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Abstract: The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs 
bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is 
observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. 
Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA 
and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, 
Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC 
inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit 
cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription 
through activation of the transcription factor Early Growth Response protein 1 (EGR1). 
Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of 
EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer. 
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1. Introduction 

Colorectal cancer (CRC) is a leading cause of cancer-associated morbidity and mortality among 
adults worldwide despite existing therapies (surgery, radiotherapy and chemotherapeutic agents) [1]. 
The onset and progression of this disease results from an accumulation of genetic and epigenetic 
defects that allow for altered gene expression and overabundance of tumor promoting factors [2].  
In normal intestinal epithelium, post-transcriptional mechanisms play a crucial role in regulating the 
expression of growth-promoting and inflammation-associated gene expression [3]. A conserved feature 
associated with these genes is the AU-rich element (ARE) present in the mRNA 3' untranslated region 
(3' UTR). This cis-acting regulatory element serves as sites for trans-acting RNA-binding proteins that 
mediate events leading to rapid mRNA decay or stability [4]. During the process of CRC development, 
the ability of the ARE to function as an mRNA decay element is lost allowing for overexpression of 
factors that promote tumor growth, invasion, and angiogenesis [5–7]. Better understanding of the 
defects occurring at the post-transcriptional level may provide novel therapeutic approaches, which can 
improve patient prognosis. 

Tristetraprolin (TTP, ZFP36) is a well-characterized RNA-binding protein that functions to promote 
rapid decay of ARE-containing target mRNAs [8]. The physiological significance of TTP in  
post-transcriptional gene regulation of ARE-mRNAs is evident from the Zfp36 knockout mouse model, 
where these mice develop multiple inflammatory syndromes resulting from increased expression of 
tumor necrosis factor-� (TNF-�), cyclooxygenase-2 (COX-2) and other pro-inflammatory factors due 
to defects in their respective rapid mRNA turnover [9–12]. Current work has identified distinct signaling 
pathways that regulate the expression and function of TTP in different cell types, with regard to its 
phosphorylation, sub-cellular localization, ARE-binding, and interaction with other cellular proteins [13]. 
Our recent work examining TTP expression in various stages of colorectal cancer has shown that loss 
of TTP expression occurs at early stages of tumorigenesis and how ectopic expression of TTP in colon 
cancer cells attenuates cell proliferation [7]. Through its ability to bind AREs and target the bound 
mRNA for rapid degradation, TTP can limit the expression of a number of critical genes frequently 
overexpressed in inflammation and cancer, thereby acting in a tumor suppressor capacity. However, 
what still remains unanswered is how CRC cells lose TTP expression during the process of carcinogenesis 
since ZFP36 (located on 19q13.1) does not appear to be a target of genomic loss or rearrangement in 
CRC [14]. 

Epigenetic mechanisms of gene silencing allow for the transcriptional repression of tumor 
suppressor genes in various human malignancies including CRC [15]. DNA methyltransferases (DNMTs) 
catalyze DNA methylation at CpG islands, typically in promoter regions of the genome, and negatively 
impact transcription [16]. Chemical modifications of histones, most commonly acetylation of histone 
H3 and H4 reduce the affinity between histones and DNA, allowing for promoter region accessibility to 
transcription factors and RNA polymerase [17]. However, histone deacetylases (HDACs) promote 
transcriptional repression and have been associated with silencing of many tumor suppressor genes, 
since many HDACs are overexpressed in cancer [15,18]. Consistent with this, HDAC inhibitors provide an 
efficient pharmacologic approach for cancer therapy by restoring tumor suppressor gene expression [15]. 

In this study, we investigated if HDAC inhibitors can restore TTP expression in CRC cells. Our 
results show that HDAC inhibitors induce TTP expression at the transcriptional level, leading to the 
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downregulation of the ARE-containing gene, COX-2. Further analysis indicated an indirect epigenetic 
regulation of TTP was occurring and TTP induction was owing to an upregulation of EGR1, a known 
transcription factor for TTP. These findings bring new insights into loss of post-transcriptional regulatory 
circuits during CRC tumor development and demonstrate that HDAC inhibitors could restore TTP 
expression in cancer cells, thus providing clinical perspectives for these compounds. 

2. Results 

2.1. HDAC Inhibitors Promote TTP Expression in CRC Cells 

Our work and that of others have shown loss of TTP expression to occur in colon cancer cells and 
tumors as compared to normal tissue [7,19,20], however the mechanisms of TTP loss are not known. 
To determine if chromatin remodeling was involved in ZFP36 gene silencing, CRC cells (HCA-7, 
HCT116, Moser, and SW480) and the cervical cancer cell line HeLa were treated with trichostatin A 
(TSA) followed by analysis of TTP mRNA and protein expression. In all cell lines examined TSA 
treatment promoted a 2- to 4-fold induction in TTP mRNA and protein (Figure 1). 

 

Figure 1. HDAC inhibitors promote TTP expression. Colon cancer (HCA-7, HCT116, Moser, 
SW480) and HeLa cells treated with 0.4 �M TSA for 12 h were examined for changes in 
TTP mRNA levels (top) by qPCR using GAPDH as a loading control and normalized to 
non-treated cells. TTP protein (bottom) expression was analyzed by Western blot using  
�-actin as a loading control. The data represent the mean of three independent experiments 
(± SD). *** p < 0.001. 

In HCT116 cells, TSA-mediated induction of TTP was time- and dose-dependent manner (Figure 2A,B). 
Similar results were obtained with using the HDAC inhibitors SAHA and sodium butyrate (NaB) 
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(Figure 2C), further indicating the involvement of HDACs in ZFP36 silencing. Previous reports have 
shown that the loss of TTP can be mediated by CpG island methylation within TTP promoter [21]. 
However, we did not found any alteration of TTP expression in HCT-116, Moser and HeLa cells 
treated with the DNA demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) (Figure 2D). 

 

Figure 2. HDAC inhibitors promote TTP expression. (A) Time course of TTP mRNA 
expression in HCT116 cells treated with 0.4 �M TSA. (B) TTP induction in HCT116 cells 
treated cells treated with different doses of TSA for 12 h. (C) HCT116 cells were treated 
for 12 h with 5 �M SAHA or 5 mM sodium butyrate (NaB) and assayed for TTP mRNA 
expression by qPCR. (D) Cells (HCT116, Moser, and HeLa) untreated or treated with 10 �M 
5-Aza-dC for 48 h were examined for TTP mRNA levels by quantitative PCR using 
GAPDH as normalization control. The data represent the mean of three independent 
experiments (± SD). * p < 0.05, ** p < 0.01, *** p < 0.001. 

