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Abstract: The zona pellucida (ZP) surrounds the mammalian oocyte and mediates 

species-selective sperm-oocyte interactions. Bovine ZP consists of glycoproteins ZP2, ZP3, 

and ZP4. Neither ZP3 nor ZP4 alone shows inhibitory activity for the binding of sperm to the 

ZP; however, this activity is seen with the ZP3/ZP4 heterocomplex. Here, we constructed a 

series of bovine ZP3 mutants to identify the ZP4-binding site on ZP3. Each ZP3 mutant was 

co-expressed with ZP4 using a baculovirus-Sf9 cell expression system and examined for 

interaction with ZP4 as well as inhibitory activity for sperm-ZP binding. N-terminal fragment 

Arg-32 to Arg-160 of ZP3 interacted with ZP4 and inhibited sperm-ZP binding, whereas 

fragment Arg-32 to Thr-155 showed much weaker interaction with ZP4. Mutation of  

N-glycosylated Asn-146 to Asp in the N-terminal fragment Arg-32 to Glu-178 of ZP3 did 

not interrupt the interaction of this fragment with ZP4, but it did reduce the inhibitory activity 

of the complex for sperm-ZP binding. In contrast, mutation of N-glycosylated Asn-124 to Asp 

did not significantly reduce the activity. Taken together, these results suggest that one of 

the ZP4 binding sites exists in the flexible hinge region of ZP3 and that the N-glycosylation 

in this region is involved in the sperm binding. 
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1. Introduction 

Mammalian oocytes are surrounded by the zona pellucida (ZP), a transparent envelope that mediates 

several critical aspects of fertilization, including species-selective sperm recognition and blocking of 

polyspermy [1–5]. Depending on the species, the ZP consists of either three or four kinds of glycoproteins. 

Bovine and porcine ZPs comprise three glycoproteins (ZP2, ZP3, and ZP4) [6]; mouse ZP also consists 

of three glycoproteins (ZP1, ZP2, and ZP3), whereas human, rat, hamster, rabbit, monkey, and cat ZPs 

consist of four (ZP1, ZP2, ZP3, and ZP4) [7,8]. All ZP proteins contain a domain called the ZP domain, 

which consists of ~260 amino acids and contains eight conserved Cys residues [9]. Among mammalian 

species, those possessing four ZP proteins are significantly more common than those possessing three. 

In a previous study, we isolated bovine ZP from ovaries and partially separated an endo-�-

galactosidase-digested bovine ZP into three components by reverse-phase high-performance liquid 

chromatography [6,10]. ZP4 exhibited the strongest inhibitory activity for sperm-ZP binding among 

the three partially purified components. In pigs, ZP4 contaminated with trace amounts of ZP3 showed 

sperm-binding activity, whereas purified ZP4 did not [11]. To test if this effect is also seen in bovines, 

we established a baculovirus-Sf9-based cell expression system of bovine ZP glycoproteins ZP3 and 

ZP4, both alone and in combination. Neither recombinant bovine ZP3 nor ZP4 exhibited any inhibitory 

activity for sperm-ZP binding; however, this activity was seen with the recombinant bovine ZP3/ZP4 

complex co-expressed in Sf9 cells [12]. Taken together, these results suggest that ZP3/ZP4 heterocomplex 

formation is necessary for the sperm-binding activity of the ZP glycoproteins in both pigs and bovines. 

In bovines, the major neutral N-linked chain of ZP consists of only one structure, a high-mannose-type 

chain containing five mannose residues [13]. �-Mannosyl residues at non-reducing termini are essential 

for the sperm-binding activity of bovine ZP [14]; the participation of O-linked chains in sperm binding 

has not yet been investigated. The involvement of sialic acids in sperm binding has also been reported [15]. 

Previously, we had reported that porcine recombinant ZP glycoproteins expressed in Sf9 cells have 

pauci- and high-mannose-type chains with �-mannosyl residues at non-reducing termini; these are capable 

of binding to bovine but not to porcine sperm [16]. Recombinant bovine ZP glycoproteins expressed in 

Sf9 cells also have sugar chains with �-mannosyl residues at non-reducing termini [12]. More recent 

analyses in an assay system using glycolipid analogues revealed that bovine sperm prefers �-mannosyl 

residues [17]. These results support a significant role for �-mannosyl residues in bovine sperm recognition 

of the ZP. 

