR was carried out on a 2720 Applied Biosystems cycler (Thermo, San Jose, CA, USA). UV-Vis
spectroscopy was performed with a Cary 100 spectrophotometer (Agilent, Santa Clara, CA, USA)
equipped with a thermostated cell holder. HPLC was carried out using an Agilent 1100 with
photodiode array detector, and controlled via the Agilent Chemstation software, Agilent (Santa Clara,
CA, USA). SDS-PAGE was carried out on a mini Protean III system from BioRad (Hercules, CA, USA).
Mass spectrometry was performed on a LTQ-Orbitrap mass spectrometer (Thermo Electron, San Jose,
CA, USA) equipped with an electrospray ionization (ESI) source in the Department of Chemistry’s
core facility at Portland State University. Radioactivity was quantified with a Hidex 300 SL liquid
scintillation counter (Turku, Finland) using Econo-Safe liquid scintillation cocktail (RPI).

4.4. PreQy Synthesis

PreQ was synthesized as previously described by Klepper (yield 12%, purity 98%). The product
was purified by HPLC using a Luna C18 semi-preparative column (250 x 10 mm, 5 micron) from
Phenomenex (Torrance, CA, USA) using a gradient of ammonium acetate (25 mM, pH 6.5) and
acetonitrile (0-50% ACN over 30 min).

4.5. Cloning of P. calidifontis queF-L

The queF-L gene from P. calidifontis was synthesized (GenScript) with codon optimization for
E. coli expression (see Supplemental Figure S1) and subcloned via PCR from into the FactorXa/LIC
vector (Novagen) with the following primers:

Sense primer: 5-GGTATTGAGGGTCGCATGCTGAAAGTCTCAAAAAGCC-3
Antisense primer: 5'-AGAGGAGAGTTAGAGCCTTAGATGTAGACCGGCGGC-3'

PCR reactions contained 100 ng of linearized pGP358, 200 uM dNTPs, 50 pmol primers, 1x Pfu
Ultra buffer (supplied by the manufacturer), and 2.5 units of Pfu Ultra DNA polymerase in a final
volume of 50 pL. A three-step PCR thermocycling protocol was utilized: firstly, 94 °C for 3 min;
secondly, 30 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for 1 min, and extension at
72 °C for 2 min; and thirdly, 72 °C for 3 min. The PCR products were then gel purified (1% agarose),
and the DNA isolated (Qiagen PCR purification kit) and inserted into the FactorXa/LIC vector as
described by the manufacturer. The primary structure of the resulting construct (pLBI14) was confirmed
by capillary electrophoresis DNA sequencing at the OHSU DNA Services Core.

4.6. Over-Production and Purification of Recombinant P. calidifontis QueF-L

Luria-Bertani/kanamycin medium (3 mL) was inoculated with a single colony of E. coli
BL21(DE3)/pLBI14 cells, and after 12 h of incubation at 37 °C a 1-mL aliquot was used to inoculate
100 mL of fresh LB/kan medium. The cultures were incubated at 37 °C and 250 rpm for 12 h and
a 5-mL aliquot was taken and used to inoculate 500 mL of fresh LB/kan medium. When an optical
density (OD)gqo of 0.9 was reached, protein over-expression was induced by the addition of IPTG to a
final concentration of 0.25 mM. The cell cultures were grown for an additional 4-5 h when the cells
were collected by centrifugation at 7500 g for 15 min and frozen with liquid nitrogen. The cells were
stored at —80 °C until further use.