2.2. TSA-Induced TTP Expression Contributes to ARE-mRNA Decay and Growth Inhibition 

Based on its ability to promote TTP expression, we hypothesized that TSA treatment would inhibit 
ARE-mRNA expression. To test this, TSA-treated HeLa cells were examined for respective changes in 
the ARE-containing TTP-target mRNA COX-2 [7]. HeLa cells represent a suitable model to study COX-2 
expression, since its expression can be induced by pro-inflammatory cytokines such as IL-1� (Figure 3A). 
In both non-treated and IL-1�-stimulated cells, TSA-treatment attenuated COX-2 protein levels 
compared to their respective non-treated controls (Figure 3A, top). This effect was dependent on  
TSA-mediated induction of TTP since downregulation of TTP by siRNA abrogated COX-2 
downregulation in TSA-treated cells (Figure 3A, bottom). To determine if TSA inhibited COX-2 
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expression by promoting mRNA decay, IL-1�-stimulated HeLa cells were treated with TSA for 12 h 
and COX-2 mRNA half-life was assessed after actinomycin D (ActD) was added to cells to halt 
transcription. Figure 3B shows that TSA promoted enhanced decay of COX-2 mRNA (t1/2 = 105 min) 
as compared to control-treated cells (t1/2 = 240 min). 

 

Figure 3. TSA-induced expression of TTP promotes ARE-mRNA decay. (A) HeLa cells 
were treated left untreated or stimulated with 10 ng/mL of IL-1� for 24 h to induce COX-2 
expression. Cells were then transfected with control or TTP siRNA for 36 h and then 
treated with TSA (0.4 �M) for 12 h. COX-2 and �-actin were analyzed by Western blot. 
(B) HeLa cells were stimulated with IL-1� (10 ng/mL) for 24 h and then treated with 0.4 �M 
TSA for 12 h. Act D (5 �g/mL) was added for the indicated time points, after which COX-2 
mRNA stability was assayed by RT-PCR using GAPDH as a loading control. Blots shown 
are representative of duplicate experiments. 

The ability of HDAC inhibitors to alter CRC cell growth is well established [15]. To determine if 
this effect is mediated by induction of TTP by HDAC inhibitors, siRNA-knockdown of TTP was 
performed in HCT116 cells treated with TSA and evaluated for proliferation by Ki-67 staining (Figure 4). 
With the control siRNA, TSA-treatment decreased the number of Ki-67 positive cells by 53.36 ± 1.66%. 
Whereas in TTP deficient cells, TSA decreased the number of Ki-67 positive cells only 19.92 ± 0.52%. 
These results are consistent with TTP-dependent growth inhibition of CRC cells observed through 
adenoviral delivery of TTP [7] indicating that TTP contributes to TSA-induced growth inhibition. 

2.3. HDAC Inhibitors Promote TTP Transcription 

In order to determine that induction of TTP in response to HDAC inhibitor treatment reflects an 
actual transcriptional event, we examined the ability of TSA to influence TTP promoter activity. A 
luciferase expression construct containing 659 bp of the human TTP promoter [21] was transfected into 
HCT116 cells and treated with TSA, SAHA, or NaB. Shown in Figure 5A, treatment of cells with 
HDAC inhibitors resulted in a significant increase in TTP promoter activity indicating their ability to 
promote ZFP36 transcription. Similar results were observed in TSA-treated HeLa cells (Figure 5B). As 
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a measure of transcriptional activation by TSA, the presence of activated RNA polymerase II at the 
endogenous ZFP36 promoter was evaluated by chromatin immunoprecipitation (ChIP) (Figure 5C). 
ChIP assay was performed using an antibody against RNA polymerase II phosphorylated on Ser5 of 
the C-terminal domain (CTD) as a marker for active gene transcription, followed by PCR to detect 
binding within the �17/+162 ZFP36 promoter region. Compared to control-treated cells, TSA promoted 
a >2-fold increase in association of RNA pol II phospho-CTD to the TTP promoter (Figure 5C), which 
is consistent with the level of induction of TTP mRNA by TSA treatment (Figure 1). This enrichment 
was not observed at the control GAPDH promoter. 

 

Figure 4. TSA-induced expression of TTP promotes growth inhibition. Immunofluorescent 
detection of Ki-67, shown in green, in HCT116 cells transfected with control siRNA or 
TTP siRNA for 24 h and then treated with 0.4 �M TSA for additional 24 h. DAPI nuclear 
staining is shown. Bar graphs represent the average percentage of Ki-67 positive cells per 
field ± SD (n = 3 fields) of 3 independent experiments. The efficiency of TTP knockdown 
is shown by Western blot of TTP expression after 24 h of siRNA transfection followed  
by 12 h of TSA treatment. The data represent the mean of three independent experiments 
(± SD). * p < 0.05, *** p < 0.001. 
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Figure 5. HDAC inhibitors increase TTP transcription. (A and B) HCT116 and HeLa cells 
were transfected with a luciferase reporter containing 659 bp of the human TTP promoter 
(pTTP-Luc) or control pGL3-Basic for 36 h, and treated with 0.4 �M TSA, 5 �M SAHA,  
or 5 mM NaB for 12 h. Luciferase activity was normalized to total protein. Values shown 
are normalized to Luc expression in the respective control-treated (Ctrl) cells and indicate 
the average of 3 independent experiments ± SD. (C) ChIP of phosphorylated RNA Pol II 
bound to TTP promoter. Sonicated chromatin from HCT-116 cells treated with 0.4 �M TSA 
for 12 h was immunoprecipitated with anti-RNA pol II phospho-CTD (Ser5) or nonspecific 
IgG. PCR analysis of eluted DNA was performed using primers to amplify a 179 bp region 
(�17/+162) of the ZFP36 promoter. 0.5% of input DNA is shown in ethidium bromide-stained 
gels. qPCR was used to quantitate fold-enrichment of ZFP36 promoter (�17/+162) or  
control GAPDH promoter in respective ChIP reactions. The data are represented as the 
immunoprecipitated (IP) and input chromatin signal ratio and are the average of 3 experiments 
± SD. *** p < 0.001. 

A primary mechanism by which HDAC inhibitors promote gene expression is through increased 
acetylation status of histones, with acetylation of histone H3 and H4 in promoter regions commonly 
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through this mechanism, we analyzed the acetylation status of histone H4 in ~700 bp spanning the 
ZFP36 promoter in HCT116 cells by ChIP (Figure 6). Using a pan-acetylated histone H4 antibody, 
acetylation of histone H4 was observed at varying levels within ZFP36 promoter. However, treatment 
with TSA did not further increase H4 acetylation in the respective regions. These results indicate the 
ability of TSA to activate TTP transcription was not a direct effect of chromatin remodeling on ZFP36 
promoter and suggested TSA acted through an alternative mechanisms possibly promoting expression 
of transcription factors regulating TTP. 