The ZP domain is responsible for the polymerization of proteins into filaments, as reported for mouse 

proteins ZP2 and ZP3 and the human Tamm-Horsfall protein [18]. Regardless of species, the ZP domain 

consists of three regions: the N-terminal subdomain (ZP-N), the C-terminal subdomain (ZP-C), and a 

flexible region connecting the two subdomains (hinge region). ZP precursors are synthesized as 

transmembrane proteins, with interactions between the internal hydrophobic patch (IHP) and external 

hydrophobic patch (EHP) inhibiting premature assembly of ZP proteins [19]. ZP precursors are processed 

at consensus furin cleavage sites between IHP and EHP, where mature ZP polypeptides containing IHP 
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are separated from propeptides containing EHP and transmembrane domains, followed by initiation of ZP 

assembly. Protein crystal structures of a chicken homolog of mammalian ZP3 precursor revealed that 

IHP and EHP form anti-parallel �-sheets in the ZP precursors [20]. Thus, in mature ZP proteins, the 

loss of interaction between IHP and EHP triggers ZP protein assembly through an unknown mechanism. 

In mouse ZP3, ZP-N (Val-42 to Arg-143, see Figure 1A) has been expressed using bacterial expression 

systems and has been shown to self-assemble into filaments [21]. In chicken homologs of mammalian 

ZP1 and ZP3, ZP-C was revealed to interact with ZP3 and ZP1, respectively [22]. Taken together, these 

data suggest that ZP-C interacts with other ZP components, whereas ZP-N forms self-assembled filaments. 

In bovines, ZP3 and ZP4 form sperm-binding active hetero-complexes. The region N-terminal to the 

ZP domain of ZP4 is dispensable for the formation of the sperm-binding active ZP3/ZP4 complex [12]. 

No studies on the interaction sites of bovine ZP3 and ZP4 have been published since this report. In this 

study, we focused on identification of ZP4-interaction sites on ZP3. 

 

 

Figure 1. Cont. 
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Figure 1. Primary structure of bovine zona pellucida glycoprotein-3 (ZP3) mature polypeptide. 

(A) Sequence alignment of bovine ZP3 mature polypeptide and the corresponding regions of 

chicken and mouse ZP3. Amino acid residues are numbered based on the translational 

initiation Met as 1. Cys residues (C1 to C12) are indicated in bold. The �-strands are indicated 

by open bars based on the structure of chicken ZP3 precursor [20]. Internal hydrophobic 

patch (IHP) and consensus furin cleavage sites (CFCS) are indicated by an orange box and 

a purple box, respectively. N-Glycosylated Asn residues are shown in red. O-Glycosylated 

Ser and Thr residues of chicken and mouse ZP3 and putative O-glycosylated Ser and Thr of 

bovine ZP3 are shown in green; (B) Disulfide bond patterns of mouse, chicken, and bovine 

ZP3; The 12 Cys residues C1 to C12 correspond to C1 to C12 shown in (A); respectively. 

Two types of disulfide bond pattern have been found in the C-terminal region containing 

C5 to C12. The putative disulfide bond pattern of bovine ZP3 is the same as that of chicken 

ZP3, although the disulfide pattern of bovine ZP3 has not been determined yet; (C) Schematic 

representation of the primary structure of bovine ZP3, along with all fragments examined 

in this study. The horizontal bars indicate polypeptides of recombinant proteins. N- and  

C-terminal amino acid residues of each recombinant protein are shown on the left and right 

sides of the bars, respectively; they are numbered based on the translational initiation Met as 1. 

Filled arrowheads show the positions of Cys (C) residues. Filled triangles show the  

positions of N-glycosylated Asn (N) residues. Asn (N) residues were mutated to Asp (D) in 

ZP3(32–178)N124D, ZP3(32–178)N146D, and ZP3(32–178)N124,146D fragments. 
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2. Results and Discussion 

2.1. Identification of ZP4-Interaction Sites on ZP3 

The disulfide bond pattern of bovine ZP3 has yet to be determined. However, sequence similarities 

between bovine ZP3 and porcine ZP3 suggest that the disulfide bond pattern of bovine ZP3 is the same 

as that of porcine ZP3 as well as that of chicken ZP3 (Figure 1B) [23]. The N-terminal region Val-41 

to Arg-143 of bovine ZP3 containing four Cys residues at 45, 77, 98, and 139 (translational initiation 

Met is numbered as (1) corresponds to ZP-N. As the interaction between IHP and EHP has been shown 

to inhibit premature assembly of ZP proteins [19], IHP may be involved in the interaction of ZP3 with 

