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Abstract: Flavonoids have shown promise as natural plant-based antioxidants for protecting 
lipids from oxidation. It was hypothesized that their applications in lipophilic food systems 
can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside 
(Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), 
oleic acid (OLA), linoleic acid (LNA), �-linolenic acid (ALA), eicosapentaenoic acid (EPA) 
and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst.  
The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model 
systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein 
(LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition 
in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G 
esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated 
more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed 
significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in 
comparison to Q3G. 
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1. Introduction 

There has been a strong interest in nutritional benefits of omega-3 (n-3) poly-unsaturated fatty acids 
(PUFA) containing dietary lipids due to their clinical benefits associated with prevention of chronic 
diseases, such as cardiovascular diseases and cancer [1,2]. However, foods rich in PUFA are highly 
susceptible to oxidation, leading to rancidity and nutritional loss [2,3]. The oxidation of dietary 
unsaturated fatty acids results in generation of advanced lipid oxidation end-products which are  
in part cytotoxic and genotoxic [4]. 

Lipid oxidation can occur at the cellular level, in the plasma membrane, as well as in low density 
lipoprotein (LDL)-cholesterols, due to the presence of cellular reactive oxygen species and is responsible 
for many pathological conditions [5]. The oxidation of PUFA within the forms of oxidized LDL or 
atherogenic LDL and therefore, is a causal factor for pathogenesis of atherosclerosis [6]. Habitual 
consumption of dietary antioxidants is one of the ways to retard the oxidative stress mediated chronic 
diseases [7]. Potential safety risks associated with the synthetic antioxidants has created an increasing 
market demand for natural antioxidants [3]. Many natural polyphenols including flavonoids are abundant 
mainly in plant foods, such as fruits and their products. However, lipophilicity of an antioxidant molecule 
is important for its effectiveness when incorporated into different food matrices [6]. 

The moderately hydrophilic nature of naturally occurring flavonoid glycosides, could become  
a limiting factor when incorporating them into more lipophilic food systems [8,9]. The structural 
modification of flavonoid molecules is one of the possible approaches to enhance their incorporation in 
lipophilic food products such as fish oil. The preparation of lipophilic derivatives of flavonoids using 
aliphatic molecules has shown greater miscibility in lipophilic systems [10,11]. Enzymatic acylation of 
natural polyphenols with long chain fatty acids has been suggested for improving the lipophilic nature 
of the glycosylated flavonoids [8,12–14]. The present study is aimed at evaluating the ability of  
six unsaturated, mono- and poly-unsaturated long chain fatty acid derivatives of Q3G in inhibiting 
oxidation of PUFA in lipid food model systems of oil-in-water emulsions and bulk oil and inhibition of 
Cu2+- and peroxyl radical-induced oxidation of human LDL in vitro. 

2. Material and Methods 

2.1. Chemicals and Supplies 

Ferric chloride, dimethyl sulfoxide, 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), 
trichloroacetic acid (TCA), 2-thiobarbituric acid (TBA), butylated hydroxytoluene (BHT), molecular 
sieves and Candida antactica B lipase were obtained from Sigma-Aldrich (Oakville, ON, Canada). 
Acetic acid, hydrochloric acid, HPLC grade chloroform, and HPLC grade methanol were purchased 
from Fisher Scientific (Ottawa, ON, Canada). Ethanol anhydrous was obtained from Commercial Alcohols 
(Montreal, QC, Canada). Round bottom 96-well plates were purchased from Corning Incorporated 
(Edison, NY, USA). Quercetion-3-O-glucoside (Q3G) was obtained from Indofine Chemical Company 
(Hillsborough, NJ, USA). Bulk fish oil was a generous gift from BASF A/S (Malmparken 5, Ballerup, 
Denmark). The composition of the oil was 19.1% cis-monounsaturates and 33.7% cis-polyunsaturates 
(29.9% �-3 polyunsaturated fatty acids, 3.7% �-6 polyunsaturated fatty acids), 1.2% trans fatty acids, 
25.6% saturated fatty acids, 5.6% EPA, 22.9% DHA by weight). LDL isolated from human plasma  
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(in 150 mM NaCl, 0.01% EDTA, pH 7.4) was purchased from EMD Chemicals Inc. (Gibbstown, NJ, 
USA). Free fatty acids were purchased from Nu-Check-prep, Inc. (Waterville, MN, USA). All other 
chemicals were purchased from Fisher Scientific. 