The cells were resuspended to a density of 250 mg/mL in lysis buffer (50 mM Tris-HC1 (pH 8.0),
300 mM KCl, 2 mM f(-mercapto-ethanol (AME), and 1 mM phenylmethylsulfonyl fluoride (PMSF)).
Lysozyme was added to a final concentration of 250 pg/mL and the cells incubated at 37 °C for
30 min, followed by three intervals of freeze-thaw cycles. DNase was added to a final concentration of
10 pg/mL and the cells were left at 37 °C for an additional 30 min. The cell lysate was centrifuged at
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26,000 g for 30 min, and the cell-free extract (CFE) heated to 80 °C for 15 min followed by centrifugation
at 26,000 g for 20 min. The resulting CFE was filtered using a low protein-binding 0.45-um PVDF
syringe filter, then loaded onto 5 mL of Ni?*-NTA agarose resin equilibrated in lysis buffer. The column
was washed with five column volumes of lysis buffer followed by five column volumes of lysis buffer
with 20 mM imidazole and no PMSF. The recombinant protein was eluted with seven column volumes
of lysis buffer (with/out PMSF) containing 200 mM imidazole then concentrated to about 2 mL using
the Amicon Ultra YM-10k and dialyzed overnight against 4 L of lysis buffer with no PMSF at 4 °C.
Both proteins were cleaved by Factor Xa and purified as previously described. The cleaved protein
was stored in 50% glycerol in 100 uL aliquots at —80 °C.

4.7. In Vitro Transcription of tRNA

Duplex DNA templates for in vitro transcription of Methanobacterium thermoautotrophicum
tRNAS" were synthesized from two single-stranded oligodeoxynucleotides containing a
complementary overlap region as previously described [42]. The oligonucleotide sequences used were:

5-GCAGTAATACGACTCACTATAGGTCCCGTGGGGTAGTGGTAATCCTGCTGGGCTTTG-3'
5'-TGGTAGTCCCGAGCGGAGTCGAACCGCTGTCGCCGGGTCCAAAGCCCAGC-3/

The underlined region represents the T7 RNA polymerase promoter sequence. Transcription
reactions were performed as previously described using the A(172-173) variant of T7 RNA
polymerase [40], loaded onto a urea-PAGE gel, and after electrophoresis (80W, 60 min) the band
was excised and extracted overnight in 100 mM ammonium acetate (pH 6.5) containing 1 mM EDTA.
The gel was discarded and the tRNA precipitated from the remaining solution with three volumes
of ethanol followed by cooling at —20 °C for 2 h. The solution was then centrifuged at 20,000 g for
20 min at 4 °C, the supernatant removed, and the RNA pellet washed with 70% cold ethanol. After
centrifugation at 20,000 g the supernatant was removed and the tRNA was stored at —80 °C.

4.8. Preparation of preQy Modified tRNAC™

PreQp was inserted into the tRNA transcript using recombinant Methanocaldococcus jannaschii TGT.
A solution of tRNA in succinate buffer (100 mM, pH 5.5) was refolded before use [43]. An aliquot of
MjTGT (10 uM) was added to a 1-mL solution containing 50 mM succinate (pH 5.5), 20 mM MgCl,,
100 mM KCl, 2 mM DTT, 100 uM tRNA, and 1 mM preQy. After 45 min at 80 °C, the reaction was
terminated by the addition of one-tenth volume of 2 M NaOAc (pH 4.0) followed by one volume
of water-saturated phenol and one fifth volume chloroform:isoamyl alcohol (49:1). After vortexing
for 20 s, the solution was centrifuged in a fixed angle rotor at 9000 g for 1 min. The aqueous phase
was recovered and mixed with an equal volume of chloroform:isoamyl alcohol. After vortexing for
20 s, the solution was centrifuged in a fixed angle rotor for 1 min at 9000 g. The aqueous phase
was recovered and concentrated using an Amicon Ultra4 centrifugal concentrator (EMD Millipore,
Billerica, MA, USA). Subsequently, the preQo-tRNAS!" was precipitated from the retentate by the
addition of three volumes of ethanol and cooling at —20 °C for 2 h. The solution was centrifuged
at 20,000 g for 20 min at 4 °C, the supernatant removed, and the RNA pellet washed with 70% cold
ethanol. After centrifugation again at 20,000 g the supernatant was removed and the preQp-tRNA was
resuspended in 3 mM sodium citrate (pH 6.3) and stored at —20 °C.