ZP4. The IHP is located in the region spanning Val-170 to Glu-177 (Figure 1A). The region from IHP 

to the C-terminus of bovine ZP3, containing eight Cys residues at 216, 238, 280, 299, 318, 320, 321, 

and 326 corresponds to ZP-C. Further fragmentation of ZP-N and ZP-C is not possible due to the disulfide 

bonds. The sequence similarities (57% identity) and the same disulfide bond pattern between bovine 

ZP3 and chicken ZP3 suggest that secondary and tertiary structures of bovine ZP3 are similar to those 

of chicken ZP3 (see Figure 1A for �-strands). Based on X-ray crystallographic models of the chicken 

ZP3 precursor, residues 143 to 169 of bovine ZP3 are thought to function as the flexible hinge region, 

although the three-dimensional structure of this region has yet to be determined [20]. Using these 

structural features as a starting point, fragments of the mature bovine ZP3 polypeptide spanning the  

N-terminus of mature ZP3 to IHP (Arg-32 to Glu-178), the N-terminus without the IHP (Arg-32 to 

Lys-168) and the N-terminus truncated prior to the hinge region (Arg-32 to Gly-145), along with C-terminal 

fragments Glu-177 to Arg-348 and Gln-144 to Arg-348 were expressed using a baculovirus-Sf9 cell 

system (Figure 1C). Each ZP3 fragment was tagged with six histidine residues (His-tag) followed by 

S-tag on the N-terminus of the protein and co-expressed with ZP4 containing an N-terminal FLAG-tag 

and an S-tag by co-infecting Sf9 cells with the corresponding recombinant baculoviruses. ZP3 fragments 

were pulled down using TALON affinity resin specific for the His-tag, whereas co-precipitated ZP4 

was detected with an antibody specific to FLAG-tag. 

When ZP4 was expressed alone, only a small quantity of ZP4 was precipitated by TALON resin 

(Figure 2A). This quantity was significantly increased when co-expressed with ZP3(32–178), ZP3(32–168), 

ZP3(144–348) or ZP3(177–348); however, when ZP4 was co-expressed with ZP3(32–145), the quantity 

of precipitated ZP4 was similar to that of ZP4 expressed alone (Figure 2A). Relative quantities of 

precipitated ZP4 were calculated based on the quantities recovered when ZP4 was expressed alone and 

when it was co-expressed with ZP3(32–178), respectively, as determined using NIH Image J software. 

The percentages of co-precipitated ZP4 were not significantly different between ZP3(32–178) and 

ZP3(32–168), suggesting that the IHP of ZP3 is not essential for the interaction of ZP3 with ZP4. In 

contrast, the percentage of co-precipitated ZP4 was dramatically reduced to near basal levels when  

co-expressed with ZP3(32–145), suggesting that the region from 146 to 168 is necessary for the interaction 

of ZP3(32–178) with ZP4. The quantity of ZP4 recovered following co-expression with ZP3(177–348) 

was significantly lower than that of ZP4 co-expressed with ZP3(144–348); however, the difference in 

percentages was small, suggesting that one of the ZP4 binding sites is located in the region 177–348, 

making region 144–176 dispensable for the ZP4 binding of ZP3(144–348). Further efforts to identify 

the region within the 177–348 fragment responsible for ZP4 binding were not performed, as we instead 

chose to focus on the ZP4 interaction site in the region 146 to 168 of ZP3. 
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Figure 2. Co-precipitation of ZP4 with ZP3 fragments. (A,B) Detection of N-terminally FLAG- 

and S-tagged ZP4 co-precipitated with N-terminally His- and S-tagged ZP3 fragments by Western 

blot. ZP4 was expressed alone (ZP4 alone) or in combination with ZP3 fragments (indicated 

above each panel). The recombinant ZP3 fragments were pulled down using TALON resin. 

FLAG-tagged ZP4 in the pellet (P) and in the supernatant (S) was detected with an antibody 

specific to FLAG-tag (upper panels, ZP4); His-tagged ZP3 fragments in the P and the S 

were detected with an antibody specific to His-tag (lower panels, ZP3); (C) Percentage of 

ZP4 co-precipitated with each ZP3 fragment among the total ZP4 recovered in the pellet and 

supernatant. Percentages were quantified as described in the Experimental Section. The 

percentage of ZP4 co-precipitated with ZP3(32–178) is represented as 100%. Experiments 

were performed at least three times. Data are shown as mean ± S.D. Statistically significant 

differences, relative to 100% expression, are indicated as p > 0.05 (*) and p > 0.01 (**). 