2.2. Synthesis of Fatty Acid Acylated Derivatives of Q3G 

Synthesis of fatty acid esters of Q3G (phenolipids) was carried out through enzymatic esterification 
of Q3G separately with stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), �-linolenic acid 
(ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA) as acyl donors as previously 
described [14] (Figure 1). Briefly, Q3G (500 mg) and each acyl donor were added into a reaction vessel 
containing dried 3 Å molecular sieves in a molar ratio of flavonoid:acyl donor 1:5. Anhydrous acetone 
was used as the solvent. The acylation was initiated by adding Candida antarctica B immobilised lipase 
(2 g) as the biocatalyst. Then, the mixture was incubated at 45 °C while stirring for approximately 48 h 
in a sand bath. Enzymatic conversion of the substrate was qualitatively monitored periodically by TLC 
analysis using silica gel plates (TLC Silica gel 60F254–Aluminum sheets 20 cm × 20 cm, Merck KGaA, 
Darmstadt, Germany). Acetone:toluene (50:50 v:v) solvent mixture was used as the TLC solvent system, 
with the addition of few drops of glacial acetic acid and visualized under UV light and iodide staining. 
After confirming the completion, the enzymatic reaction was halted by filtering the immobilized  
lipase and molecular sieves from the reaction mixture and the acetone was removed by vacuum 
evaporation. The synthesized phenolipids were isolated by subjecting the crude product to silica gel 
column chromatography using acetone:toluene; 40:60 to 50:50. Preparative TLC was performed under 
the same conditions as above. 

Figure 1. Esterification of Q3G with acyl donor fatty acids. (a) Acetone, 3 °A molecular 
sieves, Candida antactica B lipase, 45 °C, Stirring, 24 h; R = Oleic acid, Stearic acid, 
Linoleic acid, �-Linolenic, Eicosapentaenoic acid, and Docosahexaenoic acid. 
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2.3. Determination of Primary Oxidation in Bulk Fish Oil Model System 

Different concentrations of Q3G and fatty acid acylated derivatives of Q3G (0.5, 1, 5, and 10 mmol·L�1), 
dissolved in 1% dimethyl sulfoxide, were mixed with bulk fish oil and incubated at 40 °C for 3 and  
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5 days. The lipid peroxides which were formed during lipid oxidation were determined as the peroxide 
value using acetic acid-chloroform method [15]. Briefly, oxidized fish oil was dissolved in 3:2 ratio of  
acetic acid–chloroform mixture and 0.5 mL of freshly prepared saturated KI solution was added and 
gently mixed. After 1 min, 30 mL of deionized water was added, followed by addition of 1 mL of starch. 
The liberated iodine was titrated with 0.1 N of Na2S2O3. Percentage inhibition of lipid peroxidation  
was calculated, based on the peroxide values obtained. 

2.4. Preparation of Aqueous Emulsion Model System 

An aqueous emulsion (oil-in-water) of fish oil was prepared following a method described previously [16]. 
An emulsion of 10 mg of fish oil per 1 mL of buffer (pH 7) containing 0.05 M tris HCl, 0.15 M KCl  
and 4% Tween 20 as an emulsifier, was prepared by homogenizing the mixture using a homogenizer 
(model PCU, Polytron®, Luzernerstrasse, Littau-Luzern, Switzerland), at 4.5 speed for 30 s. 

2.5. Determination of Primary Oxidation in Aqueous Emulsion Model System 

The procedure for ferric thiocyanate test was followed [16]. Ethanolic solutions (95% ethanol) of 
Q3G and its esters in 0.5, 1, 5, and 10 mmol·L�1 concentrations were prepared in disposable 13 × 100 mm 
borosilicate glass tubes and the solvent was completely evaporated under nitrogen flow. After solubilising 
the dried compounds with 10 μL ethanol, 80 μL of emulsion was added and vortexed. Oxidation was 
induced by adding 10 μL of peroxyl radical generator, AAPH and incubated at room temperature for 40 min. 
At the end of the incubation, further oxidation was halted immediately by adding 10 μL of 1000 mg·L�1 
BHT into all the samples. Samples (30 μL) were diluted with 210 μL of 75% ethanol and 30 μL of  
3% NH4SCN was added. After 3 min, 30 μL of 2 mmol·L�1 ferric chloride in 3.5% HCl was added and 
absorbance was measured at 495 nm in 96-well microplates, using FLUOstar OPTIMA microplate 
reader (BMG Labtech, Durham, NC, USA). Blank samples were prepared for all the concentration levels 
of all the compounds, with no addition of emulsion, in order to eliminate the absorbance contributed by 
compounds themselves and blank absorbance values were subtracted from the sample absorbance. 
Percentage inhibition of lipid oxidation was calculated. The hydroperoxides, formed during lipid oxidation, 
react with ferrous ions to produce ferric ions, which are detected as the ferric thiocyanate red chromogen. 

