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Abstract: Tau is a brain microtubule-associated protein that directly binds to a microtubule and
dynamically regulates its structure and function. Under pathological conditions, tau self-assembles
into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary
pathology is a common feature in a number of neurodegenerative disorders, collectively referred to
as tauopathies, the most common of which is Alzheimer’s disease (AD). Beyond its classical role as
a microtubule-associated protein, recent advances in our understanding of tau cellular functions have
revealed novel insights into their important role during pathogenesis and provided potential novel
therapeutic targets. Regulation of tau behavior and function under physiological and pathological
conditions is mainly achieved through post-translational modifications, including phosphorylation,
glycosylation, acetylation, and truncation, among others, indicating the complexity and variability
of factors influencing regulation of tau toxicity, all of which have significant implications for the
development of novel therapeutic approaches in various neurodegenerative disorders. A more
comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction
will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for
designing more efficient approaches to tackle tauopathies in the near future.
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1. Introduction

From an analytical point of view, the three main cell compartments—nucleus, cytoplasm, and
membrane—have been mostly studied in the past century by three different scientific disciplines:
molecular biology (nucleus), cell biology (cytoplasm), and cell signaling (membrane). During the 1970s
and 1980s, in an effort to introduce the molecular biology to the study of the cell cytoplasm, proteins
located at the cytoplasm were analyzed. These were mainly those involved in the components of
the cytoskeleton: microtubules, microfilaments, and intermediate filaments. Microtubules are highly
enriched in the cytoplasm of neuronal cells and, therefore, neuronal microtubules were the first ones
to be characterized at the molecular level [1].

Brain microtubules can be isolated in vitro and they are composed mostly (about 90%) of tubulin
subunits, with the remaining 10% consisting of the microtubule-associated proteins (MAPs) that,
according to the order of its electrophoretic mobility, were classified as MAP1, MAP2, and tau [2].
Later on, improved electrophoretic techniques allowed further fractionation of MAP1 into MAP1A,
MAP1B, and MAP1C (a dynein subunit) [3]. Moreover, different isotypes were described for MAP2
and tau proteins [2]. Tau protein was first isolated at Kirschner’s lab in 1975 [4] and from that year up to
1988, the study of tau shifted from that of a microtubule-associated protein [5–8] to that of a component
of the paired helical filaments found in the brain of Alzheimer’s disease (AD) patients [9–18]. To date,
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the analysis of tau protein has been mainly focused on its dysfunction. Here we review and discuss
recent findings about the role of both function and dysfunction of tau protein.

2. Tau Function and Dysfunction

2.1. Tau Function

In the central nervous system of mammals, tau protein is composed of six different isotypes
produced by alternative splicing mechanisms. Three of these isotypes contain three copies of the
imperfect 31 amino-acid repeats that constitute the microtubule-binding domain (tau 3R) whereas
the other three isotypes contain four repeats (tau 4R) [19]. In vivo, the most well-known function
for tau is microtubule stabilization [20,21]. Hence, it is difficult to obtain non-neuronal proliferating
cells that are expressing tau in a stable form since the presence of tau at high levels makes it difficult
to depolymerize interphase microtubules to allow the onset of mitosis [22]. For that reason tau 3R
(a weaker microtubule stabilizer than tau 4R) can be more readily expressed at high levels than tau 4R
in non-neuronal proliferating cells [23]. Thus, tau is mainly present in neuronal, non-proliferating,
differentiated cells [19].

Microtubule stabilization could be the mechanism underlying the role of tau on the development
of axonogenesis although, in this process, tau can also play an additional role on the localization
of some microtubule plus-end tracking proteins (+TIPs), like end-binding (EB) proteins, at the later
stages of axon development [24]. Embryonic hippocampal cultures from tau-deficient mice show
an abnormal pattern of axonal growth and a significant delay in maturation; an effect that can be
rescued by mating those mice with transgenics overexpressing human tau protein [25].

Interestingly, loss of tau could also result in iron accumulation in neurons. It has been reported
that amyloid precursor protein (APP) displays a ferroxidase activity that, coupled with a ferroportin,
allows for iron export. Since tau facilitates the traffic of the amyloid precursor protein (APP) to the cell
surface, loss of tau leads to iron accumulation in primary neuronal cultures [26].