Evidence of a ZP4 binding site in the hinge region of ZP3 (residues 146–168) was further investigated 

by co-precipitation of ZP4 with each of the following ZP3 fragments: ZP3(32–160), ZP3(32–155),  

and ZP3(32–149) (Figure 1C). The co-precipitation of ZP4 with ZP3(32–160) was similar to that of 

ZP3(32–168) (Figure 2B). Further deletion from 156 to 160 dramatically reduced the co-precipitation 

of ZP4; additional deletions between residues 150 and 155 failed to restore the level of co-precipitated 

ZP4. These results suggest that the region spanning 161 to 178 is not necessary for the interaction of 

ZP3(32–178) with ZP4, whereas residues 156 to 160 are critically important for the binding of ZP4 to 

ZP3(32–178). Further deletion from 146 to 149 reduced the quantity of precipitated ZP4 by a small but 

significant extent, suggesting that the region from 146 to 149 is also involved in the ZP4 binding of ZP3. 
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Among residues 156–160, Arg-160 is the least conserved, with Ser, Trp, and His residues observed 

at this site in other mammals. Val-157 is almost completely conserved, although Leu is also found in 

some mammals. Trp-156, Pro-158, and Phe-159 are completely conserved across all mammals described 

to date; this strong conservation suggests that these residues are likely important for the binding of ZP4 

to ZP3(32–178). 

Our results indicating an interaction between the C-terminal half of ZP3 and ZP4 are consistent with 

previous reports describing avian homologs of ZP3. In addition to this region, these data suggest that 

there is also an additional ZP4-interaction site in the flexible hinge region of bovine ZP3. 

2.2. Involvement of the Hinge Region of ZP3 in the Sperm-Binding Activity of the ZP3/ZP4 Complex 

A mixture of each of the ZP3 fragments and ZP4 was partially purified using TALON resin (Figure 3A,C) 

and used to test the inhibitory activity of each of the mixtures for the binding of bovine sperm to 

plastic wells coated with solubilized bovine ZP. The number of bovine sperm binding to ZP-coated 

wells was reduced to ~35% in the presence of solubilized bovine ZP. Neither the ZP3 fragment nor the ZP4 

alone significantly inhibited sperm-ZP binding. In contrast, the ZP3(32–178)/ZP4 mixture significantly 

inhibited binding (Figure 3B). We next tried to identify a region on ZP3(32–178) involved in the formation 

of a sperm-binding active complex with ZP4. The co-expressed mixtures of ZP3(32–168)/ZP4 and 

ZP3(32–160)/ZP4 showed inhibitory activities for sperm-ZP binding that were similar to those of 

ZP3(32–178)/ZP4, whereas ZP3(32–155)/ZP4, ZP3(32–149)/ZP4, and ZP3(32–145)/ZP4 failed to 

significantly inhibit sperm-ZP binding. Thus, the inhibitory activity seen here is consistent with that of 

the co-precipitation result, confirming our previous result showing that the formation of the ZP3/ZP4 

complex is necessary for its sperm-binding activity [12] and further suggesting that residues 161 to 178 

are not necessary for the formation of the sperm-binding active ZP3/ZP4 complex. 

The combinations of ZP3(144–348)/ZP4 and ZP3(177–348)/ZP4 significantly inhibited sperm-ZP 

binding, although the inhibitory activity of ZP3(177–348)/ZP4 was significantly lower than that of 

ZP3(144–348)/ZP4 (Figure 3D). These results suggest that the C-terminal region of ZP3 can form 

sperm-binding active complexes with ZP4 and that the region spanning residues 144 to 176 is involved 

in the formation of complexes possessing higher sperm-binding activity. Similarly, the inhibitory activity 

of ZP3(144–348)/ZP4 for sperm-ZP binding was significantly lower than that of the ZP3(32–178)/ZP4 

mixture, suggesting that residues 144 to 176 contribute more to the sperm-binding activity of the 

ZP3(32–178)/ZP4 mixture than to the activity of ZP3(144–348)/ZP4. 

2.3. Involvement of N-Linked Glycans on ZP3(32–178) in the Formation of Sperm-Binding Complexes 

ZP3(32–178) has two N-glycosylation sites at Asn-124 and Asn-146. Here, we mutated each of 

these sites, either alone or in combination, to Asp. Concanavalin A recognized both ZP3(32–178) and 

ZP3(32–178) with Asn-124 mutated to Asp (ZP3(32–178)N124D), as well as ZP3(32–178) with Asn-146 

mutated to Asp (ZP3(32–178)N146D) (Figure 4A), indicating that both Asn residues are N-glycosylated. 