4.9. Guanine Incorporation Controls

To quantify preQp incorporation into tRNAS!™ a control reaction was run in which [8-14C]-guanine
(50 mCi/mmol) was incorporated into the tRNA using M. jannaschii TGT and the tRNA isolated as
described above. After quantifying the radiochemical specific activity of the [*CJtRNA, preQp was
incorporated into the tRNA and aliquots of the reaction taken over time to measure the loss of
[8-14C]-guanine (and incorporation of preQp). The tRNA from each aliquot was precipitated and
collected on Whatman GF/B glass filters. The filters were washed with cold ethanol in a vacuum
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filtration system so as to remove any unbound radioactive material. Once dry, the filters were
placed in 7 mL scintillation vials with scintillation cocktail and the radioactivity was measured by
scintillation counting.

4.10. Substrate Titration Studies

Titrations of QueF (20 uM) with preQq (3 mM in dimethylsulfoxide) or preQy-tRNA were carried
out in solutions containing 100 mM phosphate (pH 6.5), 50 mM KCl, 20mM MgCl,, and 1 mM DTT,
while monitoring the absorbance from 230 to 450 nm. For the preQ)j titrations the concentrations of
preQp ranged from 10 to 120 uM and the final concentration of DMSO did not exceed 4% of the total
volume. For the preQ)-tRNA titrations the concentrations of preQp-tRNA ranged from 1.0 to 4.0 uM.

4.11. Amidinotransferase Assays

Assays of amidinotransferase activity were carried out using QueF-L (20 uM) in 100 mM
phosphate (pH 6.5), 50 mM KCl, 20 mM MgCl,, and 1 mM DTT, along with 1 mM preQg or 10 uM
preQp-tRNA, and incubation for 15 min at 37 °C. For the preQy-tRNA assays NH4Cl (1 mM), glutamine
(1 mM), or asparagine (1 mM) was then added while monitoring the absorption of the covalent
thioimide adduct at 376 nm. For the assays with preQg, the solution was filtered through a centrifugal
concentrator (Amicon) in a fixed angle rotor at 8500 rcf for 10 min and the retentate washed with
buffer to remove excess preQp. After 2x washes the retentate was reconstituted with buffer and
NH,4Cl/glutamine/asparagine was added while monitoring the loss of covalent thioimide adduct at
376 nm.

4.12. LCMS Analysis of QueF-L Assays with preQp-tRNA

QueF-L (20 uM) was incubated in 100 mM phosphate (pH 6.5), 50 mM KCl, 20 mM MgCl,, 1 mM
DTT, 20 uM preQo-tRNA and 1 mM NH4Cl for 1 h at 37 °C. The tRNA was then precipitated using
ethanol and digested using nuclease P1, snake venom phosphodiesterase and alkaline phosphatase
and the nucleoside products of the reaction were analyzed by HPLC as previously described [44],
using a Gemini C18 column (5 um, 110 A, 2 x 250 mm; Phenomenex, Torrance CA, USA), with a
mobile phase comprised of a linear gradient from 100% 25 mM NH4OAc (pH 6.3) to 85% 25 mM
NH4OAc/15% acetonitrile developed over 30 min, then to 50% acetonitrile at 45 min. Flow was
maintained at 0.3 mL/min. LCMS analysis of nucleosides was performed on an Orbitrap-LTQ mass
spectrometer (Thermo Electron, San Jose, CA, USA) utilizing electrospray ionization (ESI). The ESI
interface was operated in the positive mode using the following settings: end plate offset —500 V,
capillary voltage —4500 V, nebulizer gas 1.6 bar, dry gas 4 L/min, dry temperature 200 °C, funnel 1 RF
350 Vpp, funnel 2 RF 350 Vpp, hexapole RF 400 Vpp, collision energy 10 eV and collision RF 300 Vpp.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/7/2/36/s1,
Figure S1: Sequence of synthetic gene used for the production of P. calidifontis queF-L.
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