Regulation of tau function is predominantly achieved through post-translational modifications,
primarily phosphorylation at many sites (see [27] for a review). Thus, an increase in tau phosphorylation
reduces its affinity for microtubules, resulting in neuronal cytoskeleton instability. Moreover, a gradient
of tau concentration exists along the axon in mature neurons, with higher levels at the synapse where
it can block the binding of motor proteins and favor the local release of their cargo. Additonally, tau
phosphorylation by glycogen synthase kinase-3 (GSK3) at specific residues appears to modulate
long-term depression (LTD) [28].

It has been demonstrated that tau is also extensively post-translationally modified by lysine
acetylation, leading to impaired tau function and promoting pathological aggregation [29], as discussed
below. Intriguingly, it has been recently reported that mammalian tau proteins possess intrinsic
enzymatic acetyltransferase activity capable of catalyzing self-acetylation at lysines by using catalytic
cysteine residues located at the microtubule-binding domain [30]. It remains to be known whether
other possible substrates for this activity may exist.

On the other hand, a possible role for tau in sleep regulation has been proposed [26,31].
The activity of neocortical pyramidal cells during various arousal states was measured in a mouse
model of tauopathy, showing that membrane potential oscillations were slower during slow-wave
sleep and under anesthesia [31]. The observed changes in activity patterns are due to longer down
states and state transitions of membrane potentials.

However, probably the most interesting function for tau protein is its role on long-term
depression (LTD). Various persistent modifications in neuronal and synaptic functioning provide
the biological basis of learning and memory in neuronal circuits and, among these, long-term
synaptic plasticity is thought to play a primary role. Long-term synaptic plasticity appears in various
forms of potentiation (LTP) and depression (LTD). LTP is an activity-dependent increase in synaptic
transmission/strength between two neurons, whereas LTD is an activity-dependent decrease in
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synaptic transmission/strength. This reduction in the synaptic strength may facilitate a further loss of
the synapse. It has been described that loss of tau prevents LTD and it may result in a deficit in spatial
reversal learning [28]. Thus, this role of tau in LTD may lead to impairment of stabilized memories
and new learning.

Furthermore, within the MAPT gene there is a cryptic protein, saithoin, located in the intron 9,
between exons 9 and 10, [5,32]. This protein may have an antioxidant role, a function that will be lost
in the absence of the tau gene.

2.2. Tau Dysfunction

Although loss of tau in mice results in some deficits, these are not sufficient to affect the viability
of the animal [25,33]. Thus, tau loss of function, except for its role in LTD, may not be the primary
cause of the group of pathologies known as tauopathies [19].

There seems to be a general agreement that tauopathies are the consequence of a gain of toxic
function due to an increase in the amount of tau protein or its modification [19]. An increase in tau
levels has been shown to exist in the most prevalent tauopathy, Alzheimer’s disease (AD) [34,35].
Additionally, there are several post-translational modifications of tau protein, such as phosphorylation,
acetylation, glycation, truncation, or glycosylation that could confer a toxic gain of toxic function [19].
In particular, tau hyperphosphorylation seems to lead to toxicity [19]. A recent study of mutant
tau transgenic mice has demonstrated that hyperphosphorylated, aggregated tau directly harms
proteasomal function in vivo [36], although the precise molecular mechanism remains unclear.

The original observation relating to tau pathology and dysfunction was its self-aggregation
to form polymers, such as paired helical or straight filaments [6–18]. There are some tauopathies
of familial origin in which tau mutations at specific sites might facilitate its subsequent abnormal
aggregation [37]. This self-aggregation takes place mainly through the microtubule-binding regions of
the tau protein [5,25]. Hence, it is not surprising that not every tau isotype shows the same capacity for
microtubule binding or self-aggregation [38]. The high molecular weight isotype (big tau) present in the
peripheral nervous system [39] is an isotype with a lower capacity to self-aggregate. This observation
agrees well with the recent report indicating the protective role of the high molecular weight tau
isotype present in the longest lived rodent, mouse-sized naked-mole rats [40]. An increase in tau
phosphorylation by kinases such as GSK3 has been correlated with increased tau aggregation [41,42].
Recently, it has been suggested that under stress conditions tau can be phosphorylated at threonine
175, inducing GSK3 activation which in turn modifies tau at threonine 231, and leads to pathologic
fibril formation [43].