Concanavalin A did not recognize ZP3(32–178) with both Asn-124 and Asn-146 mutated to Asp 

residues (ZP3(32–178)N124,146D) (Figure 4A), confirming the mutation of the two N-glycosylated 

Asn residues. Mutation of either Asn-124 or Asn-146 to Asp failed to reduce the quantity of ZP4  

co-precipitated with ZP3(32–178) (Figure 4B and Figure 2C), indicating that N-glycosylation is not 
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necessary for complex formation between ZP3(32–178) and ZP4. This result further indicates that 

these mutations did not destroy the steric structure of ZP3(32–178), since ZP3(32–178) retained the 

activity for the formation of a complex with ZP4 after the N-glycosylation sites were mutated. 

 

Figure 3. Inhibitory activity of a mixture of ZP3 fragment and ZP4 for the binding of 

bovine sperm to the zona pellucida (ZP). (A,C) SDS-polyacrylamide gel electrophoresis of a 

mixture of each ZP3 fragment and ZP4. N-terminally His-tagged ZP4 and an N-terminally 

His-tagged ZP3 fragment (indicated above each panel) were co-expressed in Sf9 cells, and 

the mixture was partially purified using TALON resin specific to His-tag. Gels were then 

silver-stained, with molecular mass standards (kDa) indicated on the left side of each panel. 

Bands at ~66 kDa correspond to ZP4, and the bands at 21 to 31 kDa in (A) and the bands  

at ~35 kDa in (C) correspond to ZP3 fragments; (B,D) Inhibitory activity of the mixture of 

ZP3 fragment and ZP4 for sperm-ZP binding. The number of sperm binding to ZP-coated 

wells in the absence of inhibitors was designated as 100%. Assays were repeated at least 

three times. Data are presented as means ± S.D. with statistical significance relative to 

“without inhibitors” and “ZP3(32–178)/ZP4” (asterisks on the left side and the right side of 

S.D. bars, respectively) indicated as p > 0.05 (*) and p > 0.01 (**). 
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Figure 4. Effect of N-glycosylation site mutation of the ZP3 fragment on active sperm-binding 

complex formation between ZP3 fragment and ZP4. (A) Lectin blots of N-glycosylation 

site mutants of the ZP3(32–178) fragment. ZP3(32–178) fragment with Asn-124 mutated 

to Asp (ZP3(32–178)N124D), Asn-146 mutated to Asp (ZP3(32–178)N146D), and both Asn 

residues mutated to Asp (ZP3(32–178)N124,146D) as well as ZP3(32–178) were subjected 

to lectin blots. The same membrane was probed three times with Concanavalin A (ConA), 

Agaricus bisporus agglutinin (ABA), and, finally, anti-porcine ZP3 antiserum (anti ZP3), 

as described in the Experimental Section. ZP3 fragments are indicated by arrows; (B) Effect 

of N-glycosylation site mutation on ZP4 co-precipitation. N-terminally FLAG- and S-tagged 

ZP4 were expressed alone (ZP4 alone) or in combination with N-terminally His- and S-tagged 

ZP3 fragments (indicated above each panel). The recombinant ZP3 fragments were pulled 

down by TALON resin specific to His-tag. FLAG-tagged ZP4 in the pellets (P) and in 

supernatants (S) were detected with an antibody specific to FLAG-tag (upper panel, ZP4); 

His-tagged ZP3 fragments in the P and the S were detected with an antibody specific to 

His-tag (lower panel, ZP3). Percentages of co-precipitated ZP4 are shown in Figure 2C; 

(C) SDS-polyacrylamide gel electrophoresis of mixtures of N-glycosylation site mutants of 

ZP3(32–178) fragment and ZP4. Gels were then silver-stained, with molecular mass standards 

(kDa) indicated on the left side of each panel. Bands at ~66kDa correspond to ZP4; bands 

at 26 to 31kDa correspond to ZP3 fragments; (D) Inhibitory activity of the mixture of ZP3 

fragment and ZP4 for sperm-ZP binding. The number of sperm binding to the ZP-coated 

well in the absence of inhibitors was designated as 100%. Assays were repeated at least 

three times. Data are presented as means ± S.D. with statistical significance relative to “without 

inhibitors” and “ZP3(32–178)/ZP4” (asterisks on the left side and the right side of S.D. bars, 

respectively) indicated as p > 0.05 (*) and p > 0.01 (**). 

Co-expressed mixtures of ZP3(32–178)N124D and ZP4 inhibited sperm-ZP binding at levels similar 

to ZP3(32–178)/ZP4, whereas the mixture of ZP3(32–178)N146D and ZP4 exhibited significantly lower 

levels of inhibitory activity than ZP3(32–178)/ZP4 (Figure 4C,D). Mutation of both Asn residues to 
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Asp also significantly reduced the inhibitory activity of the ZP3(32–178)/ZP4 mixture (Figure 4D). 