 

Figure 6. TSA does not impact TTP promoter histone acetylation. (A) Schematic representation 
of the ZFP36 promoter. Transcription factors binding sites and the different regions tested 
for ChIP (A, B, C, and D) are shown. (B) ChIP of acetylated histone H4 in the ZFP36 promoter. 
Chromatin from HCT-116 cells treated with 0.4 �M TSA for 12 h was immunoprecipitated 
with anti-acetylated histone H4 or nonspecific IgG. PCR analysis of eluted DNA was 
performed using primers spanning regions A, B, C, and D of ZFP36 promoter as described 
in Experimental Section. Gels shown are representative of duplicate experiments. 

2.4. Early Growth Response Protein 1 (EGR1) is Associated in TSA-Induced TTP Expression 

Various transcription factors control the transcription of TTP [22,23]. Recently, the role of EGR1 
has been highlighted in breast cancer cell model and HDAC inhibitors can induce this transcription  
factor [24,25]. EGR1 is also associated with an immediate/early gene expression response, consistent 
with the early induction of TTP observed upon TSA treatment (Figure 2). Therefore, we hypothesized 
that EGR1 might be implicated in TSA-induced TTP expression. We found that TSA treatment 
promoted a 4- to 7-fold induction of EGR1 mRNA expression in HCT116, Moser and HeLa cells 
(Figure 7A). We observed similar results in HCT116 treated with SAHA and NaB (Figure 7B).  
Our data show also that this induction can be observed at the mRNA and at the protein level and  
in a time-dependent-manner (Figure 7C), similar to TTP induction. 
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Figure 7. HDAC inhibitors induce EGR1 expression. (A) HCT116, Moser and HeLa cells 
were treated with 0.4 �M of TSA for 12 h and then examined for changes in EGR1 mRNA 
levels by qPCR. (B) The expression of EGR1 in HCT116 and HeLa cells treated for 12 h 
with SAHA (5 �M) or NaB (5 mM) by qPCR analysis. (C) Time course (0, 4, 8 and 12 h)  
of EGR1 expression in HCT116 cells treated with TSA (0.4 �M). The expression of EGR1 
was analyzed by qPCR (left) and western blot (right). qPCR was performed using 
GAPDH as a loading control. The data represent the mean of three independent 
experiments (± SD). *** p < 0.001. 

HCT-116 MOSER HeLa
0

2

4

6

8

R
el

at
iv

e 
EG

R
1 

m
R

N
A 

le
ve

l

CTRL
+TSA

***

***

***

A

Ctrl SAHA NaB Ctrl SAHA NaB
0

2

4

6

HCT116 HeLa

R
el

at
iv

e 
EG

R
1 

m
R

N
A 

le
ve

l

***

***

***

***

B

0 4 8 12
0

5

10

15

R
el

at
iv

e 
EG

R
1 

m
R

N
A 

le
ve

l

******

***

EGR1

0 4 8 12

Time (hr) of TSA treatment

Time (hr) of TSA treatment

C

ß-Actin

HCT116



Biomolecules 2015, 5 2044 
 

 

 

Figure 8. HDAC inhibitors induce TTP expression partially through EGR1. (A) HCT116 
or Moser cells were transfected with 100 nM of control siRNA or siRNA against EGR1 for  
24 h. Then the cells were treated with TSA (0.4 �M) for 12 h. The expression of EGR1 
was analyzed by Western blot and TTP expression was assayed by qPCR. (B) A similar 
experiment was performed in HCT116 cells treated with SAHA (5 �M) or NaB (5 mM).  
(C) HCT116 cells were transfected with pTTP-Luc or control pGL3-Basic and a control 
siRNA or siRNA against EGR1 for 24 h. Cells were then treated for 12 h with TSA (0.4 �M) 
and luciferase activity was measured. (D) HCT116 cells were treated 24 h with 500 nM of 
mithramycin A prior to 12 h of treatment with TSA (0.4 �M). Expression of TTP was assayed 
by qPCR. Data represent the mean of three independent experiments (± SD). * p < 0.05,  
** p < 0.01, *** p < 0.001. 
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We also found that EGR1 is partially responsible for TSA-induced TTP expression. Silencing of 
EGR1 by siRNA partially attenuated TSA-induced TTP expression, with a significant reduction observed 
in HCT116 and Moser cells (Figure 8A). Similar results were obtained with SAHA and NaB treatment 
(Figure 8B). Furthermore, TSA-induced TTP promoter activity was similarly reduced in EGR1 
knockdown cells (Figure 8C). EGR1 is a zinc-finger protein known to bind GC-rich domains in the 
DNA (5'-GNG TGG GCG-3') [26]. The pre-treatment of HCT116 cells with the GC-rich DNA-binding 
inhibitor, mithramycin A, completely reverted TSA-induced TTP expression (Figure 8D), thus providing 
an additional evidence connecting EGR1 in TTP induction. 

To determine if EGR1 could promote TTP expression independent of HDAC inhibition, an EGR1 
expression construct was transfected into HCT116 and Moser cells. Shown in Figure 9, exogenous 
expression of EGR1 promoted increased TTP expression at the mRNA and at the protein level. These 
findings indicate that TTP induction depends on restoration EGR1 expression, rather than epigenetic 
event(s) occurring at the TTP promoter. 

 

Figure 9. EGR1 expression induces TTP expression. HCT116 and Moser cells were 
transfected with 1 �g of pcDNA3.1/Zeo/EGR1-Flag or vector control. Twenty-four hours 
post-transfection, cells were harvested for RNA and protein analysis. EGR1 expression 
was assayed by Western blot (right panel). TTP expression was assayed by qPCR and 
Western blot. The data are the mean ± SD of three independent experiments. * p < 0.05. 

As EGR1 expression promoted TTP expression in HCT116 cells, we next tested if EGR1 
overexpression could influence COX-2 mRNA decay. To examine this, luciferase reporter constructs 
containing the COX-2 3' UTR (Luc+COX-2 3' UTR) or control luciferase (Luc�3' UTR) [27] were  
co-transfected with an empty vector or EGR1 expression construct in HCT116 cells. Figure 10 shows 
that in presence of EGR1, luciferase activity from the Luc+COX-2 3' UTR reporter is reduced 
approximately 2-fold. As a positive control, transfection of a TTP expression construct in HCT116 
cells yielded a >90% reduction of Luc+COX-2 3' UTR activity. These data suggest that EGR1 is 
implicated in mRNA decay of transcripts bearing a 3' UTR ARE. 
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Figure 10. EGR1 expression downregulates COX-2 in an ARE-dependent manner. HCT116 
cells were transfected with pcDNA3.1/Zeo/EGR1-Flag or vector control, along with luciferase 
reporters with (Luc+COX-2 3' UTR) or without (Luc�3' UTR) the 3' UTR region of COX-2. 
Twenty-four hours post-transfection, luciferase activity was assayed and normalized to 
total protein concentration. As a positive control, transfection of a TTP expression construct 
was performed; inset shows TTP protein expression in transfected cells by Western blot. 
The data are the mean ± SD of three independent experiments. * p < 0.05, *** p < 0.001. 

