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Abstract: The properties of biomolecules depend both on physics and on the evolutionary
process that formed them. These two points of view produce a powerful synergism. Physics
sets the stage and the constraints that molecular evolution has to obey, and evolutionary
theory helps in rationalizing the physical properties of biomolecules, including protein
folding thermodynamics. To complete the parallelism, protein thermodynamics is founded
on the statistical mechanics in the space of protein structures, and molecular evolution can
be viewed as statistical mechanics in the space of protein sequences. In this review, we
will integrate both points of view, applying them to detecting selection on the stability of
the folded state of proteins. We will start discussing positive design, which strengthens the
stability of the folded against the unfolded state of proteins. Positive design justifies why
statistical potentials for protein folding can be obtained from the frequencies of structural
motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary,
negative design, which consists in destabilizing frequently formed misfolded conformations,
is more difficult to achieve for longer proteins. The folding rate can be enhanced by
strengthening short-range native interactions, but this requirement contrasts with negative
design, and evolution has to trade-off between them. Finally, selection can accelerate
functional movements by favoring low frequency normal modes of the dynamics of the native
state that strongly correlate with the functional conformation change.

Keywords: protein folding; misfolding; negative design; protein evolution; natural selection



Biomolecules 2014, 4 292

1. Introduction

Proteins bridge physics and biology. On the one hand, they are amazing molecular machines that
obey the laws of statistical mechanics. On the other hand, they are evolving machines that are shaped
by selective and mutational forces acting on the populations in which they evolve. Simple models
of protein folding thermodynamics allow the identification of these evolutionary forces and to better
understand and model molecular evolution. In turn, modeling evolution allows a better understanding of
the properties and constraints acting on protein thermodynamics. This article aims to review the mutual
relationship between models of protein folding and models of protein evolution, in particular how we
can use evolutionary reasoning for detecting selective forces that target protein folding thermodynamics
and the intrinsic dynamics of protein native states. It does not pretend to be exhaustive, but rather, it will
focus on a simple, contact-based model of protein folding and on the results that I and collaborators have
gathered with the help of this model.

2. Contact-Based Model of Protein Folding

Proteins are complex molecules, formed by thousands of atoms kept together by quantum mechanical
interactions. The solvent in which they reside, water molecules and ions, plays a key role in determining
their statistical mechanical properties. This complexity needs to be reduced to a simple representation,
if we want to make quantitative predictions. The representation adopted in this work is based on contact
matrices [1]: for each pair of residues at positions i and j along the polypeptidic chain, Cij equals
one if the residues are in contact and zero otherwise. We define two residues to be in contact if a pair
of heavy atoms belonging to the two residues are closer than 4.5 Å. Since contacts with |i − j| ≤ 2

are formed in almost all structures, they do not contribute to the free energy difference between the
native and the misfolded ensemble, and we set Cij = 0 if |i − j| ≤ 2. This representation has some
important weak points: it is not continuous; it does not include any repulsion term; and it does not allow
angular dependencies, such as those that occur in hydrogen bonds and aromatic interactions. However,
its discreteness simplifies the computations and facilitates obtaining analytic insight.

A contact matrix, Cij , represents a mesoscopic state in which the degrees of freedom, such as the
solvent, exact side chain positions, etc. are averaged out. We model its free energy as the sum of
contact interactions, E(C,A) =

∑
i<j CijU(Ai, Aj), which depends on the nature of the amino acids

in contact, Ai and Aj , and on 210 contact interaction parameters, U(a, b), that express the average
interaction between amino acids a and b at a given temperature, such as those determined as a statistical
potential by Miazawa and Jernigan [2]. A limitation of this energy function is that it does not allow for
representing atomic clashes, hydrogen bonds and secondary structures; therefore, we cannot apply it to
generic conformations, but only to conformations that fulfill these strong interactions, such as protein
structures deposited in the protein databank. Despite these limitations, contact matrices are useful in that
they provide the simplest model of protein folding, commonly adopted in lattice models and applicable
to experimentally determined protein structures [3–5].

We have to keep in mind that the conformational entropy associated with a contact matrix, S(Cij),
decreases with the number of contacts, since mesoscopic structures with more contacts have more
constraints. This conformational entropy is difficult to evaluate analytically, and it is almost always
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neglected in the calculations. Karplus and coworkers showed through normal modes calculations and
quantum mechanical calculations that the conformational entropy of a folded protein is large (of the
order of 35 cal/(mol × K)) per residue, but its contribution to protein denaturation can be neglected,
since the conformational entropy of the denatured state can be modeled as the sum of the entropy, due
to the existence of different conformations (of the order of 4 to 6 cal/(mol × K) per residue) plus the
weighted sum of the vibrational entropy in each conformation; the latter term almost exactly balances
the entropy in the native state, although differences in these terms may have relevant consequences for
ligand binding and for the thermodynamic effect of mutations [6]. Computational approaches inspired
by this idea, reviewed by Doig and Sternberg [7], estimate the loss of conformational entropy upon
folding from the reduction in the number of accessible rotamers of side chains and yield similar values
compatible with experimental results. Nevertheless, differences in entropy between folded states with
different compactness may be important for yielding a correct statistical mechanical picture [8–11].

A protein may exist in several mascroscopic states separated by free energy barriers, the most studied
ones being: (1) the native state where it performs its biological function; in this state, the protein
is usually folded into a well-defined three-dimensional structure, except for the important case of
natively unfolded proteins [12], which will not be considered here; (2) the unfolded state, dominated
by conformational entropy; (3) misfolded states, where they are folded into a non-native structure
that is not functional. For small proteins that fold with two-states thermodynamics [13], only the
natively folded and the unfolded state are relevant. However, the thermodynamics of medium and large
proteins (typically, larger than 90–100 residues) present more than two states. These compact states may
be folding intermediates that often resemble the molten globule state with native secondary structure
and loosely packed side chains [14,15], but they may also lay outside the folding pathway from the
unfolded to the native state; in this case, they can act as a kinetic trap and reduce the rate at which
functional proteins are formed [16,17]. They may even trigger pathological protein aggregation, as in
amyloidosis [18], but the formation of structured aggregates, such as amyloid fibers, is more difficult to
model and so will not be considered here. It has been suggested that selective pressure to reduce protein
misfolding is a major evolutionary force that targets the frequency of incorrect translations produced by
the ribosome [19].