As already mentioned, acetylation of soluble tau has important effects on its properties, including
stability, protein-protein interaction, and aggregation. A complex tau acetylation pattern has been
recently demonstrated in vitro with high-resolution NMR techniques, showing that there are more
than 20 acetylated sites within the tau molecules [44].

Moreover, tau acetylation is increased in AD brain lysates, whereas tau acetylation at lysine 174 has
been reported to be an early change in AD [45]. Overexpression of a tau mutant mimicking acetylation
at that residue in mouse brain led to increased hippocampal atrophy and decreased behavioral
performance. Furthermore, treatment of tau transgenic mice with acetyltransferase inhibitors lowered
tau acetylation, rescued tau-induced memory deficits, and prevented hippocampal atrophy [45].
All together, these findings highlight tau acetylation as a pathogenic step in AD and tauopathies and
open new therapeutic avenues to be explored.

3. The Tauopathies and Propagation of Pathology

3.1. The Tauopathies

The main risk factor for the most prevalent tauopathy, AD, is aging. Similarly, other tauopathies
are also more prevalent above 40 years old. However, several tauopathies have been described at
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young ages, such as fetal or infantile tauopathies like hemimegalencephaly, tuberous sclerosis complex
(TSC), focal cortical dysplasia type 2b, and ganglioglioma [46].

Patients with a developmental disorders, such as Down syndrome (DS), the most common genetic
form of intellectual disability [47], have a striking propensity to develop early-onset Alzheimer disease
(EOAD), including the accumulation of neurofibrillary tangles (NFT). In spite of several similarities
between both pathological processes, DS-specific potential mechanisms for cognitive deficits have been
recently proposed, such as an intracellular chloride accumulation mediated by GABAA receptors [48].
In the hippocampus of adult DS mice GABAA seems to be excitatory rather than inhibitory [48]. In the
case of AD, it has been proposed that NMDA receptors present at the dendritic spines could favor Aβ

toxicity mediated by the presence of the complex Fyn-tau [49]. It will be of interest to know whether
tau could play a similar function in the GABAA receptors-containing postsynaptic density in DS.

Pre-senile tauopathies include types of early-onset dementia, such as fronto-temporal dementia
(FTD) or familial AD (FAD), whereas sporadic AD (SAD) is the most prevalent advanced-age, senile
tauopathy [19]. While rare mutations in the MAPT gene lead to FTDP-17-tau, the vast majority of
tauopathies is sporadic, non-inherited, with aggregation of the wild-type protein [50]. Curiously, one of
these tau mutations could also led to progressive apraxia of speech [51], whereas a single nucleotide
polymorphism in MAPT has also been identified as an important risk factor for Parkinson’s disease
(PD) [52,53].

During the progression of AD pathology, neuronal death leads to intracellular tau being released
to the extracellular space. It has been suggested that once tau is in the extracellular space it could
become toxic for the surrounding neurons [54]. However, tau transmission from cell to cell could occur
by exocytosis and endocytosis without the need for neuronal death to release extracellular tau [54–56].
On the other hand, to explain that tau transmission only occurs during neurodegenerative processes
and not in normal physiological conditions, it has been proposed that aggregated tau is the toxic form
for that spreading [26,57]. However, it is unclear if the endocytosis may take place in any cell type or
whether a specific receptor, such as muscarinic receptors, are required [55].

Generally speaking, there are three main characteristics for a tauopathy: (a) an increase in
tau levels; (b) a modification, like hyperphosphorylation [58,59], sometimes related to another
posttranslational modifications such as truncation [60] or acetylation [45]; and (c) an abnormal tau
aggregation [61]. Additionally, in some tauopathies a change in tau 3R/4R ratio could facilitate the
onset of the disorder.

Regarding tau levels, it is important to know how human MAPT gene expression takes place [62].
The role of different types of tau post-translational modifications has been already mentioned, although
focusing on truncation, it should be indicated that toxic tau fragments could arise by truncation at both
ends (N-terminal or C-terminal) of the tau molecule [63,64]. Moreover, tau truncation could modulate
tau spreading [65]. Finally, changes in tau 3R/4R ratio may result in differences in microtubule stability.
Recently, microtubule dynamics has been correlated with some neurodegeneration disorders [66].
Some diseases, like AD, could be associated to a decrease in microtubule stability, whereas others, like
heredity spastic paraplegia, could be rather linked to the presence of hyper stable microtubules [66].
Tau 3R and tau 4R isoforms result from different alternative splicing events. Interestingly, it has been
recently described that Huntington’s disease could also be a tauopathy resulting from an increase in
the tau 4R/3R ratio [67].