2.5. P-Bodies, TTP and EGR1 Are Decreased in Colorectal Tumors 

ARE-mediated mRNA decay requires the involvement of many enzymes required for the deadenylation 
(Pan2-Pan3 complex), decapping (e.g., Dcp1a, Hedls) and RNA degradation (e.g., XRN1) of the target 
mRNA. This machinery is localized in small cytoplasmic foci processing (P)-bodies [28,29]. Our recent 
findings revealed that TTP is an important determinant for P-body assembly in normal intestinal 
epithelium [30]. In order to determine whether TTP loss in CRC is associated with P-bodies alteration, 
we analyzed the expression of TTP and the P-body marker Dcp1a in normal human colon, adenoma, 
and adenocarcinoma FFPE tissue arrays (Figure 11A). We found the expression of both TTP and P-bodies 
were strongly reduced in tumor tissue. In addition, we performed immunofluorescence analysis for  
P-bodies using Hedls as a marker in human colon tissues and we found that the number of P-bodies is 
significantly reduced in tumor tissue (Figure 11B), indicating that TTP loss is associated with 
decreased P-bodies in CRC tumors. Regarding the causal link existing between TTP and EGR1 
expression, we hypothesized that EGR1 is also downregulated in CRC tissues. This was evaluated by 
assaying TTP and EGR1 expression in normal colon and tumor tissue by qPCR (Figure 11C). Both 
TTP and EGR1 were significantly downregulated in 90% of tumor tissues compared to normal tissue 
(EGR1: p = 0.0277; TTP: p = 0.0065). A calculation of the Pearson correlation coefficient between 
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EGR1 and TTP expression in normal and tumor tissues gave a value of r = 0.84 indicating a high 
positive correlation. This data suggests that the loss of EGR1 expression in CRC could contribute to 
the loss of TTP expression, which in turn could affect the number of P-bodies.  

 

Figure 11. TTP loss in tumor tissue correlates with P-bodies loss and EGR1 downregulation. 
(A) Hematoxylin/eosin staining and immunofluorescence of TTP, Dcp1a on normal human 
colon tissue, adenoma, and adenocarcinoma. Staining shown is representative of CRC tissue 
array samples described in Experimental Section. (B) Immunofluorescence staining of P-bodies 
in normal colon and tumor tissue, using anti-Hedls antibody. P-bodies were quantified by 
ImageJ software by using images obtained from 14 normal and 20 tumor samples and 
quantitated in binary mode. (C) Expression of EGR1 (n = 17) and TTP (n = 18) mRNA 
was examined in total RNA isolated from human colon tumors and normal colon tissue by 
qPCR. GAPDH was used as a loading control. Relative EGR1 and TTP expression levels 
for tumors were normalized to their respective matched normal tissue. 
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3. Discussion 

TTP negatively regulates cell growth in several cancer cell types by inhibiting the stability of many 
mRNA implicated in cell cycle (c-Myc, cyclin D1), inflammation (TNF�, COX-2), apoptosis (Bcl-2, 
Mcl-1), and angiogenesis (VEGF) [7,13,31,32]. Even though several lines of evidence have established 
loss of TTP as a conserved feature in colorectal cancer, the underlying mechanism remains elusive. 
While no ZFP36 mutations have been reported as direct genetic link to cancer incidence, specific 
ZFP36 polymorphisms are associated with breast cancer survival [33]. In colon cancer, TTP is lost 
early in tumorigenesis [7], allowing for pathologic overexpression of target genes [3]. In this study,  
we report that different HDAC inhibitors (TSA, SAHA and sodium butyrate) induce TTP expression  
in colon and cervical cancer cells. We found that silencing of TTP by siRNA could partially revert 
TSA-induced growth inhibition, indicating that TTP induction contributes to the growth inhibitory 
effect of HDAC inhibitors. These data are in line with our previous studies showing that TTP is 
important for controlling cell proliferation in HeLa cells [34] and colon cancer cells [7]. We further 
show that TTP induction regulates expression of the ARE-containing COX-2 mRNA, which has previously 
been shown to contribute to tumor growth [35] and to be a target of TTP-mediated ARE-mRNA decay [7]. 

The epigenetic regulation of TTP is undefined, leaving a blank area in understanding how TTP is 
lost in colon cancer. Epigenetic silencing of TTP may occur through direct modulation of the ZFP36 
gene or by silencing transcription factors regulating TTP. Recently, it has been shown that increased 
DNA methylation of a single CpG site in the ZFP36 promoter in hepatocellular carcinoma (HCC) is 
responsible for TTP loss [21]. However, treatment of our cell models with the DNMT inhibitor 5-Aza-dC 
did not induce TTP expression, suggesting that this mode of epigenetic repression does not appear to 
play a role in ZFP36 silencing in colon cancer. In this study, we found that HDAC inhibitor-induced 
TTP expression was a consequence of an increase in the TTP promoter activity. Interestingly, our 
findings showed that TSA did not impact histone H4 acetylation within the TTP promoter. It should be 
noted that our study examined the �600/+162 region of the ZFP36 promoter, thus other histones 
modifications or epigenetic alterations in upstream parts of the ZFP36 promoter may be responsive to 
HDAC inhibitor treatment. Our findings suggest that the epigenetic events leading to TTP upregulation 
by HDAC inhibition do not occur on the TTP promoter itself, but at a different locus, e.g., a transcription 
factor(s) that regulates expression of TTP. In this context, EGR1 represents a good candidate based on 
its ability to increase TTP expression in breast cancer cells [24] and HDAC inhibitors can induce 
EGR1 expression [25]. EGR1 is a Cys2His2 zinc finger transcription factor, which binds GC rich 
region (5'-GNG TGG GCG-3') [26]. In colon cancer, it has been suggested that EGR1 serve as a tumor 
suppressor [36,37] that is downregulated or lost as a consequence of APC mutation and the subsequent 
nuclear accumulation of �-catenin [37–39]. This current data provides a correlation between EGR1 and 
TTP loss, however direct evidence linking these two events has not been examined in colorectal 
cancer. Our data now show that EGR1 is downregulated in colon tumor tissue consistent with loss of 
TTP expression. Moreover, we found that HDAC inhibitors induce EGR1 expression and the silencing 
of EGR1 partially reverted TSA-induced TTP expression. Additionally, EGR1 overexpression was 
sufficient to induce TTP expression and COX-2 mRNA decay. Our data showing that EGR1 knockdown 
did not completely revert TTP induction suggests that other mechanisms are involved. HDAC inhibitors 
may affect the expression/activity of other transcription factors known to regulate ZFP36 transcription 
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such as Smad3, Smad4, AP1, c-myc or NF�B [23,31,40,41] but also some microRNAs, such as miR-29a, 
which downregulates TTP in a breast cancer model [42] and is known to be upregulated in colon 
cancer [43]. Consistent with our findings, recent work by Sharma et al. [44] has shown that TSA-induced 
TTP expression leads to the downregulation of claudin-1 in SW480 colon cancer cells. Their results 
also demonstrated that TSA treatment allowed for increased the binding of Sp1 to the claudin-1 promoter, 
suggesting that the TSA-dependent induction of Sp1 inhibits claudin-1 transcription. Interestingly, Sp1 
and EGR1 have been shown to compete for their binding site on the promoter of several genes [45] and 
based on their close proximity within the ZFP36 promoter (Figure 6A), this suggests that the ability of 
HDAC inhibitors to induce TTP expression can be mediated by distinct and/or interconnected mechanisms. 