For the sake of simplicity, we neglect the conformational entropy of the folded native state, estimating
its free energy as Gnat(C

nat, A) ≈
∑

i<j C
nat
ij U(Ai, Aj), and we neglect contact interactions in the

unfolded state, estimating its free energy as GU ≈ −TLSU , where T is the temperature in units in which
kB = 1, L is chain length and SU is the conformational entropy per residue of an unfolded chain. It
has been proposed that the misfolded state, consisting in the ensemble of compact, but wrongly folded
conformations, is described by the Random Energy Model (REM) [20], which approximates the energy
with a Gaussian random variable [21–23]. In a similar spirit, we can go beyond the REM by computing
the free energy of the misfolded ensemble from the partition function of all possible compact contact
matrices, obtaining the analytic approximation [24]:
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Gmisfolded ≡ −T log

(∑
C

e−
∑

i<j CijU(Ai,Aj)/T+S(C)

)
(1)

≈ ⟨E⟩ −
⟨
(E − ⟨E⟩)2

⟩
2T

+

⟨
(E − ⟨E⟩)3

⟩
6T 2

− LSCT

where LSC is the logarithm of the number of compact contact matrices, ⟨.⟩ represents the average over
the set of alternative compact contact matrices of L residues (To derive Equation (1), we write the
sum over all contact matrices grouping those with the same number of contacts NC =

∑
i<j Cij ,

and we distinguish a homopolymer energy (all contact interactions equal to ⟨E⟩ /NC) and a
heteropolymer contribution, writing exp(−G/T ) =

∑
Nc

exp (−⟨E⟩ /T + S(NC))
∑

C:NC
exp(−βz),

with z = (
∑

ij CijUij − ⟨E⟩)/NC and β = NC/T . We then approximate log(
∑

C exp(−βz) ≈
SC + log ⟨exp(−βz)⟩ ≈ 1

2
⟨(βz)2⟩ − 1

6
⟨(βz)3⟩). Terms of higher order in z can be neglected, since

their contribution is of order 1/β. We also assume for simplicity that the conformational entropy,
S(Cij), is approximately the same for all compact structures, and it can be neglected for computing free
energy differences.

With respect to the usual REM approximation, the above formula also contains the third moment of
the energy. This fact changes the nature of the freezing transition of the misfolded ensemble. As for
the REM, the above model has a critical temperature, Tc, at which the conformational entropy vanishes:

S = − (∂G/∂T ) = SC − ⟨(E−⟨E⟩)2⟩
2T 2

c
+

⟨(E−⟨E⟩)3⟩
3T 3

c
= 0. Below Tc, the ensemble freezes into a finite

number of thermodynamically relevant contact matrices, and the free energy maintains the same value
as at T = Tc. If the third centered moment of the energy,

⟨
(E − ⟨E⟩)3

⟩
, is negative (the system is more

attractive than if it were Gaussian), the freezing temperature is higher than for the REM, i.e., freezing is
facilitated. However, if the third moment is positive and the total conformational entropy, SC , is large,
the conformational entropy is always positive, and the freezing transition does not take place. Instead, the

specific heat vanishes at the critical temperature Tc =
⟨(E−⟨E⟩)3⟩
⟨(E−⟨E⟩)2⟩ [24], and the misfolded ensemble has

a second order phase transition reminiscent of a coil-globule transition. This model also shows that the
freezing temperature is larger when the average contact energy is more negative, i.e., proteins are more
hydrophobic, and when the chain length is large. Therefore, we expect that the selection for negative
design becomes stronger for more hydrophobic and for longer proteins. These expectations are verified
by the statistical analysis reported below.

Putting together these free energy estimates, we obtain the free energy difference between the native
and the non-native states above the freezing temperature, ∆G(A,Cnat) = Gnat−Gmisfolded−Gunfolded, as:

∆G(A,Cnat) = TL (SC + SU) +
∑
i<j

(
Cnat

ij − ⟨Cij⟩
)
U(Ai, Aj) (2)

+
∑

i<j,k<l

(
⟨Cij⟩ − ⟨Cij⟩2

) U(Ai, Aj)U(Ak, Al)

2T

−
∑

i<j,k<l,m<n

Fijklmm
U(Ai, Aj)U(Ak, Al)U(Am, An)

6T 2

where Fijklmm = ⟨(Cij − ⟨Cij⟩) (Ckl − ⟨Ckl⟩) (Cmn − ⟨Cmn⟩)⟩ [24]. The free energy depends on the
mean contact frequency and on the correlation and skewness of the contacts.
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In this work, we use the contact interactions parameters that were determined in [25,26] by requiring
that the contact energy function assigns optimal stability to all proteins represented in the protein
databank. In several cases, we have tested that the results are robust when we use different contact
interaction parameters, such as those determined by Godzik, Kolinsky and Skolnick [27]. Averages
with respect to the ensemble of compact protein conformations are computed by threading the protein
sequence against all possible fragments of protein structures present in the protein databank (PDB), a
procedure that is known in the bioinformatic jargon as “gapless threading” [28,29].

3. Modeling Selection on Protein Folding Thermodynamics

Traditionally, molecular evolution studies have examined the rate of substitution of amino acids in
protein sequences without considering their structural context. This situation has become, since less
than two decades ago [30–44], due to the availability of models of protein folding, simple enough to
allow detailed simulations that aim to “bring molecules back into molecular evolution” [45], recently
reviewed in [46].