2.6. Determining the Inhibition of Secondary Oxidation 

Secondary lipid oxidation, in both bulk fish oil and aqueous emulsion (oil-in-water) model systems, 
were determined by thiobarbituric acid reactive substances (TBARS) assay [16,17]. Desired concentrations 
of Q3G and fatty acid derivatives of Q3G in 95% ethanol (0.5, 1, 5, and 10 mmol·L�1) were placed in 
disposable 13 × 100 mm borosilicate glass tubes and the solvent was completely evaporated under 
nitrogen flow. Twenty microliters of ethanol and 80 μL of bulk fish oil or aqueous emulsion were added 
and vortexed well to ensure complete dispersion of the compounds in the bulk fish oil or aqueous 
emulsions. Induction of oxidation was achieved by heating the glass tubes, covered with breathable caps, 
for 3 h at 50 °C in a shaking incubator (model Apollo HP50, CLP Tools, San Diego, CA, USA). 

The TBA reagent (0.375% TBA and 15% TCA in 0.25 M HCl) was added to all the oxidized fish oil 
or emulsion samples as well as the controls. After vortexing, all the samples were capped and placed in 
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a water bath (Isotemp 205, Fisher scientific, Ubuque, IA, USA) at 80 °C for 15 min. The sample tubes 
were allowed to cool to room temperature and 2 mL of 1-butanol was added to each sample, followed 
by vortexing and centrifuging (IEC International Centrifuge, MA, USA) at 40× g for 20 min.  
After loading the supernatant (1-butanol layer) into 96-well microplates, fluorescence intensity (FI)  
was measured for excitation at 532 nm and emission at 580, using FLUOstar OPTIMA plate reader 
(BMG Labtech). The percentage inhibition of the samples was calculated in comparison to controls with 
no antioxidants, using the equation below: 

% Inhibition = 100 (FI control � FI sample)/FI control  
 

 

2.7. LDL Oxidation 

2.7.1. LDL Preparation 

The assay was conducted as described previously [18]. Briefly, prior to dialysis of LDL, cellulose 
dialysis tubing (Thermo Fisher Scientific Inc., Ottawa, ON, Canada) was pretreated to remove inherent 
antioxidants. The tubing was cut into the desired length (6–8 cm), soaked in deionized water for 15 min 
and heated at 80 °C in a 10 mmol·L�1 sodium bicarbonate solution for 30 min while stirring. It was 
transferred into a 10 mmol·L�1 Na2EDTA solution and soaked for 30 min. Again, the tubing was 
transferred to the deionized water at 80 °C and soaked for 30 min while stirring. The membrane was 
cooled and submerged in 50% ethanol solution and refrigerated. To perform the dialysis, the cellulose 
tubing was washed both inside and outside first with deionized water and then with 10 mmol·L�1 PBS 
solution containing 0.138 M NaCl and 0.0027 M KCl (pH 7.4, at 25 °C). One end of the tubing was 
sealed, LDL was then injected into the open end which was then sealed completely. The sealed tubing 
was then immersed in 10 mmol·L�1 PBS solution at 4 °C for 24 h. Buffer was changed every six hours. 
Once the dialysis was completed, the dialyzed LDL was immediately transferred into an amber colored 
vial and stored at �80 °C for use within two weeks. 

2.7.2. Determination of Protein Content of Dialysed LDL 

Protein content of the dialyzed LDL was determined using the Lowry’s method [19]. Bovine serum 
albumin was used as the standard protein source. Lowry’s reagent (1 mL) was added to the blank, standards 
and dialyzed LDL and left for 20 min. Then, Folin Ciocalteu reagent (0.5 mL) was added, followed by 
immediate thorough mixing and allowed to stand for 30 min. Absorbance was measured at 750 nm. 
Protein content of the LDL sample was calculated using the calibration curve of BSA (10, 20, 40 and  
50 μg/mL). The LDL sample was diluted appropriately with PBS to reach 100 μg/mL protein content. 