Thus, the mutation of Asn-146 to Asp did not reduce the co-precipitation of ZP4, but it did reduce the 

sperm-binding activity of the complex, suggesting that N-glycan linked to Asn-146 is involved in the 

sperm-binding activity of ZP3(32–178)/ZP4. 

When chicken ZP3 was analyzed by X-ray crystallography, the single N-glycosylation site corresponding 

to Asn-146 of bovine ZP3 was mutated to Gln; however, the recombinant chicken ZP3 without N-glycans 

still retained significant sperm-binding activity [20]. On the other hand, mutation of a single O-glycosylation 

site corresponding to Thr-155 in bovine ZP3 to Ala reduced the sperm-binding activity. As bovine ZP3 

does not, by itself, inhibit sperm-ZP binding [12], the mechanisms regulating the binding of sperm to 

ZP might differ in bovines and chickens. 

In combination with previous reports detailing the structure of chicken ZP3, the data presented 

herein suggest that glycans linked to the flexible hinge region are involved in sperm binding in vitro. 

Further studies will be necessary to determine whether the N-glycan at Asn-146 of bovine ZP3 binds to 

sperm directly or if the absence of an N-glycan at Asn-146 has an allosteric effect on the structure of 

the ZP3(32–178)/ZP4 complex. 

3. Experimental Section 

3.1. Construction of Recombinant Baculovirus Transfer Plasmids for Bovine ZP Proteins 

Plasmid constructions for His- and S-tagged ZP4 as well as for FLAG- and S-tagged ZP4 have been 

previously reported [12]. The constructs encode Lys-25 to Arg-464 of ZP4 with the translation initiation 

Met numbered 1. 

Preparation of cDNAs encoding N-terminal or C-terminal deletion mutants of ZP3 was performed 

by PCR using bovine ZP3 cDNA as a template. The 5' sense primers contained a BamHI site, and  

the 3' antisense primers contained an XhoI site for ZP3(32–178) fragment, a HindIII site for the other 

N-terminal ZP3 fragments, or a BamHI site for the C-terminal ZP3 fragments following a stop codon 

(Table 1). The PCR products were digested with the appropriate restriction enzymes and electrophoresed 

on 1% agarose gels; bands of expected sizes were excised from the gels, and the recovered DNA was 

ligated to a pBACgus6 vector (Novagen, Madison, WI, USA) digested with the same set of enzymes. 

The DNA sequences of the constructed plasmids were confirmed using a commercial DNA sequencing 

service (Macrogen, Fukuoka, Japan). The resulting recombinant ZP3 fragments contained N-terminal 

His- and S-tags. 

Preparation of pBACgus6 plasmids encoding ZP3(32–178)N124D and ZP3(32–178)N146D was 

performed with the PrimeSTAR Mutagenesis Basal kit (TAKARA, Kyoto, Japan) using pBACgus6 

encoding ZP3(32–178) as a template. All primers used in these experiments are listed in Table 1. pBACgus6 

encoding ZP3(32–178)N124,146D was prepared by inserting a N146D mutation into ZP3(32–178)N124D 

using the same mutagenesis kit. The DNA sequences of the constructed plasmids were confirmed  

by sequencing. 
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Table 1. Primers used for amplification of ZP3 cDNA fragments and for site-directed mutagenesis. 

 5' Sense 3' 5' Antisense 3' 
ZP3(32–178) CGGATCCTCGCTTCAGGCCATCAAAGCC TCTCGAGCTACTCCTCCATCAGGCGCAG 

ZP3(32–168) CGGATCCTCGCTTCAGGCCATCAAAGCC CAAGCTTACTTCTCCTCCGAGAACAC 

ZP3(32–160) CGGATCCTCGCTTCAGGCCATCAAAGCC CAAGCTTACCTGAATGGCACCCAGGTG 

ZP3(32–155) CGGATCCTCGCTTCAGGCCATCAAAGCC CAAGCTTAGGTGGGCTGGATGGCCCAG 

ZP3(32–149) CGGATCCTCGCTTCAGGCCATCAAAGCC CAAGCTTAGCTACTCACATTGCCCTGCC 

ZP3(32–145) CGGATCCTCGCTTCAGGCCATCAAAGCC CAAGCTTAGCCCTGCCTGGGGTAGTG 

ZP3(144–348) CGGATCCTCAGGGCAATGTGAGTAGCTG CGGATCCTTACCTGCGACTTCGGGGAAC 

ZP3(177–348) CGGATCCTGAGGAGAACTGGAGCGCCG CGGATCCTTACCTGCGACTTCGGGGAAC 

N124D TGCAGGAGACCTGTCCATCCTGAGGA GACAGGTCTCCTGCAGGGCGGGGGTT 

N146D GCAGGGCGATGTGAGTAGCTGGGCCA CTCACATCGCCCTGCCTGGGGTAGTG 

Restriction sites (BamHI, XhoI and HindIII) and point mutation sites from AAT/C (Asn) to GAT/C (Asp) are indicated by 