Following Goldstein and other researchers (see, for instance, [47] for a recent presentation), we model
the fitness associated to a protein as the time spent by the protein in the correctly folded state that is the
target of natural selection,

f(A,Cnat) =
e−∆G(A,Cnat)/T

1 + e−∆G(A,Cnat)/T
(3)

In the above model, we assume that selection only acts on the stability of the native state and
disregard other aspects important for function, such as protein intrinsic dynamics. There are two reasons
for this assumption: first, it is much simpler to predict protein stability than protein dynamics or, in
general, protein “function”; second, protein dynamics is correlated with the topology of the native
structure, as the elastic network models shows [48], so that the targeting protein structure also influences
protein dynamics.

Evolution takes place in a population. Whereas a mutation is a “microscopic” event arising in a single
individual, its fixation in the population (substitution) is a macroscopic event. Two main factors influence
the evolutionary process and, consequently, the stability that an evolving biomolecule can achieve: the
effective population size and the mutational process, in particular mutation rates and mutation bias. As
reviewed below, we found that population size and mutation bias have an important effect on protein
folding thermodynamics. Recombination can be very important as a source of evolutionary innovation,
as well, but we do not consider it here, because it is more complex to analyze.

An important property of the above fitness function is that it presents a neutral regime at low
temperature. In this case, the fitness takes approximately the value one when ∆G < 0 and zero when
∆G > 0, i.e., it tends to a binary value in which a protein is either non-viable or equally fit as other viable
proteins. In this neutral regime, the stability achieved by the protein is almost independent of population
size as in the neutral model by Kimura. In Kimura’s model, the rate at which neutral substitutions are
fixed in a population of N individuals evolving with neutral mutation rate µ is independent of population
size, since Nµ neutral mutations arise in a time unit, and the probability that one of them is fixed is
1/N [49]. Taverna and Goldstein [39] showed that, in the nearly-neutral regime of the fitness function
Equation (3), the stability attained by a protein coincides with the minimum stability for which the
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protein is viable (f ≈ 1), i.e., ∆G ≈ 0, since ∆G ≈ 0 is the most probable stability of viable proteins in
sequence space. They proposed that this property of the neutral regime explains why natural proteins are
only marginally stable, despite it not being difficult to engineer mutations that increase their stability.

At high enough temperature, however, the fitness function Equation (3) presents a non-neutral regime
in which differences in stability have important consequences. This regime can be analytically studied in
the limit of a very small mutation rate in which different mutations do not interfere. In this limit, Moran’s
model of the evolutionary process allows one to compute the probability that a mutation is fixed in the
population and becomes a substitution as a function of the ratio between the fitness of the wild-type and
the mutant [50]:

Pfix(wt → mut) =
1− fwt/fmut

1− (fwt/fmut)
N

(4)

It has been noted by Sella and Hirsch that in this limit of a small mutation rate, the evolutionary
process is equivalent to a Monte Carlo stochastic process in sequence space and that this process
converges to a stationary Boltzmann-like distribution in which the probability to observe a sequence,
A, is proportional to the exponential of its logarithmic fitness φ = log(f), P (A) ∝ exp(Nφ(A)),
i.e., there is a perfect analogy between molecular evolution and statistical mechanics with the effective
population size, N , playing the role of the inverse of temperature [51]. In this non-neutral regime,
larger populations achieve higher fitness and, therefore, better stability of their macromolecules. For
Equation (3), φ(A) = − log(1 + exp(∆G(A)/kBT )), and the distribution of stability in the space of the
protein sequences that are visited by evolution is:

P (∆G) ∝ exp (−N log(1 + exp(∆G)) ≈

{
exp

(
−Ne∆G

)
∆G ≪ −1

exp (−N∆G) ∆G ≫ 1
(5)

where we used units, such that kBT = 1. Note that the approximation P (∆G) ∝ exp(−N∆G/kT ) is
only valid in the first steps of evolution when the protein is unstable, whereas when ∆G/kT becomes
very negative, either because the temperature is low or because evolution optimized protein stability,
the fitness saturates to its maximum possible value f = 1 and becomes almost independent of ∆G,
and we enter a neutral regime in which protein stability is almost independent of population size. The
above equation has to be corrected to take into account the mutation process, in particular the bias to
mutate to hydrophobic or polar amino acids, which influences the fitness attained in evolution and the
corresponding protein stability, see below.

By computationally predicting ∆G from the protein sequence, A, and the target native structure, Cnat,
we can map the genotype into the phenotype of the model protein and perform quantitative studies and
simulations of molecular evolution. This mapping is not accurate enough to reliably predict the effect of
individual mutations, but there is a good correlation between the effect of mutations predicted through
this model and those experimentally measured (the correlation coefficient is 0.72 for a set of 195 mutants
that fold with two-state thermodynamics [52], see Figure 1), so that the statistical signals that arise from
these simulations are credible.
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Figure 1. Computational predictions of the thermodynamic effect of mutations with the
contact energy parameters of [26]. The 195 mutants were taken from [52].
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4. Validations and Limitations of the Model and Assessment of Neutrality

The modeling scheme described above, in which the fitness is assumed to be dependent on protein
folding stability, has been adopted by several groups with different points of view. The computational
study of heteropolymer folding through lattice models led to the proposal of simple criteria for fast
folding and native state stability, based either on the energy gap between the native conformation and
misfolded conformations [53] or on the gap between the folding temperature and the glass temperature
[54]. These criteria inspired the first computational models of the evolution of stable and fast-folding
model proteins [30–32], which allowed for the studying of the robustness of model proteins against
mutations and to reproduce the fact that natural proteins tolerate a large number of sequence changes,
yet maintain a similar structure [33–35,35,36,36–39]. These models have then been applied to the contact
matrices of real protein structures, and it has been shown that they reproduce the qualitative properties
of the natural evolution of their sequences [40–43], so that they get closer to the important goal of
building models of molecular evolution that are aware of structural constraints and, yet, simple enough
for phylogenetic inferences [44–46].