2.7.3. Inhibition of LDL Oxidation 

Oxidation was induced by two methods: using copper(II) sulfate and peroxyl radical generator, 
AAPH. Different concentrations (1, 10, 100, and 500 μmol·L�1) of Q3G derivatives and Q3G were 
prepared in methanol. Dialyzed LDL (160 μL) was mixed with 20 μL of the test compound in borosilicate 
glass tubes and 20 μL of Cu2+ (10 μM )/AAPH (5 mM) was added. All the samples were incubated  
at 37 °C for 4 h in a shaking water bath. Solutions of 1 mmol·L�1 EDTA and BHT were added to 
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terminate oxidation in Cu2+ and peroxy radical-induced systems, respectively. LDL oxidation was 
determined using the TBARS assay [20]. 

2.8. Statistical Analysis 

The statistical analysis was carried out using SAS 9.2 and Minitab 16 statistical software packages. 
The effect of the two factors: “type of test compound” and “concentration”, on percentage inhibition  
of lipid oxidation was determined using a two factor factorial design of three replicates. The factor,  
“type of test compound”, contained six levels (six different test compounds) and the factor “concentration” 
contained four levels (four different concentrations). The data was analyzed by ANOVA using general 
linear model. Multiple means comparison was carried out by least square means to identify the significant 
differences across the test compounds for each concentration. When there are no significant interactions 
between the two factors; “type of test compound” and “concentration”, the significant differences among 
the effects of “type of test compound” were determined regardless of the concentration, using Tukey’s 
multiple means comparison method. A probability of p � 0.05 was taken as statistically significant. 

3. Results 

3.1. Inhibition of Oxidation in Bulk Fish Oil and Aqueous Emulsion 

In n-3 PUFA-rich bulk fish oil, the parent compound Q3G showed the highest percentage inhibition 
of primary oxidation over all the fatty acid derivatives of Q3G at 10 mmol·L�1. However, the ALA, EPA 
and DHA derivatives of Q3G demonstrated considerable inhibition of 30% to 40% (Table 1). When the 
secondary oxidation products in the bulk fish oil system was measured, all the tested compounds, except 
for the EPA and DHA derivatives of Q3G, demonstrated a concentration dependent effect where the 
higher concentrations provided the higher percent inhibition. Q3G esterified to LNA exhibited the 
highest percentage inhibition of 70% at the concentration of 10 mmol·L�1 (Table 2). In general, the 
synthesized phenolipids had no significant (p � 0.05) effect, compared to their parent flavonoid Q3G, 
on inhibition of both primary and secondary oxidation in bulk fish oil model system. 

In primary lipid oxidation in oil-in-water emulsion (Table 3), all the six esters of Q3G exhibited better 
antioxidant properties than the parent compound Q3G, showing more than 50% inhibition in two or 
more tested concentration levels in the range of 0.5–10 mmol·L�1. The STA, OLA and LNA derivatives 
of Q3G were effective, with more than 50% inhibition in all the tested concentrations, showing that  
they are useful as antioxidants, even at low concentration levels such as 0.5 mmol·L�1. More than 40% 
inhibition was observed in the EPA and DHA derivatives in all the tested concentrations and DHA 
derivative achieved 100% inhibition at 10 mmol·L�1. In secondary oxidation of oil-in-water emulsion, 
all the phenolipids had their highest inhibition at 10 mmol·L�1 and there was more than 30% inhibition 
(Table 3). Overall, the results showed that in the oil-in-water emulsion, Q3G stearate showed the greatest 
antioxidant protection since it reached the greatest inhibition at 5 mmol·L�1 in the primary oxidation.  
In the case of secondary oxidation, Q3G stearate is the best antioxidant at 10 mmol·L�1. The parent 
compound Q3G showed lower inhibition than the phenolipids, even at its most effective concentration 
level of 10 mmol·L�1. It can be inferred that in the oil-in-water emulsion system, the phenolipids 
prepared by esterification of the fatty acids and Q3G have a better antioxidant activity than Q3G. 
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Table 1. Inhibition of primary lipid oxidation in bulk fish oil in relation to concentration of the test compounds. 