single and double underlines, respectively. 

3.2. Recombinant Baculovirus 

The procedure for preparing recombinant viruses for His- and S-tagged ZP4 and FLAG- and S-tagged 

ZP4 has been previously reported [12]. 

Plasmid DNA preparations containing individual cDNAs of ZP3 mutants were transfected along 

with BacMagic DNA (Novagen) into Sf9 cells according to the manufacturer’s protocol. Sf9 cells were 

routinely propagated in Sf-900II serum-free medium (Invitrogen, Carlsbad, CA, USA). Sf9 cells (1.8 × 106) 

were attached to flasks, infected with recombinant virus, and cultured in 2.5 mL of Sf-900II serum-free 

medium for 48 h at 27 °C. The culture supernatant fraction was then recovered and mixed with 12 �L 

of a 50% suspension of TALON resin (TAKARA). The mixture was shaken gently at room temperature 

for 1 h to allow binding of the recombinant proteins to TALON through their His-tags. The affinity 

beads were washed three times with phosphate-buffered saline (PBS, pH 7.4), followed by centrifugation. 

The pellet containing the beads was then prepared for SDS-polyacrylamide gel electrophoresis (PAGE). 

Expression and secretion of each recombinant protein into the culture supernatant was examined by 

Western blot analysis using an antibody specific to His-tag (GE Healthcare, Little Chalfont, UK). 

3.3. Detection of the Complex Formation of the ZP3 Fragment and ZP4 

FLAG- and S-tagged ZP4 were expressed either alone or in combination with each of the His- and 

S-tagged ZP3 fragments by infection of Sf9 cells (2.5 mL at 1.0 × 106 cells/mL) with a corresponding 

baculovirus or a mixture of corresponding baculoviruses and a successive culture for 48 h at 27 °C. 

The culture media were centrifuged at 800× g for 5 min, and each supernatant was mixed with 12 �L 

of a 50% suspension of TALON resin. The mixture was gently shaken for 1 h at room temperature. 

The TALON resins were recovered as pellets by centrifugation at 2000× g for 1 min, and S-tagged proteins 

in the supernatants were recovered as pellets using S-protein agarose (Novagen). Pellets were then 

washed three times with PBS; each washing was followed by centrifugation at 2000× g for 1 min. Final 

pellets were prepared for SDS-PAGE. SDS-PAGE was performed under reducing conditions according 

to the Laemmli protocol [24]. Proteins were separated on 12.5% gels and transferred to Immobilon-P 

membranes (Millipore, Bedford, MA, USA) according to the method of Towbin [25]. The membranes 
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were blocked with 3% bovine serum albumin (BSA) in Tris-buffered saline (TBS; 20 mM Tris-HCl, 

pH 7.5, 500 mM NaCl) for 1 h. FLAG-tagged ZP4 and His-tagged ZP3 fragments were detected with 

anti-FLAG M2 antibody (diluted to 4.8 �g/mL; Sigma, St. Louis, MO, USA) and anti-His antibody 

(diluted 1/3000; GE Healthcare), respectively, as primary antibodies and horseradish peroxidase-conjugated 

anti-mouse IgG antibody (diluted 1/2000; Sigma, St. Louis, MO, USA) as a secondary antibody. The blots 

were developed using 3,3',5,5'-tetramethyl benzidine (TMB) solution (KPL, Gaithersburg, MD, USA). 

The membranes were scanned. Band intensities of ZP4 were quantified using Image J software. When 

ZP4 was expressed alone, a small quantity of ZP4 was precipitated. The quantity of this non-specifically 

precipitated ZP4 was subtracted from those of ZP4 co-precipitated with ZP3 fragments. The percentages 

of precipitated ZP4 were calculated as follows: (band intensity of ZP4 in the pellet)/[(band intensity of 

ZP4 in the pellet) + (band intensity of ZP4 in the supernatant)] × 100. The percentages of ZP4  

co-precipitated with ZP3(32–178) varied according to experiments; however, those were designated as 

100% as a standard. 