Despite the success of these models, it is well known in the field that a fitness function only based on
folding stability is a poor approximation of the real selection process, which acts on protein “function”
(whatever it means). In particular, the ability of proteins to establish specific molecular interactions and
their native dynamics may be important targets for selection (see the last section of this review), even
more than the stability of the folded state, which has little relevance for the important class of natively
unfolded proteins [12]. Another important limitation of these models is that they tend to be too tolerant
of mutations with respect to natural protein evolution: using a model similar to the ones discussed here,
Goldstein observed that the selective coefficients simulated by these models (i.e., the difference of the
logarithm of the fitness between the wild-type and the mutant that gets the fixation) tend to be very
small and that the evolutionary rate dN/dS (i.e., the rate between non-synonymous substitutions, which
change the amino acid, and synonymous ones, which maintain it, expressing the acceptance rate of
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mutations in the protein sequence) are high and almost independent of population size, as expected in
neutral evolution [55].

An important remark with respect to this observation is that the neutrality of these models depends on
temperature, as noted above: the fitness function Equation (3) tends to a binary value at low temperature,
i.e., f ≈ 1 if ∆G < 0 and f ≈ 0 if ∆G > 0, yielding a neutral fitness landscape in which the evolution is
almost independent of population size and the selective coefficients for viable proteins (∆G < 0) are very
small: ∆ log f ≈ exp(∆G/kT )∆∆G/kT ≈ 0, where ∆∆G is the thermodynamic effect of mutations.
Nevertheless, if the temperature is high, these models are much less neutral, and the properties of evolved
proteins depend on population size, as was found, for instance, in the simulations reported below.

5. Detecting Selection through Null Models Based on Physics and Population Genetics

The strategy that we follow here for detecting selection on some protein property relies on comparing
two physically-based models, one that includes the effect of selection on the target property and another
one that only considers selection on a lower order property (null model). For instance, when we
investigate selection on stability with respect to misfolded states (the so-called negative design), we
compare the predictions based on misfolding stability with the predictions of a null model that only
considers the stability of the native state with respect to the unfolded state. The model based on
misfolding stability predicts that the average interaction energies of contacts that are frequent in the
misfolded ensembles should be higher, whereas the null model predicts that the average energies of
native contacts should be low. To compare these predictions, we divide pairs of residues into four classes:
(A) native and frequent, (B) native and infrequent, (C) non-native and frequent and (D) non-native and
infrequent. According to the null model, no difference is expected between class A and B and between
class C and D, whereas observed interaction energies show significant differences.

This procedure for detecting stability based on the predictions of physical models can be
complemented with methods based on biological models that focus on substitution rates and
intrapopulation variability. Nucleotide sequences can be used to infer rates for synonymous (those that
only change the messenger RNA, but not the coded amino acid) and non-synonymous substitutions
separately [56], although this estimate is reliable only if the compared species are not too diverged
(otherwise, synonymous substitutions saturate) nor too close (the rate of non-synonymous substitutions
has been observed to be higher at short time separation [57], an observation that has been attributed to the
fixation of ancestral polymorphisms upon speciation [58]). Since selection on the amino acid sequence
is expected to be stronger than selection on the RNA sequence, it is expected that the synonymous
substitution rate, dS, is higher than the non-synonymous rate, dN . Genes showing values of dN/dS

larger than typical values, but smaller than one, are usually interpreted as a hint that the gene is under
relaxed selection, either because the effective size of the population in which it evolves is small or
because the phenotypic consequences of its incorrect functioning are not severe. Values of dN/dS > 1,
i.e., accelerated evolution at the amino acid level, are usually interpreted as an indication that the gene
is under positive selection, for instance due to a change in its function or a change in the environment.
Since the dN/dS > 1 criterion is a very strong requirement, more sensitive tests have been developed,
such as the McDonald and Kreitman test [59], which compares dN/dS to the analogous value for
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intraspecies polymorphisms. However, this test has been criticized for not being able to separate
adaptation events from compensatory substitutions, which should be frequent in evolution: the model
described by Equation (4) reaches an equilibrium state in which detrimental substitutions that decrease
the fitness and compensatory substitutions that increase it almost exactly balance [51].

6. Positive Design: Protein Folding Potentials

In the previous sections, I briefly presented the models of protein folding stability (statistical
mechanics in structure space, for a given sequence) and protein evolution (statistical mechanics in
sequence space, for a given target structure) on which this work is based. I will now show that
these models allow one to quantify how natural selection acted on several aspects of protein folding,
starting from positive design, i.e., the evolutionary forces that strengthen the interactions formed in the
native state.

As first realized several years ago by Finkelstein and coworkers [60], the distribution of amino
acids of a protein family that has maximum entropy conditioned to a given value of stability is
a Boltzmann-like distribution, such as the one presented in Equation (5). This argument helps to
understand why elements of protein architecture have a Boltzmann-like statistics. This analogy between
the frequency of structural elements and the Boltzmann distribution, justified on an empirical basis
rather than on evolutionary grounds, had been previously exploited to derive statistical potentials for
protein folding, such as the contact interaction parameters, U(a, b), by measuring how the frequency
of pairs of amino acids of type a and b that are in contact in structures from the PDB deviates
from a null model that assumes the absence of interactions: contact parameters are estimated as
Ustat(a, b) = log (P (Cij | Ai = a,Aj = b)/Pnull(Cij)) [2,61]. Different parameters are obtained
adopting different null models, called reference states in the literature on this subject. The above
formula can be derived approximating the amino acid distribution as a product of pairwise terms,
P (A1 · · ·AL) ≈