Compound 

% Inhibition (Relative to the Control) 
Day 3 Day 5 

Concentration (mmol·L�1) Concentration (mmol·L�1) 
0.5 1 5 10 0.5 1 5 10 

Q3G 0 ± 0.0c 0 ± 0.0c 45 ± 7.1bc 57 ± 8.7a 8 ± 1.5D 12 ± 1.4CD 34 ± 4.4BC 52 ± 6.3A 
Q3G stearate 0 ± 0.0c 0 ± 0.0c 24 ± 2.0bc 26 ± 4.0bc 13 ± 6.0CD 22 ± 2.6CD 34 ± 2.3BC 29 ± 3.2BC 
Q3G oleate 7 ± 2.8c 0 ± 0.0c 14 ± 6.5c 12 ± 9.3c 0 ± 0.0D 6 ± 3.8CD 26 ± 6.7CD 30 ± 15.2BC 

Q3G linoleate 18 ± 8.4bc 16 ± 13.4bc 14 ± 0.2c 21 ± 2.7bc 11 ± 1.0CD 22 ± 3.4CD 28 ± 3.0C 26 ± 5.6C 
Q3G �-linolenate 14 ± 8.2c 5 ± 3.5c 12 ± 6.4c 17 ± 3.4bc 5 ± 3.5D 11 ± 4.8CD 22 ± 4.1CD 40 ± 2.7AB 

Q3G eicosapentaenoate 18 ± 7.5bc 21 ± 4.7bc 34 ± 3.8b 30 ± 5.0bc 16 ± 2.6CD 18 ± 0.5CD 37 ± 2.1B 34 ± 1.6BC 
Q3G docosahexaenoate 9 ± 7.0c 17 ± 1.0bc 26 ± 0.8bc 21 ± 1.2bc 19 ± 2.1CD 21 ± 6.2CD 30 ± 8.8BC 38 ± 1.3AB 

Different concentrations of Q3G and fatty acid acylated derivatives of Q3G were incorporated into bulk fish oil and incubated at 40 °C for 3 and 5 days. The lipid peroxides 
formed were determined using acetic acid-chloroform method and % inhibition of lipid peroxidation was presented as mean ± standard deviation. Data from day 3 and day 5 
were statistically analyzed separately. Different letters (a,b,c… and A,B,C…) denote significant differences among test compounds and concentrations, for day 3 and day 5, 
respectively (p � 0.05). 

Table 2. Inhibition of secondary lipid oxidation in bulk fish oil in relation to the concentration of the test compounds. 

Compound 
% Inhibition (Relative to the Control) 

Concentration (mmol·L�1) 
 0.5 1 5 10 

Q3G 24 ± 5.8e 35 ± 2.4d 60 ± 2.5b 69 ± 0.1a 
Q3G stearate 39 ± 4.4d 35 ± 1.2d 46 ± 1.2cd 52 ± 2.1bc 
Q3G oleate 40 ± 1.4cd 60 ± 0.7b 64 ± 1.5ab 67 ± 1.7ab 

Q3G linoleate 34 ± 3.0d 49 ± 3.6c 63 ± 1.6ab 70 ± 0.6a 
Q3G �-linolenate 38 ± 1.0d 33 ± 4.4de 42 ± 0.6cd 51 ± 0.9bc 

Q3G eicosapentaenoate 46 ± 2.6cd 40 ± 1.9cd 50 ± 4.1bc 31 ± 1.1de 
Q3G docosahexaenoate 50 ± 4.2cd 50 ± 3.5bc 47 ± 6.4cd 33 ± 2.5de 

Induction of secondary oxidation in bulk fish oil was achieved by incubating for 3 h at 50 °C in a shaking incubator and oxidation was determined by TBARS assay.  
Data were presented as mean ± standard deviation. Different letters (a,b,c…) denote significant differences among test compounds for all concentrations (p � 0.05). 
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Table 3. Inhibition of lipid oxidation in oil-in-water emulsion in relation to the concentration of the test compounds. 