3.2. Propagation of Tau Pathology

In the brains of AD patients, tau pathology propagates following an anatomically-defined pattern,
from the entorhinal cortex through the hippocampus and into the limbic and associated cortexes,
which correlates with the clinical cognitive status of the patient [68]. A body of evidence has been
gathered in recent years that strongly suggests that accumulation of abnormal tau is mediated through
spreading of protein seeds from cell to cell and involving extracellular tau species as the main agent
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in the interneuronal propagation of neurofibrillary lesions and spreading of tau toxicity throughout
different brain regions [69,70].

Long regarded primarily as an axonal protein, tau also accumulates in the somatodendritic
compartment during AD [71], and mislocation to dendritic spines may lead to synaptic dysfunction [72,73].
The presence of tau in the synapse in healthy brains suggests a role for tau in regulating normal
synaptic function, whereas during neurodegeneration tau synaptotoxicity seems to be related
to soluble forms rather than insoluble aggregates [74]. Measurement of tau synaptic levels in
synaptosomal fractions from human post mortem AD brains has shown that tau is normally localized in
cortical synaptic terminals and that tau cleavage may facilitate tau aggregation and secretion from the
pre-synaptic compartment [75]. Interestingly, a trans-synaptic mechanism of spreading of pathology
through anatomically-connected neuronal networks has been recently shown in transgenic animal
models of tauopathy [57,76], which supports neuropathological studies in post mortem brains from
argyrophylic grain disease (AGD) [77].

Remarkably, intracerebral inoculation of synthetic preformed tau fibrils induced NFT-like
inclusions that propagated from injected sites to connected brain regions in a time-dependent
manner [78]. Furthermore, conformation-specific trans-cellular propagation of tau fibrils after release
into the extracellular space and subsequent triggering of aggregation in recipient cells by contacting
native protein has been shown in co-culture experiments [79]. Intriguingly, using a lentiviral-mediated
rat model, it has been shown that human wild-type tau protein trans-synaptically spreads much
faster that mutant tau [80]. More recently, using artificial neuronal circuits in vitro, it has been further
demonstrated that non-synaptic and synaptic mechanism act in parallel to promote tau spreading [81].
Another exciting recent finding is that microglia depletion drastically suppresses propagation of tau
pathology in an AAV-based mouse model [82]. Furthermore, microglia are able to secrete tau via
exosomes and inhibiting exosome synthesis significantly diminishes tau propagation in vivo.

Taken together, cell-to-cell spreading of abnormal tau and toxicity provides a mechanism for
tau-targeted immunotherapies as therapeutic strategy for AD and tauopathies (see below).

4. Therapeutic Strategies

4.1. Therapeutic Targets

Therapies can be designed to reverse a loss of function or to correct a gain of function. With regard
to tau loss of function, since it can result in iron accumulation in some specific neurons, the use of an iron
chelator, clioquinol, has been proposed [83]. However, as already mentioned, tauopathies are mainly
the consequence of (1) an increased tau protein level; (2) increased post-translational modifications;
(3) increased aggregation; or (4) altered tau 3R/4R ratio in some specific neuronal populations.

MicroRNAs (miRNAs) have been linked to neurodegenerative processes and its dysregulation
contributes to tau neurotoxicity. The highly-conserved brain miRNA miR-219 has been shown
to be decreased in post mortem brains from AD and also severe primary age-related tauopathy.
miR-219 binds directly to the 3’-UTR of the tau mRNA and post-transcriptionally represses tau
synthesis, suggesting that this pathway could be used as a possible therapy [23]. On the other hand,
the use of specific tau kinase inhibitors (for example lithium or tideglusib for GSK3 or tamoxifen for
cdk5) [84] has been proposed but, at present, no clear results have been obtained in clinical trials [85,86].
Post-translational modifications involving tau cleavage resulting in the appearance of truncated toxic
tau fragments have been reported [87] and the use of protease inhibitors has been suggested as potential
therapy since the use of an uncleavable tau mutant shows attenuated pathological and behavioral
defects in a tau transgenic model [87]. Moreover, several compounds able to inhibit formation of tau
oligomers and fibrils have already been tested in different animal models [88,89]. A methylene blue
derivative is currently being tested in phase III clinical trials for AD and FTD [90]. Curiously, methylene
blue was already used by Cajal to stain dendritic spines [91], a structure that contains tau protein [92].
On the other hand, it has been reported recently that a highly conserved PDZ (an acronym combining
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the first letters of three proteins: post synaptic density proteins (PSD95), Drosophila disc large tumor
suppressor (Dlg1), and zonula occludens-1 protein (zo-1); which were discovered to share the domain)
serine protease, HTRA1, is able to untangle and chop up tau fibrils in an ATP-independent fashion,
decreasing the aggregate burden in a cellular model of cytoplasmic tau aggregation and suggesting
some therapeutic potential [93].