3.4. Purification of Recombinant Proteins from Culture Supernatants 

For large-scale protein production, Sf9 cells (200 mL at 1.0 × 106 cells/mL) were infected with a 

corresponding recombinant virus or a mixture of corresponding recombinant viruses. After 48 h of 

culture in suspension, the medium was centrifuged at 800× g for 10 min, and the supernatant fraction 

was filtered through a 0.45 �m filter. The filtrate was sonicated and then stored at 4 °C. 

For purification of His-tagged proteins, the filtered and sonicated supernatants were subjected to 

metal-chelation column chromatography using TALON resin equilibrated with column buffer (20 mM 

Tris-HCl, pH 7.9, 0.15 M NaCl) at a flow rate of 0.5 mL/min at 4 °C. The column was washed with 

10-column volumes of the column buffer, and the bound protein was eluted with six-column volumes 

of column buffer containing 150 mM imidazole. 

Protein concentrations were determined using Protein Assay Dye Reagent Concentrate (Bio-Rad, 

Hercules, CA, USA) with BSA as a standard. Protein yield was typically 15 μg from 200-mL culture. 

3.5. Lectin Blot 

Proteins were separated on 12.5% gels and transferred to Immobilon-P membranes. The membranes 

were blocked with TBS containing 3% BSA for 1 h and then incubated for 2 h with 1 �g/mL of  

biotin-conjugated Concanavalin A (Honen, Tokyo, Japan) in TBS containing 0.05% Tween 20 and 1 mM 

each of MgCl2 and CaCl2 (T-TBS). Membranes were washed three times for 15 min each with T-TBS 

and incubated for 1 h with 0.5 �g/mL of horseradish peroxidase-conjugated streptavidin (Sigma) in  

T-TBS. Membranes were then washed three times, followed by colour development using TMB.  

The membranes were stripped by incubating at 50 °C for 30 min in 62.5 mM Tris-HCl (pH 6.7) 

containing 2% SDS and 100 mM 2-mercaptoethanol and then used for the next lectin blot with 

Agaricus bisporus agglutinin (ABA, EY Laboratories, San Mateo, CA, USA) and, finally, with  

anti-porcine ZP3 antiserum [6]. 
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3.6. Competitive Inhibition Assays 

Competitive inhibition assays were performed in 96-well plates, as described previously [12]. 

Briefly, solubilized bovine ZP (0.2 �g in 50 �L of PBS) was adsorbed to each well of a 96-well plate 

(Nalge Nunc, Rochester, NY, USA). The wells were blocked with BSA. Frozen bovine sperm were 

thawed, washed twice, and then capacitated in pre-warmed (38.5 °C) Brackett and Oliphant (BO) solution 

without BSA [12,26]. The bovine sperm were then capacitated by incubation in BO solution containing 

BSA for 30 min. Capacitation and subsequent incubations were carried out at 38.5 °C under 2% CO2. 

Aliquots (50 �L) containing 4 × 105 capacitated sperm were mixed with 50 �L of BO solution containing 

solubilized bovine ZP or each recombinant ZP protein and then incubated for 30 min in the presence of 

0.3 μg inhibitor. The wells were rinsed three times with PBS, the pre-incubated sperm solutions were 

transferred into the wells, and the plates were incubated for 2 h. The wells were then washed three 

times with BO solution, 50 �L of 70% glycerol in PBS was added to each well; sperm bound to the 

wells were recovered by 20 strokes of vigorous pipetting. The number of sperm in 0.1 �L of suspension 

was determined using a haemocytometer. The number of sperm bound to the wells not coated with 

solubilized ZP (0 to 5) was subtracted from the number of sperm bound to the wells coated with 

solubilized ZP. The number of bound sperm in the control experiments without inhibitors varied from 

90 to 200, with an average of 110. 

3.7. Statistical Analysis 

Welch’s t-test was used to determine whether the inhibitory activities of recombinant ZP proteins 

differed significantly. Differences were considered to be significant at p < 0.05. 

4. Conclusions 

Both the N- and C-terminal halves of bovine ZP3 can form sperm-binding active complexes with 

ZP4. The hinge region is necessary for the interaction of the N-terminal half of ZP3 with ZP4. N-linked 

glycans bound to the hinge region are involved in the sperm-binding activity of complexes consisting 

of the N-terminal half of ZP3 and ZP4, although the mechanism of this involvement, including whether 

it is direct or allosteric, remains poorly understood. 
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