Compound 

% Inhibition (Relative to the Control) 
Primary Oxidation Secondary Oxidation 

Concentration (mmol·L�1) Concentration (mmol·L�1) 
0.5 1 5 10 0.5 1 5 10 

Q3G 29 ± 6.7c 39 ± 9.4bc 42 ± 9.1bc 18 ± 15.3c 0 ± 0.0F 0 ± 0.0F 9 ± 2.3EF 25 ± 1.0DE 
Q3G stearate 55 ± 6.1bc 74 ± 7.1ab 100 ± 16.9a 100 ± 3.6a 16 ± 2.5E 20 ± 5.2DE 69 ± 2.3AB 78 ± 3.1A 
Q3G oleate 53 ± 8.5bc 56 ± 8.8bc 55 ± 4.1bc 63 ± 6.0bc 11 ± 3.4EF 30 ± 4.1D 43 ± 9.7CD 49 ± 14.4C 

Q3G linoleate 47 ± 2.2bc 66 ± 0.6b 60 ± 8.1bc 73 ± 4.0ab 0 ± 0.0F 3 ± 1.0F 45 ± 2.0CD 67 ± 0.3AB 
Q3G �-linolenate 13 ± 6.7bc 15 ± 0.1c 34 ± 4.0c 64 ± 3.0c 12 ± 1.4EF 24 ± 6.5DE 51 ± 1.3BC 63 ± 0.6B 

Q3G eicosapentaenoate 42 ± 3.2bc 56 ± 5.4bc 63 ± 17.3bc 65 ± 12.2bc 0 ± 0.0F 0 ± 0.0F 13 ± 1.9EF 32 ± 1.8D 
Q3G docosahexaenoate 49 ± 5.0bc 43 ± 4.0bc 54 ± 19.3bc 100 ± 8.4a 27 ± 9.5DE 26 ± 3.8DE 53 ± 0.8BC 58 ± 8.0BC 

Primary oxidation was induced by adding AAPH and incubated at room temperature for 40 min and oxidation was determined by ferric thiocyanate test. Induction of 
secondary oxidation in bulk fish oil was achieved by incubating for 3 h at 50 °C in a shaking incubator and oxidation was determined by TBARS assay. Data from primary 
and secondary oxidation were statistically analyzed separately and presented as mean ± standard deviation. Different letters (a,b,c… and A,B,C…) denote significant 
differences among test compounds and concentrations, for % inhibition of primary and secondary lipid oxidation, respectively (p � 0.05). 

Table 4. Inhibition of human LDL oxidation in vitro in relation to the concentration of the test compounds. 

Compound 

% Inhibition (Relative to the Control) 
Cu2+-Induction AAPH Derived Peroxyl Radical–Induction 

Concentration (μmol·L�1) Concentration (μmol·L�1) 
1 10 100 500 1 10 100 500 

Q3G 7 ± 4.5c 20 ± 9.2bc 20 ± 1.8bc 33 ± 8.6ab 10 ± 2.6C 10 ± 2.7C 16 ± 7.2C 29 ± 2.0C 
Q3G stearate 4 ± 9.4c 14 ± 7.5bc 21 ± 8.6bc 29 ± 4.2b 4 ± 5.9C 11 ± 5.0C 14 ± 7.5C 27 ± 8.5C 
Q3G oleate 8 ± 7.4c 18 ± 5.8bc 14 ± 5.3bc 28 ± 2.8bc 12 ± 7.2C 9 ± 2.8C 15 ± 3.9C 17 ± 13.6C 

Q3G linoleate 14 ± 3.4bc 27 ± 7.8bc 29 ± 5.9b 34 ± 6.3ab 5 ± 4.7C 15 ± 7.8C 23 ± 5.6C 25 ± 5.4C 
Q3G �-linolenate 40 ± 5.6ab 34 ± 5.1ab 31 ± 2.9ab 31 ± 3.5ab 28 ± 9.5AB 23 ± 4.3AB 23 ± 2.0AB 34 ± 6.3AB 

Q3G eicosapentaenoate 20 ± 8.8bc 43 ± 6.8ab 45 ± 3.1ab 51 ± 2.6a 21 ± 3.8A 36 ± 6.7A 38 ± 1.7A 41 ± 2.9A 
Q3G docosahexaenoate 7 ± 5.5c 14 ± 7.9bc 27 ± 6.7bc 43 ± 1.4ab 13 ± 3.7BC 9 ± 8.1BC 30 ± 10.0BC 27 ± 8.1BC 