∏
ij Pij(Ai, Aj), and determining the distribution of maximal entropy with the

constraint of fixed average native energy E =
∑

A P (A1 · · ·AL)
∑

ij CijU(Ai, Aj), i.e., considering
only positive design (Minning, Porto and Bastolla, Pairwise amino-acid distributions from structurally
constrained protein evolution, preprint). The contact interaction parameters, Ustat(a, b), extracted with
the above Boltzmann-like formula present a very strong correlation with the U(a, b) parameters used
in this review [25], which were optimized in such a way that experimentally known native structures
have maximum stability with respect to alternative structures obtained, threading their sequence against
all other structures in the PDB. The strong correlation between parameters obtained in these two
very different ways (r = 0.97, Minning, Bastolla and Porto, Pairwise amino-acid distributions
from structurally constrained protein evolution, preprint) support the view that statistical potentials
derived from database analysis or optimization criteria reflect relevant physical interactions underlying
protein evolution.

A further interesting support to this view comes from the recent work by Lui and Tiana [62], who
applied the method developed by Morcos et al. [63] to obtain residue coupling that can be related
to the residue interaction energy. They showed that, when model protein sequences are generated
by computationally optimizing sequences that fold in a target conformation with an empirical contact
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interaction energy, the contact interaction matrix can be reliably back-calculated with the method of [63].
Furthermore, they computed pairwise interaction parameters from multiple alignments of four families
of natural proteins and showed that these parameters allow one to predict the thermodynamic effect of
the mutations of the studied proteins with a correlation coefficient ranging from 0.65 to 0.89, providing
further evidence of the link between protein stability and evolution. Of course, these correlations would
not be expected under a mutational model of evolution that does not take into account positive design.

7. Site-Specific Amino Acid Distributions

A similar reasoning allows one to analytically compute site-specific distributions (profiles) of amino
acids at different positions in a protein family. If we approximate P (A1 · · ·AL) as the product of single
site distributions, P (A1 · · ·AL) ≈

∏
i Pi(Ai), we can compute Pi(Ai) as the distributions that maximize

the entropy in sequence space for a given value of stability, ∆G. To simplify this computation, I
and coworkers adopted the hydrophobic approximation, which consists in approximating the contact
interaction parameters with their main spectral component, which is related to hydrophobicity [64]:

U(a, b) ≈ ϵh(a)h(b) (6)

where ϵ < 0 and h(a) is correlated with several empirical hydrophobicity scales [65]. In this way,
the energy transforms into the quadratic form E = ϵ

∑
ij Cijhihj , with hi = h(Ai), and we can

analytically determine the sequence that minimizes the energy for a fixed value of
∑

i h
2
i and fixed

average hydrophobicity, constraints imposed in order to limit the free energy of the misfolded ensemble.
This is the sequence whose hydrophobicity profile, hi (a sequence signature), is proportional to the
effective connectivity (EC), ci [66], a structural signature, in turn strongly correlated with the principal
eigenvector of the contact matrix [65]. The condition that the stability of the protein is fixed can be
then substituted by the simpler condition that the average hydrophobicity is proportional to the EC,
hi =

∑
a h(a)Pi(a) = αci + b. The distribution, Pi(a), can then be computed as the distribution of

maximal entropy subject to the constraint on its mean value. The result is a Boltzmann-like distribution,
Pi(a) ∝ exp(−βih(a)). In the absence of selection, Pi(a) would be the distribution given by the
mutational process. Therefore, Pi(a) is the distribution with minimum Kullback–Leibler divergence
from the mutational distribution, Pmut(a), i.e., Pi(a) ∝ Pmut(a) exp(−βih(a)), where the selection
coefficient, βi, expresses the strength of natural selection at each position (the largest is |βi|, the more
the distribution deviates from the one induced by mutation), and it can be determined by imposing the
constraint

∑
a h(a)Pi(a) = αci+b. We have verified that this distribution is in very good agreement with

the site-specific distributions obtained through simulated evolution with stability constraints [36,41],
and it is in good agreement with the distribution that is obtained aligning sites of proteins with a known
structure that have similar values of effective connectivity [66]. For a given protein family, the maximum
likelihood fit of the observed profile, fi(a), to the above equation allows for the determining of the 21
parameters, Pmut(a) (one of these parameters is given by the normalization condition), α and b, and to
compute the exponent, βi. Note that βi depends on the mutational distribution, Pmut(a). For instance, if
mutations favor hydrophobic amino acids, selection will be stronger at exposed positions where selection
favors hydrophilic residues. Conversely, if mutations favor hydrophilic amino acids, selection will be
stronger at bulk positions, where hydrophobic residues are preferred [67].
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7.1. Relationship between Chain Length and Positive Design

Surface residues form fewer contacts than bulk residues. For globular proteins, the surface-to-volume
ratio decreases with chain length as L−1/3. Therefore, longer proteins tend to have more contacts
per residue: Nc/L ≈ c

(
1− bL−1/3

)
(see Figure 2A), and they can more easily compensate for the

loss of conformational entropy upon folding, which is proportional to LSU . This observation led
us to predict that proteins with a larger number of contacts per residue, and in particular, longer
proteins, need to optimize their native contacts less in order to achieve the same level of stability. If
only the unfolded ensemble is thermodynamically relevant, as for proteins that fold with two-states
thermodynamics, it holds ∆G/L ≈

∑
i<j C

nat
ij U(Ai, Aj) − TSU =

⟨
U(Ai, Aj)|Cnat

ij

⟩
Nnat

c /L − SU ,
where

⟨
U(Ai, Aj)|Cnat

ij

⟩
=
∑

ij C
nat
ij U(Ai, Aj)/

∑
ij C

nat
ij is the mean energy of native contacts.