The mechanism(s) by which HDAC inhibitors induce EGR1 expression and activity was not 
investigated in this study. Previous work has shown that HDAC inhibitors can reactivate EGR1 in 
various cell types, leading to decreased cell proliferation and increased cell apoptosis [25,46–48]. 
Other mechanisms controlling EGR1 include various signaling pathways such as the EGF (Epidermal 
Growth Factor)/ELK1 (Ets domain containing protein) pathway [24]. EGR1 can also be regulated on a  
post-transcriptional level. EGR1 translation is inhibited by miR-183 in different cancer cells, including 
HCT116 [37]. Further studies connecting these links between EGR1 with the loss of TTP in colon 
cancer is currently under investigation. 

The enzymatic activities of histone deacetylases and histone acetyl transferases (HATs) control the 
fine dynamics of chromatin structure and gene activation [18,49–51]. HDAC inhibitors function by 
inhibiting different HDAC classes [15]. TSA, SAHA and sodium butyrate inhibit class I (HDACs 1, 2, 
3 and 8) and class II (HDACs 4, 5, 6, 7, 9 and 10). In this study, we did not identify which HDACs are 
implicated in the silencing of EGR1. Many HDACs are known to be upregulated in colon cancer [15]. 
For example, HDAC2 is upregulated as a consequence of APC mutation and nuclear �-catenin, leading 
to trans-activation of HDAC2 promoter [52]. However, silencing HDAC2 did not affect TTP expression 
(unpublished observations), suggesting that other HDACs are implicated. HDACs also have non-histone 
substrates, such as transcription factors (e.g., NF�B, Sp1, p53 or EGR1) whose acetylation can affect 
their transcriptional activity [15,25]. This raises the possibility that TSA-induced TTP expression can 
be influenced through post-translational modifications on EGR1 protein. 

TTP is an important determinant for P-bodies assembly and the loss of TTP is associated with a 
reduction of the number of P-bodies and thus an impairment of ARE-mediated mRNA decay [30].  
In this study, we provide evidence that loss of P-bodies occurs in colon tumors, which is consistent 
with a concurrent loss of EGR1 and TTP. However, further mechanistic studies are needed in order to 
better understand the connections between EGR1 and P-bodies. Our data indicating a link existing 
between EGR1 and TTP suggest that the loss of EGR1 may be a novel contributing factor influencing 
P-body assembly in colon tumors. 

4. Experimental Section 

Cell Culture, DNA and siRNA Transfections. Human colon cancer cell lines HCA7, HCT116, 
HT29, Moser, and SW480 and cervical cancer cell line HeLa were obtained and cultured as described [27]. 
Cells were treated for indicated times and concentrations of trichostatin A (TSA), SAHA, Sodium 
butyrate (NaB), 5-Aza-2'-deoxycytidine (5-Aza-dC), mithramycin A or DMSO control (Sigma Aldrich, 
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St. Louis, MO, USA). In HeLa cells, COX-2 expression was induced by pre-treatment with recombinant 
human 10 ng/mL Il-1� (R & D systems, Minneapolis, MN, USA) for 24 h where indicated. 

Transient transfections of cells with luciferase reporter constructs containing 659 bp of the human 
ZPF36 promoter [21] or the COX-2 3' UTR (Luc+3' UTR) [53] were accomplished using Lipofectamine 
Plus (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. Cells were transfected 
in DMEM for 3 h after which cells were grown in complete medium for 48 h. Transfected cells were 
lysed in reporter lysis buffer (Promega) and assayed for luciferase activity (Glomax 20/20 Luminometer). 
Luciferase reporter gene activities were normalized to respective total protein concentrations and assays 
were done in triplicates. EGR1 expression was accomplished by transfecting cells with pcDNA3.1/Zeo 
containing the human EGR1 coding sequence with an N-terminal Flag epitope (pcDNA3.1/Zeo/EGR1-Flag) 
or empty vector. siRNA transfection of cells using 50 nM predesigned siRNAs for human TTP, EGR1, 
or negative control #1 siRNA (Applied Biosystems,, Foster City, CA, USA) were performed using 
siQuest (Mirus, Madison, WI, USA) for 48 h according to the manufacturer’s instructions. 

Messenger RNA Analysis. Total RNA was extracted from cells using Trizol reagent (Invitrogen) 
according to the manufacturer’s protocol. Complementary DNA (cDNA) synthesis was performed 
using 1 �g of total RNA in combination with oligo(dT) and Improm-II reverse transcriptase (Promega). 
qPCR analyses were performed using the StepOnePlus Real-Time PCR Assay System (Applied 
Biosystems) with TaqMan probes for human TTP (ZFP36) or control GAPDH (Applied Biosystems) 
or gene-specific primers for SYBR green-based assay for EGR1 (sense: 5'-GCC TGCGACATCTGT 
GGAA-3'; antisense: 5'-GCCGCAAGTGGATCTTGGTA-3'), GAPDH (sense: 5'-CAATGACCCCTTCA 
TTGACC-3'; antisense: 5'-GACAAGCTTCCCGTTCTCAG-3') (Integrated DNA Technology, Coralville, 
IA, USA). Results were expressed as a ratio: mRNA of target gene/GAPDH mRNA. For COX-2 
mRNA stability analysis, a time course analysis was performed using the transcription inhibitor 
actinomycin D (5 �g/mL) treated with TSA (0.4 �M) for 12 h. The half-life of COX-2 mRNA was 
calculated by densitometry analysis of the PCR product in an ethidium bromide-stained gel. The values 
were normalized to GAPDH. 

Human colon tumors and histologically normal tissue were obtained from surgical remnants from 
patients with colorectal cancer through the University of South Carolina Center for Colon Cancer 
Research Tissue Bank. The protocol was approved by the Institutional Review Board of the University 
of South Carolina. Tissue was snap-frozen in liquid nitrogen, and total RNA was isolated using TRIzol 
from approximately 50 mg of tissue. 