Data from Cu2+- and peroxyl radical-induced LDL oxidation were statistically analyzed separately and presented as means ± standard deviation. Different letters (a,b,c… 
and A,B,C…) denote significant differences among test compounds and concentrations, for % inhibition of Cu2+- and peroxy radical- induced oxidation, respectively (p � 0.05). 
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3.2. Inhibition of Oxidation in Human LDL 

The ability of the compounds to inhibit the plasma LDL oxidation in vitro represents the antioxidant 
capacity of the compounds to deal with cellular oxidative stress. Over 40% inhibition for Cu2+-induced 
oxidation has been shown by the EPA derivative of Q3G at 10 μmol·L�1 and the DHA derivative at  
500 μmol·L�1 (Table 4). For the AAPH derived peroxyl radical-induced oxidation, the selected 
concentration range did not demonstrate a dose dependent effect, but the EPA and ALA derivatives were 
more effective than Q3G in protecting the plasma LDL from oxidation. EPA derivative of Q3G, 
however, showed the highest inhibition in both experiments at concentrations of 500 μmol·L�1. 

4. Discussion 

Presently, there is a growing interest in plant polyphenols, especially flavonoids, which can be applied 
as natural antioxidants in foods, pharmaceuticals and cosmetics [21]. Their application can be further 
enhanced by modifying the flavonoid structure by esterification [7]. In this study, Q3G was successfully 
acylated with six different long chain fatty acids (C18 to C22) by lipase-catalyzed esterification. In all the 
reactions, the primary hydroxyl of the glycosyl group of the Q3G molecule was esterified  
with long chain fatty acids having various degrees of unsaturation (unsaturated 18:0, mono- 18:1 and  
poly-unsaturated 18:2; 18:3; 20:5; 22:6). The esterification of flavonoid compounds, using Candida antarctica 
B lipase as a very effective biocatalyst for various acyl donors, is widely reported in the literature. 
Naringin [22], chlorogenic acid [23], rutin [8], quercetin [14], Q3G [10], hesperidin [24] and esculin [13] 
are some of the extensively used flavonoids in esterification studies, with different acyl donors, such as 
palmitic acid, OLA, STA, lauric acid, myristic acid, �-linolenic acid and hexadecanedioic acid. 

However, the antioxidant ability of the flavonoids is highly dependent on their chemical structure; 
type, position and number of the functional groups, and they behave differently in different media [16]. 
In the literature, lipophilicity has demonstrated its effect on the antioxidant activity in different ways. 
Improved lipophilicity of an antioxidant molecule could result an enhanced, a similar or a decreased 
activity compared to that of parent compound. The alkyl esters of caffeic acid displayed enhanced 
antiradical activity, while dihydrocaffeic acid showed a decreased effect [25]. Lipophilisation of rutin 
molecule using fatty acids had no effect on radical scavenging capacity of rutin [26]. Further, it can be 
explained that accessibility of hydroxyl groups to the free radicals is obstructed by the steric hindrance 
created by long acyl chains of fatty acids and it decreases the radical scavenging ability of the synthesized 
phenolipids. Moreover, the considerably different reaction conditions used in the antioxidant assays 
make it difficult to draw unifying conclusions [27]. 

Oxidation stability is a parameter with greater attention and significance, in terms of evaluating the 
quality of lipid based foods, which are highly prone to oxidative deterioration. In the present study, the 
effects of enhanced lipophilicity of these synthesized phenolipids on inhibition of lipid oxidation were 
determined using two lipid based food model systems of PUFA-rich fish oil; bulk oil and oil-in-water 
emulsion. In oil-in-water emulsion systems, the phenolipids acted as more effective antioxidants than 
their parent Q3G. However, Q3G acted as more effective antioxidant for the inhibition of oxidation in 
bulk oil. The polar paradox theory explains the behavior of antioxidants in different media; the lipophilic 
antioxidants are more effective in inhibiting oxidation in less lipophilic media and hydrophilic antioxidants 
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are more effective in inhibiting oxidation in more lipophilic media [28,29]. This is further explained 
using the interfacial phenomenon; lipophilic antioxidants locate towards the oil-water interface in  
oil-in-water emulsions, the location where the oxidation is more prevalent, and thereby protect the oil 
phase from oxidation. Hydrophilic antioxidants move into the aqueous phase and this dilution makes 
them not sufficiently effective for protecting the oil phase [30]. In bulk oil systems, oxidation is believed 
to take place in the association colloids, formed by surface active molecules in the presence of a small 
quantity of water in bulk oil [31]. 