4.2. Immunotherapeutic Tau Approaches

Immunotherapy for various neurodegenerative diseases has recently emerged as a promising
approach for the clearance of pathological proteins in these disorders. The immunotherapy approach is
based on eliciting anti-tau antibodies able to clear tau molecules that negatively affect neuronal viability,
thus resulting in clearance of tau pathological species and eventually neuronal function improvement.
Newly aggregated intracellular tau that transfers between co-cultured cells can provide a model for
tau-targeted immunotherapies for AD and tauopathies [94,95]. Both passive and active immunization
approaches have been pursued in recent years and have shown potential in animal models.

Although the active immunization approach has certain advantages, it may have autoimmune side
effects that can be avoided with passive immunization. Several passive immunotherapy approaches
targeting tau with specific antibodies have also been reported recently [96]. Specific phospho-tau
antibodies have been used recently to prevent the induction of tau pathology in both primary
neuronal cultures and in animal models of propagation of tau pathology [97] showing a significant
decrease in tau spreading after systemic administration. Interestingly, not every phospho-specific
tau antibodies shows efficacy at preventing tau pathology in animal models and some of them seem
to even exacerbate pathology [98]. It is also worth mentioning the use of antibodies specifically
targeting cis conformation in specific tau phospho-epitopes in animal models of traumatic brain injury,
preventing tau spreading and pathology development [99,100]. Noticeably, intravenous injection
of a tau oligomer-specific monoclonal antibody in aged APP transgenic mice led to the removal of
age-dependent tau oligomers, reversed memory deficits and shifted the Aβ pathway towards plaque
formation [101], also highlighting a mechanistic interaction between tau oligomers and Aβ.

It has been suggested that the most likely mechanism of action for anti-tau antibodies is targeting
tau released from cells [102], although several different mechanisms of antibody clearance of tau are
likely to act in concert. Determining and targeting, specifically, the most toxic tau species will definitely
increase the therapeutic efficacy.

Some clinical trials of tau immunotherapy are already ongoing [103,104] and several more are
likely to be initiated in the near future. The recent development of imaging-based biomarkers [105]
will enable the progression of tau pathology to be tracked in living patients and greatly facilitate the
early-phase testing of tau immunotherapy and other tau-based therapeutic strategies.

5. Conclusions

We have reviewed recent developments in tau biology relevant to AD and tauopathies. It has
become increasingly clear that, apart from the well-established intracellular functions of tau in
microtubule stabilization and axonal transport, intracellular and extracellular tau have important
signaling roles that could contribute to the neurodegenerative process in AD and related tauopathies.
In addition, the presence of tau in synaptic regions of healthy brain suggests that tau may play a role in
the regulation of normal synaptic function. Furthermore, recent studies have suggested that misfolding
of tau in diseased brains leads to abnormal conformations of tau that can be transferred to surrounding
neurons. Thus, pathological progression seems to involve transmission of tau protein via a potential
prion-like seeding mechanism resulting in neurodegeneration in susceptible brain regions.

Some important questions still need to be clarified, such as selective neuronal vulnerability, the
exact nature of the tau species involved, or the precise seeding/templating mechanisms, among
others. More research is needed to identify disease mechanisms driving release of tau from neurons
and propagation of tau pathology and to determine the impact of extracellular tau on cognitive
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decline during neurodegeneration. The observation that misfolded tau can be secreted and taken
up by adjacent neurons calls for the development of novel strategies to block the propagation of tau
pathology in the brain, such as immunotherapies. The next few years will certainly bring new insights
into the cellular mechanisms underlying tau secretion and uptake, likely identifying novel therapeutic
approaches aimed at interfering early on in the process of propagation of tau pathology.
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