Western Blot Analysis. Cells were lysed in SDS-PAGE lysis buffer (50 mM Tris-HCl, pH 6.8,  
100 mM DTT, 2% SDS, 0.1% bromophenol blue, 10% glycerol) and protein content was determined 
using a BCA protein assay using BSA (bovine serum albumin) as standard (Pierce Biotechnology, 
Thermo Scientific, Waltham, MA, USA). Lysates (between 20 and 50 �g) were separated by 10% 
SDS-PAGE, transferred to PVDF membranes (Bio-Rad, Hercules, CA, USA), and blocked for 1 h at 
room temperature in 5% milk in PBS-Tween. Membranes were probed with antibodies against TTP 
(38303, Aviva) or EGR1 (4153, Cell Signaling), overnight at 4 °C, and reprobed for 1 h at RT for  
�-Actin (Clone C4, MP Biomedicals, Santa Ana, CA, USA). Detection and quantitation of blots were 
performed as described previously [53]. 

Chromatin Immunoprecipitation (ChIP). ChIP assay was performed using ChIP-IT™ Express 
Chromatin Immunoprecipitation Kit (Active Motif, Carlsbad, CA, USA) according to manufacturer’s 
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instructions. Cells untreated or treated with TSA were subjected to formaldehyde fixation to crosslink 
DNA-protein complexes and fixed chromatin was sheared by sonication followed by incubation with 
ChIP validated anti-RNA pol II CTD phospho Ser5 antibody, anti-acetylated histone H4 (SA Biosciences, 
Valencia, CA, USA) or isotype-matched control IgG. Chromatin was eluted from antibody-bound 
protein/DNA complexes and reverse cross-linked, and the purified DNA was analyzed by PCR using 
primers specific for different regions of ZFP36 promoter: Region A sense: 5'-TGTGATCCTCCC 
AACCCTCT-3', Region A antisense: 5'-GTGCGCGTGCGACACAGAC-3', Region B sense: 5'-GGG 
CTTCTGCTCTTGTCAAT-3', Region B antisense: 5'-CCCTGGACTGGTTCCCTT-3'; Region C 
sense: 5'-GGAAGGGAACCAGTCCAG-3', Region C antisense: 5'-ACCGAGAGCCGGCTACTTAT-3'; 
Region D sense: 5'-CTCTCGGTGCCAGCCTCAG-3', Region D antisense: 5'-CTGGAGTTTGCG 
GCGCTAGA-3' and GAPDH (SA Biosciences). For agarose gel-based PCR analysis, band intensity of 
PCR products from immunoprecipitated DNA was compared with that from 0.5% of respective input 
(Quantity One Analysis Software, Bio-Rad). The amount of chromatin in input and immunoprecipitated 
samples was also quantified by qPCR using SYBR green PCR master mix and indicated primers for 
TTP, GAPDH. Fold enrichment, expressed as IP/Input ratio, was determined from Ct values normalized 
to the untreated control. Data represent the immunoprecipitated/input ratio: 2 (Ct input � Ct IP). 

Immunofluorescence. Cells grown in 4 wells slide chambers (Lab-Tek® chamber slides, Sigma 
Aldrich) were fixed with a 2% paraformaldehyde solution, washed in PBS and permeabilized with 
0.02% Triton X-100 in PBS. Cells were blocked with 5% normal goat serum (Jackson ImmunoResearch, 
West Grove, PA) in PBS containing 1% IgG-free BSA (Jackson ImmunoResearch) and incubated 
overnight at 4 °C with antibody against Ki-67 (Ab16667, Abcam, 1:200, Cambridge, MA, USA) 
diluted in blocking solution. Cells were washed twice in PBS and immunostained with a Cy5-conjugated 
secondary antibody (Ab97077, Abcam) diluted in PBS containing 3% IgG-free BSA and incubated for 
1 h at RT. After two washes, cells were counterstained with 1 �g/mL Hoechst 33342 (Sigma Aldrich) 
and were analyzed by fluorescence microscopy (Evos® FL Cell Imaging System, Advanced Microscopy 
Group, Life Technology, Mill Creek, WA, USA). 

Detection of Dcp1a, TTP and Hedls protein in human colonic tissues was accomplished by using 
serial sectioned tissue array (CHTN2003CRCprog, Cooperative Human Tissue Network, NCI, Rockville, 
MD, USA). The array contains 7 cases of normal non-neoplastic colonic mucosa from non-cancer,  
7 cases of normal non-neoplastic colonic mucosa from cancer, 7 adenoma < 2 cm in maximum dimension,  
7 adenoma >2 cm in maximum dimension, 7 cases of primary invasive adenocarcinoma (stage T1  
or T2) and 7 cases of primary invasive adenocarcinoma (stage T3 or T4). Slides were hydrated and 
antigen-retrieval was performed in citrate buffer in a steam bath for 30 min. Slides were incubated with 
a monoclonal antibody against anti-Dcp1a (ab57654; Abcam, Cambridge, MA, USA), TTP polyclonal 
antibody [30], or a polyclonal antibody against Hedls (Cell Signaling) as previously described [30,54]. 
All primary antibodies were incubated on slides overnight at 4 °C and the staining procedure were 
performed as described above. Tissues were analyzed by confocal microscopy and P-bodies quantification 
was performed by particle analysis in binary mode with ImageJ software (National Institute of Health, 
Bethesda, MD, USA). 

Statistical Analysis. All data were reported as the mean ± SD. The Student t-test was used to determine 
the statistical significance of the mean for each group. For comparison of EGR1 and TTP expression in 



Biomolecules 2015, 5 2052 
 

 

normal colonic and tumor tissue from patients, the paired Student t-test was used on log2 fold-change 
values. Differences with p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) were considered significant. 

5. Conclusions 

In summary, our findings show that HDAC inhibitors induce TTP expression in different cancer 
cells, thus highlighting an epigenetic regulation of TTP in cancer cells. Our results bring new insights 
into loss of post-transcriptional regulatory circuits during tumor development. Moreover, our data 
suggest a clinical approach to restore TTP expression in cancer cells with drugs under investigation in 
clinical trials such as Vorinostat® (SAHA). 

Acknowledgments  

We thank Young I. Yeom for human TTP promoter plasmid. Research reported in this publication 
was supported by the National Institutes of Health (R01 CA134609), NIH Cancer Center Support Grant 
(P30 CA168524), and American Cancer Society (RSG-06-122-01-CNE). 

Author Contributions 

Cyril Sobolewski, Sandhya Sanduja and Dan A. Dixon conceived and designed the experiments;  
Cyril Sobolewski, Sandhya Sanduja, Fernando F. Blanco and Liangyan Hu performed the experiments; 
Cyril Sobolewski, Sandhya Sanduja, Fernando F. Blanco, and Dan A. Dixon analyzed the data;  
Cyril Sobolewski, Sandhya Sanduja and Dan A. Dixon wrote the manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Jemal, A.; Center, M.M.; DeSantis, C.; Ward, E.M. Global patterns of cancer incidence and 
mortality rates and trends. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1893–1907. 

2. Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. 
3. Young, L.E.; Dixon, D.A. Posttranscriptional regulation of cyclooxygenase 2 expression in 

colorectal cancer. Curr. Colorectal Cancer Rep. 2010, 6, 60–67. 
4. Garneau, N.L.; Wilusz, J.; Wilusz, C.J. The highways and byways of mRNA decay. Nat. Rev. 

Mol. Cell Biol. 2007, 8, 113–126. 
5. Kanies, C.L.; Smith, J.J.; Kis, C.; Schmidt, C.; Levy, S.; Khabar, K.S.; Morrow, J.; Deane, N.; 

Dixon, D.A.; Beauchamp, R.D. Oncogenic ras and transforming growth factor-beta synergistically 
regulate AU-rich element-containing mRNAs during epithelial to mesenchymal transition.  
Mol. Cancer Res. 2008, 6, 1124–1136. 

6. Lopez de Silanes, I.; Fan, J.; Yang, X.; Zonderman, A.B.; Potapova, O.; Pizer, E.S.; Gorospe, M. 
Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 2003, 22, 7146–7154. 



Biomolecules 2015, 5 2053 
 

 

7. Young, L.E.; Sanduja, S.; Bemis-Standoli, K.; Pena, E.A.; Price, R.L.; Dixon, D.A. The mRNA 
binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon 
carcinogenesis. Gastroenterology 2009, 136, 1669–1679. 

8. Sanduja, S.; Blanco, F.F.; Dixon, D.A. The roles of TTP and BRF proteins in regulated mRNA 
decay. Wiley Interdiscip. Rev. RNA 2011, 2, 42–57. 

9. Taylor, G.A.; Carballo, E.; Lee, D.M.; Lai, W.S.; Thompson, M.J.; Patel, D.D.; Schenkman, D.I.; 
Gilkeson, G.S.; Broxmeyer, H.E.; Haynes, B.F.; et al. A pathogenetic role for tnf alpha in the 
syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. 
Immunity 1996, 4, 445–454. 

10. Carballo, E.; Lai, W.S.; Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis  
factor-� production by tristetraprolin. Science 1998, 281, 1001–1005. 

11. Phillips, K.; Kedersha, N.; Shen, L.; Blackshear, P.J.; Anderson, P. Arthritis suppressor genes  
tia-1 and ttp dampen the expression of tumor necrosis factor alpha, cyclooxygenase 2, and 
inflammatory arthritis. Proc. Natl. Acad. Sci.. USA 2004, 101, 2011–2016. 

12. Sawaoka, H.; Dixon, D.A.; Oates, J.A.; Boutaud, O. Tristetrapolin binds to the 3' untranslated 
region of cyclooxygenase-2 mRNA: A polyadenylation variant in a cancer cell line lacks the 
binding site. J. Biol. Chem. 2003, 278, 13928–13935. 

13. Sanduja, S.; Blanco, F.F.; Young, L.E.; Kaza, V.; Dixon, D.A. The role of tristetraprolin in cancer 
and inflammation. Front. Biosci. 2012, 17, 174–188. 

14. Staub, E.; Grone, J.; Mennerich, D.; Ropcke, S.; Klamann, I.; Hinzmann, B.; Castanos-Velez, E.; 
Mann, B.; Pilarsky, C.; Brummendorf, T.; et al. A genome-wide map of aberrantly expressed 
chromosomal islands in colorectal cancer. Mol. Cancer 2006, 5, 37. 

15. Mariadason, J.M. HDACs and HDAC inhibitors in colon cancer. Epigenetics 2008, 3, 28–37. 
16. Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for 

epigenetic therapy. Nature 2004, 429, 457–463. 
17. Bassett, A.; Cooper, S.; Wu, C.; Travers, A. The folding and unfolding of eukaryotic chromatin. 

Curr. Opin. Genet. Dev. 2009, 19, 159–165. 
18. Wilson, A.J.; Byun, D.S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; 

Augenlicht, L.H.; Mariadason, J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs 
regulate colon cell maturation and p21 expression and are deregulated in human colon cancer.  
J. Biol. Chem. 2006, 281, 13548–13558. 

19. Brennan, S.E.; Kuwano, Y.; Alkharouf, N.; Blackshear, P.J.; Gorospe, M.; Wilson, G.M. The 
mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic 
phenotypes and patient prognosis. Cancer Res. 2009, 69, 5168–5176. 

20. Carrick, D.M.; Blackshear, P.J. Comparative expression of tristetraprolin (TTP) family member 
transcripts in normal human tissues and cancer cell lines. Arch. Biochem. Biophys. 2007, 462, 278–285. 

21. Sohn, B.H.; Park, I.Y.; Lee, J.J.; Yang, S.J.; Jang, Y.J.; Park, K.C.; Kim, D.J.; Lee, D.C.; Sohn, H.A.; 
Kim, T.W.; et al. Functional switching of TGF-beta1 signaling in liver cancer via epigenetic 
modulation of a single CpG site in TTP promoter. Gastroenterology 2010, 138, 1898–1908. 

22. Chen, Y.L.; Jiang, Y.W.; Su, Y.L.; Lee, S.C.; Chang, M.S.; Chang, C.J. Transcriptional regulation 
of tristetraprolin by NF-�B signaling in LPS-stimulated macrophages. Mol. Biol. Rep. 2013, 40, 
2867–2877. 



Biomolecules 2015, 5 2054 
 

 

23. Lai, W.S.; Thompson, M.J.; Taylor, G.A.; Liu, Y.; Blackshear, P.J. Promoter analysis of ZFP-36, 
the mitogen-inducible gene encoding the zinc finger protein tristetraprolin. J. Biol. Chem. 1995, 
270, 25266–25272. 

24. Florkowska, M.; Tymoszuk, P.; Balwierz, A.; Skucha, A.; Kochan, J.; Wawro, M.; Stalinska, K.; 
Kasza, A. Egf activates TTP expression by activation of ELK-1 and EGR-1 transcription factors. 
BMC Mol. Biol. 2012, doi:10.1186/1471-2199-13-8. 

25. Su, L.; Cheng, H.; Sampaio, A.V.; Nielsen, T.O.; Underhill, T.M. Egr1 reactivation by histone 
deacetylase inhibitors promotes synovial sarcoma cell death through the PTEN tumor suppressor. 
Oncogene 2010, 29, 4352–4361. 

26. Gitenay, D.; Baron, V.T. Is EGR1 a potential target for prostate cancer therapy? Future Oncol. 
2009, 5, 993–1003. 

27. Young, L.E.; Moore, A.E.; Sokol, L.; Meisner-Kober, N.; Dixon, D.A. The mRNA stability factor 
HuR inhibits microRNA-16 targeting of COX-2. Mol. Cancer Res. 2012, 10, 167–180. 

28. Kulkarni, M.; Ozgur, S.; Stoecklin, G. On track with P-bodies. Biochem. Soc. Trans. 2010, 38,  
242–251. 

29. Anderson, P.; Kedersha, N.; Ivanov, P. Stress granules, p-bodies and cancer. Biochim. Biophys. 
Acta Gene Regul. Mech. 2015, 1849, 861–870. 