There are a number of previous studies, which have exhibited the effect of the lipophilicity of 
antioxidants in bulk oil and emulsion model systems. It has been found, using a series of alkyl ester 
derivatives of tyrosol and hydroxytyrosol, that the lipophilic esters are weaker antioxidants in bulk oil [32]. 
Further it was reviewed in [30] that esterification with long hydrocarbon chains changed the partitioning 
behavior of chlorogenic acid and increased its ability to concentrate at oil-water interface. Therefore,  
it is apparent that esterification improves the lipophilicity of the antioxidants and the lipophilic and 
hydrophilic antioxidants have different effectiveness in different media. According to the explanations 
used in the polar paradox theory, it is understood that change in lipophilicity of the antioxidant molecules 
changes their physical location in different food matrices, affecting the effectiveness of the antioxidants. 
The observations in the present study indicate that esterification with long chain hydrocarbons improved 
the lipophilicity of the Q3G which caused the Q3G ester to be orientated with the lipophilic long chain 
fatty acid embedded in the oil and the polar Q3G in the aqueous phase surrounding the oil droplet.  
This means that the polar Q3G remains at the oil-water interface which yields protection from the 
oxidation of the droplet. 

It has been explained that the polar paradox theory is applicable only in certain concentration  
ranges since the effect of solubility starts dominating over the interfacial phenomenon [30]. Therefore, 
in lipophilic media, more lipophilic antioxidants are effective at the lower concentrations and more 
hydrophilic antioxidants are effective at their higher concentrations. In the present study, Q3G was not 
effective in lower concentrations in the bulk oil and it can be due to solubility effect, which is more 
dominating at the lower concentrations. Since, these phenolipids are more lipophilic than Q3G, they are 
soluble in the lipid matrix playing a dominating role in inhibiting oxidation. Further, Q3G was more 
effective at its higher concentrations, at which the interfacial phenomenon dominates over the solubility 
effect. Moreover, long chain fatty acids including n-3 and n-6 PUFA have been used in this study and 
are known to have numerous health advantages. Therefore, in addition to the protection from oxidation, 
these novel molecules may provide clinical advantages. 

The observations in the LDL oxidation model, reporting greater inhibition by several phenolipids 
compared to the Q3G, are supported by the previous study [6], which demonstrated that ethyl esterification 
of phenolic acids made them better antioxidants in inhibiting LDL oxidation. The previous studies have 
demonstrated the use of polyphenols including flavonoids as the inhibitors of LDL oxidation [30,33,34]. 
Moreover, the beverages prepared from flavonoids-rich fruits, such as red wine and grape juice,  
have been found to inhibit the human LDL oxidation in vitro [35–37]. Our present study demonstrated 
that increasing lipophilicity of the Q3G makes them more potent antioxidants in inhibiting the LDL 
oxidation. In addition, it has been postulated that an increase in lipophilicity of the ethyl esters  
facilitates the incorporation of the antioxidant molecules through the lipid layer of the LDL particles [6]. 
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To better understand the mechanisms which make the incorporating of these esters more feasible, further 
studies are needed. 

5. Conclusions 

It can be concluded that all the derivatives of Q3G showed more than 30% inhibition in secondary 
oxidation and more than 50% inhibition in primary oxidation in the oil-in-water emulsion. The synthesized 
compounds were more effective in inhibiting both primary and secondary oxidation in oil-in-water 
emulsions than Q3G. However, Q3G reported 50%–60% inhibition at 10 mM concentration in bulk oil. 
These modified compounds were not significantly effective in bulk oil system, when compared with 
Q3G (p � 0.05). Therefore, these synthesized phenolipids have a potential for use as effective antioxidants 
in PUFA containing emulsion based foods such as mayonnaise, salad dressings, and sour cream.  
The EPA and DHA derivatives of Q3G exhibited more than 50% inhibition in Cu2+-induced LDL 
oxidation. The EPA and ALA derivatives were more effective in AAPH derived peroxyl radical-induced 
oxidation than Q3G (p � 0.05). Therefore, these novel phenolipids can be introduced as potential drug 
candidates for pathogenic conditions, such as atherosclerosis and related diseases. Further research is 
required to understand the biological functions of the modified Q3G. 
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