Figure 2. The number of contacts per residues, NC/L, increases with chain length (A), but
the mean hydrophobicity reaches a maximum and then decreases for very long proteins (B).
The predicted native energy per contact (C) and Z score of the native energy (D) increase
with the number of contacts per residues, NC/L, i.e., native contacts become weaker and less
optimized for more compact and longer proteins. Same data, as in [68], are used, consisting
of 4,528 non-redundant proteins with a known structure.
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As we have seen above, when the physical temperature is low or ∆G is very negative, so that the
fitness, f , is close to saturation, there is a neutral evolutionary regime in which we expect that proteins
achieve only the marginal stability that allows their functioning. In this regime, we expect that the
absolute value of

⟨
U(Ai, Aj)|Cnat

ij

⟩
decreases with Nc/L or, which is the same, with chain length; in

other words, individual native contacts are expected to be weaker for longer proteins. This prediction
has been verified for a representative set of of proteins in the PDB [68]; see Figure 2C. Not only the
average value, but also minus the Z score of native interactions with respect to all possible pairwise
interactions, decreases with Nc/L, i.e., native interactions are less optimized; see Figure 2D. Conversely,



Biomolecules 2014, 4 302

as we saw above, for longer proteins negative design becomes more demanding, since the freezing
temperature of the misfolded ensemble increases with protein length. Consistently, we find that the
average hydrophobicity, ⟨h⟩, first increases with chain length, since the number of bulk versus surface
residues increases, but then it reaches a maximum and decreases, i.e., very long proteins tend to be
less hydrophobic [68], which has the effect of reducing the stability of the misfolded ensemble (see
Figure 2B).

8. Negative Design

Negative design, named in this way by Berezovsky and coworkers [69] and Horowitz and coworkers [70], is
the selective force that tends to destabilize contacts that occur frequently in the ensemble of misfolded
conformations. Negative design acts on sequence composition, disfavoring both very hydrophobic
sequences in which the mean contact energy is strongly negative and very polar or charged sequences in
which the mean contact energy is strongly positive, since they would not fold. Negative design also acts
on sequence order, disfavoring those combinations of amino acids that stabilize frequent contacts.

To investigate selection on sequence composition, we divide amino acids into three classes:
hydrophobic {L, I, V, F, Y, C, W, M}, polar and charged {D, E, G, S, N, K, R} and others {A, T, H,
Q, P}, and we compared observed frequencies to a null model that takes into account that the sum
of frequencies is one [24]. We found that selection favors two types of amino acid compositions:
those in which a relatively large frequency of hydrophobic residues coexist with a large frequency
of polar residues, and those in which both hydrophobic and polar residues are depleted. In the first
kind of composition, the effective repulsion between polar and charged residues due to desolvation
penalties and electrostatic repulsion compensates for the attraction between hydrophobic residues,
perhaps by selectively destabilizing frequent contacts and correlated contacts, as described in the next
section. This effect is stronger for longer proteins, in accordance with the expectation that selection for
negative design is stronger in long proteins. In the second type of composition, both the frequencies of
hydrophobic and polar amino acids are small, thus reducing the number of both potentially stabilizing
and destabilizing interactions. Compositions in which the frequency of polar residues is large and the
frequency of polar residues is small are strongly underrepresented, most probably due to positive design,
since these compositions are typical of disordered proteins that are not present in the dataset that we
examined (proteins that have been crystallized in the PDB). The opposite composition, in which a large
hydrophobic frequency is not compensated by polar residues, is also underrepresented, probably due to
negative design.

Since the entropy loss associated with a contact, Cij , is a decreasing function of the contact range
l = |i − j|, short-range contacts occur more frequently, and they are weakened by a negative design.
However, to observe this effect, we have to discount the effect of positive design by separating contacts
that occur in the native state from those that do not. We define the contact frequency energy score (CFES)
as the correlation between contact frequency, ⟨Cij⟩, and contact energy, U(Ai, Aj), distinguishing the
set of native and non-native contacts. We observe that the CFESs are positive, i.e., native contacts
that are short range are associated with energies that are, in general, higher than for long-range native
contacts [24]. The same conclusion is found if we compare non-native contacts that are short range
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with non-native contacts that are short range. If we reshuffle the sequence, maintaining its composition,
we can see that this pattern is destroyed, i.e., the values of the CFESs are strongly significant, which
suggests that they are due to selection for negative design (see Figure 3). This pattern is mainly due to
anticorrelations in the hydrophobicity of residues at neighboring positions along the protein chain.

Figure 3. (A) For each protein in a large set, we compute the probability that the free energy
of the misfolded ensemble is larger for the real sequence than for 100 randomly reshuffled
sequences with the same composition. The results show that for most natural proteins, the
misfolded ensemble is destabilized. (B) The average energy of a contact decreases with its
nativeness index, Cnat

ij − ⟨Cij⟩. In particular, short-range contacts with large ⟨Cij⟩ are less
attractive. Reproduced with permission from [24] (Wiley c⃝).
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Negative design also acts on contact correlations. We distinguished pairs of contacts, CijCkl,
involving only two (kl = ij), three (ij, ik) and four different indexes, and measured the correlation
coefficient between contact correlations ⟨CijCkl⟩−⟨Cij⟩ ⟨Ckl⟩ and energy products U(Ai, Aj)U(Ak, Al),
which we call the contact correlation energy score (CCES2, CCES3 and CCES4, respectively). Also
in this case, we have to distinguish native and non-native contacts. All the CCESs are positive and
significantly higher than their reshuffled version, which indicates that the second moment of the energy
of misfolded conformations is higher than expected based on composition and native contacts alone,
suggesting that natural selection is able to improve negative design by acting on contact correlations, as
well [24].