30. Blanco, F.F.; Sanduja, S.; Deane, N.G.; Blackshear, P.J.; Dixon, D.A. Transforming growth factor 
beta regulates P-body formation through induction of the mRNA decay factor tristetraprolin.  
Mol. Cell. Biol. 2014, 34, 180–195. 

31. Rounbehler, R.J.; Fallahi, M.; Yang, C.; Steeves, M.A.; Li, W.; Doherty, J.R.; Schaub, F.X.; 
Sanduja, S.; Dixon, D.A.; Blackshear, P.J.; et al. Tristetraprolin impairs Myc-induced lymphoma 
and abolishes the malignant state. Cell 2012, 150, 563–574. 

32. Kim, T.W.; Yim, S.; Choi, B.J.; Jang, Y.; Lee, J.J.; Sohn, B.H.; Yoo, H.S.; Yeom, Y.I.; Park, K.C. 
Tristetraprolin regulates the stability of HIF-1alpha mRNA during prolonged hypoxia.  
Biochem. Biophys. Res. Commun. 2010, 391, 963–968. 

33. Upadhyay, R.; Sanduja, S.; Kaza, V.; Dixon, D.A. Genetic polymorphisms in RNA binding 
proteins contribute to breast cancer survival. Int. J. Cancer 2013, 132, E128–E138. 

34. Sanduja, S.; Kaza, V.; Dixon, D.A. The mRNA decay factor tristetraprolin (TTP) induces 
senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP 
ubiquitin ligase. Aging 2009, 1, 803–817. 

35. Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 
in cell proliferation and cell death in human malignancies. Int. J. Cell Biol. 2010, 2010, 215158. 

36. Mahalingam, D.; Natoni, A.; Keane, M.; Samali, A.; Szegezdi, E. Early growth response-1 is a 
regulator of DR5-induced apoptosis in colon cancer cells. Br. J. Cancer 2010, 102, 754–764. 

37. Sarver, A.L.; Li, L.; Subramanian, S. MicroRNA miR-183 functions as an oncogene by targeting the 
transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 2010, 70, 9570–9580. 

38. Tice, D.A.; Soloviev, I.; Polakis, P. Activation of the wnt pathway interferes with serum response 
element-driven transcription of immediate early genes. J. Biol. Chem. 2002, 277, 6118–6123. 

39. Wilson, A.J.; Chueh, A.C.; Togel, L.; Corner, G.A.; Ahmed, N.; Goel, S.; Byun, D.S.; Nasser, S.; 
Houston, M.A.; Jhawer, M.; et al. Apoptotic sensitivity of colon cancer cells to histone 
deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving 
immediate-early gene induction. Cancer Res. 2010, 70, 609–620. 



Biomolecules 2015, 5 2055 
 

 

40. Ogawa, K.; Chen, F.; Kim, Y.J.; Chen, Y. Transcriptional regulation of tristetraprolin by 
transforming growth factor-beta in human T cells. J. Biol. Chem. 2003, 278, 30373–30381. 

41. Zhao, Z.N.; Bai, J.X.; Zhou, Q.; Yan, B.; Qin, W.W.; Jia, L.T.; Meng, Y.L.; Jin, B.Q.; Yao, L.B.; 
Wang, T.; et al. TSA suppresses miR-106b-93-25 cluster expression through downregulation of 
Myc and inhibits proliferation and induces apoptosis in human EMC. PLoS ONE 2012, 7, e45133. 

42. Gebeshuber, C.A.; Zatloukal, K.; Martinez, J. MiR-29a suppresses tristetraprolin, which is a 
regulator of epithelial polarity and metastasis. EMBO Rep. 2009, 10, 400–405. 

43. Wu, W.K.; Law, P.T.; Lee, C.W.; Cho, C.H.; Fan, D.; Wu, K.; Yu, J.; Sung, J.J. MicroRNA in 
colorectal cancer: From benchtop to bedside. Carcinogenesis 2011, 32, 247–253. 

44. Sharma, A.; Bhat, A.A.; Krishnan, M.; Singh, A.B.; Dhawan, P. Trichostatin-A modulates  
claudin-1 mRNA stability through the modulation of Hu antigen R and tristetraprolin in colon 
cancer cells. Carcinogenesis 2013, 34, 2610–2621. 

45. Huang, R.P.; Fan, Y.; Ni, Z.; Mercola, D.; Adamson, E.D. Reciprocal modulation between Sp1 
and EGR-1. J. Cell. Biochem. 1997, 66, 489–499. 

46. Fu, L.; Huang, W.; Jing, Y.; Jiang, M.; Zhao, Y.; Shi, J.; Huang, S.; Xue, X.; Zhang, Q.; Tang, J.; et 
al. AML1-ATO triggers epigenetic activation of early growth response gene l, inducing apoptosis  
in t(8;21) acute myeloid leukemia. FEBS J. 2014, 281, 1123–1131. 

47. Deckmann, K.; Rorsch, F.; Geisslinger, G.; Grosch, S. Dimethylcelecoxib induces an inhibitory 
complex consisting of HDAC1/NF-kappaB(p65)RelA leading to transcriptional downregulation 
of mPGES-1 and EGR1. Cell. Signal. 2012, 24, 460–467. 

48. Pan, L.; Lu, J.; Wang, X.; Han, L.; Zhang, Y.; Han, S.; Huang, B. Histone deacetylase inhibitor 
trichostatin A potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression. 
Cancer 2007, 109, 1676–1688. 

49. Choi, J.H.; Kwon, H.J.; Yoon, B.I.; Kim, J.H.; Han, S.U.; Joo, H.J.; Kim, D.Y. Expression profile 
of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res. 2001, 92, 1300–1304. 

50. Halkidou, K.; Gaughan, L.; Cook, S.; Leung, H.Y.; Neal, D.E.; Robson, C.N. Upregulation and 
nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 2004, 59, 177–189. 

51. Patra, S.K.; Patra, A.; Dahiya, R. Histone deacetylase and DNA methyltransferase in human 
prostate cancer. Biochem. Biophys. Res. Commun. 2001, 287, 705–713. 

52. Zhu, P.; Martin, E.; Mengwasser, J.; Schlag, P.; Janssen, K.P.; Gottlicher, M. Induction of 
HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004, 5, 455–463. 

53. Dixon, D.A.; Kaplan, C.D.; McIntyre, T.M.; Zimmerman, G.A.; Prescott, S.M. Post-transcriptional 
control of cyclooxygenase-2 gene expression. The role of the 3'-untranslated region. J. Biol. Chem. 
2000, 275, 11750–11757. 

54. Fenger-Gron, M.; Fillman, C.; Norrild, B.; Lykke-Andersen, J. Multiple processing body factors 
and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 2005, 20, 905–915. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 