The Zscores of the CFES and CCES with respect to shuffled sequences are significantly larger for
native contacts, which are fewer and stronger, than for non-native contacts. These Z scores are larger
for proteins with more negative interaction energy (i.e., hydrophobic composition), as well as for longer
proteins, in agreement with the expectation that these proteins experience stronger selection for negative
design [24].
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9. Selection on Protein Folding Rates

Plotkin and coworkers developed a model that predicts that the protein folding rate increases when
contacts that are short range along the sequence (i.e., |i − j| is small), and, therefore, are more easily
formed, interact more strongly, i.e., U(Ai, Aj) is more negative [71–73]. This model predicts a positive
correlation between the sequence difference of native contacts |i − j| and their interaction energy,
U(Ai, Aj). However, we have seen in the previous section that negative design promotes a negative
correlation between |i − j| and U(Ai, Aj), since increasing the energy of frequent contacts with small
|i − j| destabilizes misfolded conformations. These two design principles cannot be achieved at the
same time, which induces frustration in protein evolution. Nevertheless, despite the signal for negative
design being stronger, the signal for selection on the protein folding rate can be detected from a statistical
analysis of the PDB [74]. This analysis shows that short-range native contacts tend to have high energy,
and the energy decreases with contact range, consistent with negative design, but it attains a minimum
at |i − j| ≈ 8. For longer ranges, the energy increases with |i − j|. This trend cannot be attributed
either to positive or to negative design. If we adopt a method similar to the one described above and
described in more detail in [24] to design the hydrophobicity profile that guarantees optimal stability
to the target native structure, taking into account both positive and negative design, we can estimate
whether the interaction energy of a contact is higher in the real sequence than in the optimal sequence.
This excess interaction energy tends to be significantly negative for short-range contacts, as shown in
Figure 4. In other words, short-range contacts tend to be stronger than predicted based on folding
stability, in agreement with Plotkin’s model. Moreover, this effect is larger for proteins characterized by
larger absolute contact order ACO=

∑
ij C

nat
ij |i− j|/

∑
ij C

nat
ij , a structural parameter that is negatively

correlated with the protein folding rate [75]. Structures with large ACO tend to fold more slowly, and
they are expected to be subject to stronger selective pressure for sequence features that accelerate the
folding rate, such as the strong short-range contacts described in Plotkin’s theory [74].

10. Influence of Mutation Bias and Population Size

Due to the structure of the genetic code, proteins coded by genes that are rich in the bases, adenine
and thymine (in particular, T at the second codon position), tend to be hydrophobic, while proteins coded
by genes rich in guanine and cytosine tend to be hydrophilic (in particular, genes coding for disordered
proteins are GC-rich). This particularity establishes a deep relationship between the mutation process
and protein folding thermodynamics. We tested this relationship with simulations of protein evolution
subject to different mutation biases, finding that mutation bias towards AT produces proteins that are less
stable against misfolding, but more stable against unfolding [67] (see Figure 5).

We tested this relationship through a statistical analysis of the predicted folding thermodynamics
properties of orthologous proteins present in the genome of different bacteria [76]. Intracellular bacteria
are characterized by mutation bias towards AT, as well as by reduced effective population sizes, in that
they have to undergo severe population bottlenecks upon transmission to a new host. We found that
their proteins are characterized by reduced stability against misfolding with respect to the orthologous
proteins of their free living relatives. Consistently with this result, it was observed that intracellular
bacteria express the chaperonin, DnaK [77], at very high level, which assists the folding of proteins that
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present misfolding problems; in particular, it binds to exposed hydrophobic patches and sequesters them,
preventing protein aggregation. Overexpression of DnaK recovers a large fraction of the fitness that is
lost upon experimental bottlenecks of bacterial populations transmitted from one plate to another [78],
suggesting that a large part of this fitness loss is due to protein folding problems.

Figure 4. Excess energy of contacts, i.e., the difference between the interaction
energy of the natural sequence and the one of the sequence with optimal stability,
versus contact distance |i − j|. One can see that short-range contacts are more
attractive than expected on a stability ground, and this effect increases with chain
length and with the absolute contact order (ACO). Reproduced with permission from
[74] (Wiley c⃝).
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The case of intracellular bacteria is interesting in that two features of their evolution conspire to reduce
the stability against the misfolding of their proteins: the small effective population size and the mutation
bias towards AT (hence, towards hydrophobic proteins). To gain insight into the interplay between these
two properties, we simulated protein evolution with a fitness function that separates stability with respect
to the unfolded ensemble and with respect to the misfolded ensemble. We evaluate these two kinds of
stability through the variables, xU (native energy minus conformational entropy) and xM (normalized
energy gap between the native state and the misfolded ensemble), which we normalize with respect to
the sequence in the PDB. This setting allows for highlighting the fact that these two kinds of stabilities
respond differently to mutation bias and population size. For this study, we use the following fitness
function:

f(xU , xM , S) =


1

1 + x−S
U + x−S

M

xU > 0 ∧ 0xM > 0,

0 otherwise.
(7)

The parameter, S, has the role of a neutrality parameter: if it is large, the fitness tends to a binary variable,
and the value of fitness attained in evolution is independent of population size (see Figure 5B).
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Figure 5. Relationship between stability against unfolding, XU , and stability against
misfolding, XM . (A) An inverse relationship between the two kinds of stabilities is observed
in orthologous bacterial proteins. (B) The same relationship in simulated protein evolution.
Each line corresponds to a different population size, N , and neutrality parameter, S; each
point represents a mutation bias measured as the GC content that would be attained with
mutation alone. Mutations favoring GC produce less hydrophobic proteins, which are
more stable against misfolding, but less stable against misfolding, moving leftwards in
the horizontal direction. Stability increases with population size N , but it becomes less
dependent on both population size and mutation bias for large neutrality parameter S.
Reproduced from [79], copyright of the authors.
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This model shows that the fitness attained in evolution depends not only on population size, as
it was known, but also on mutation bias [79]. Namely, for a fixed population size, the fitness
reaches a maximum for an optimal mutation bias that depends on population size: small populations
attain larger fitness if they evolve with AT mutation bias; intermediate populations attain maximum
fitness if they evolve with GC mutation bias; and very large populations prefer the absence of
bias, i.e., GC = 0.5; see Figure 6. Mutation bias is under genetic control, since it is determined
by the genes involved in genome replication and DNA repair, and it is broadly distributed in
bacterial families. In particular, obligatory intracellular bacteria, characterized by a small effective
population size, due to the bottlenecks in the transmission from one host to another, tend to possess
strong AT bias, usually due to the loss of repair genes. The results reported above suggest that
changes in mutation patterns are not selectively neutral, but they can strongly influence the balance
between unfolding and misfolding stability and the fitness of clones of the same bacterial population
evolving with different mutation biases. If these clones come to compete for common resources in
a meta-population scenario, we may expect that the optimal mutation bias will be selected. This
reasoning suggests that one of the forces that shape the evolution of mutation bias in bacteria is
meta-population selection of the resulting stability of the proteins that evolve under the specified
bias [79]. Of course, experimental tests are needed to evaluate this hypothesis against alternative
hypothesis on the evolution of GC bias, recently reviewed in [80].
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Figure 6. (Left) For fixed population size, fitness, and, hence, protein stability, attains a
maximum as a function of mutation bias, measured as the GC content that would be attained
under mutation alone. The three curves have been vertically shifted to make the intra-curve
comparison clearer. (Right) This optimal mutation bias, GCopt, depends on the population
size; it favors AT for a small population size, GC for intermediate population size and the
absence of bias (GC = 0.5) for a very large population size. Reproduced from [79], copyright
of the authors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
GC

0.86

0.87

0.88

0.89

0.9

0.91

0.92

F
itn

es
s 

(a
.u

.)

N=80
N=320
N=640

0 1000 2000 3000 4000
Population Size

0.3

0.4

0.5

0.6

0.7

0.8

G
C

op
t

11. Protein Functional Dynamics with the Elastic Network Model

The previous part of this review concerns protein folding stability, modeling proteins as static entities
and representing the native state as an individual contact matrix. However, proteins are extremely
dynamic, and even in the native state, they explore a fairly large amount of configuration space. As
mentioned above, it is often assumed that this configuration entropy can be ignored, since it is expected
to have similar values in all compact conformations, both native and non-native, so that its contribution
to stability is negligible [6]. Nevertheless, the investigation of protein dynamics in the native state can
yield interesting insights into protein function, and it is an active field of research.

The simplest model that can analytically predict the intrinsic dynamics of proteins in the native state
is the elastic network model (ENM) [48], proposed by Tirion in 1996 [81]. The ENM belongs to the
category of Go models, built from the experimental knowledge of the native state [82] (see [5] for a
recent review). In Go models, instead of deriving the native state by minimizing the free energy of a
given force field, a procedure that is computationally unfeasible, except for small peptides, and that can
lead to errors, due to inaccuracy in the force fields, one builds the force field from the requirement that the
known native structure sits at the minimum energy and that the molecule is minimally frustrated [83],
i.e., all native interactions are stabilizing and all non-native interactions can be neglected. The ENM
force field is defined as:

E(r1 · · · rL) =
∑
ij

Cnat
ij f(rij, r

nat
ij ) (8)

where Cij is the contact matrix, rij is the distance between atoms i and j and f describes a pairwise
interaction that attains its minimum when rij = rnatij . For simplicity, it is customary to assume that f does
not depend on the type of atoms, but only on the distance, rnatij . The ENM can be analytically studied in
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a harmonic approximation that only considers small displacements from the equilibrium positions, rnatij .
To second order in the displacements, the effective energy is given by:

E(r1 · · · rL) ≈
1

2

∑
ij

Cnat
ij κ(rnatij )−γ

(
rij − rnatij

)2 (9)

where we assume that f ′′(rnatij ) ≈ κ(rnatij )−γ represents the force constant of the native interaction, ij.
The statistical mechanics of this model can be exactly computed through normal mode analysis. Normal
modes are independent perturbations of the equilibrium configuration that constitute a complete set of
vectors. They can be computed by diagonalizing the Hessian matrix of the second derivatives of the
energy with respect to the coordinate systems. If we use degrees of freedom that are not Cartesian, such
as internal coordinates, we have to consider the generalized eigenvalue equation Hvα = ω2

αTv
α, where

H is the Hessian matrix in internal coordinates, T is the kinetic energy matrix and ωα is the frequency
of normal mode α. By the equipartition theorem, the average energy of the system distributes uniformly
across all normal modes. Since the energy associated with a normal mode is the product of its squared
frequency times its mean square displacements, the contribution of a normal mode to the intrinsic motion
of the molecule decreases with its frequency, ⟨δr2⟩α = kBT/ω

2
α, i.e., low energy normal modes generate

larger internal fluctuations.
Surprisingly, despite normal modes being only valid for very small displacements, it has been

observed that low frequency normal modes that describe the collective motions of proteins, such as
inter-domain motion, correlate very well with observed functional conformation changes [84,85]. In
particular, some functional conformation changes even up to several Å are well represented by a few
low-frequency, collective normal modes. Is this correlation a result of the physical laws or natural
selection? To answer this question, we need a null model of the conformation change that would be
expected under a generic perturbation, for instance due to the binding of the ligand. We proposed in [86]
a null model based on linear response theory that assumes that the contribution of the normal mode,
α, to a generic conformation change, c2α, is proportional to its contribution to the thermal dynamics,
c2α ∝ ω−2

α . We tested this null model in [87], finding that it agrees well with observations, since the
correlation between c2α and ω−2

α is significant and large for almost all conformation changes present in
the PDB larger than 1 Å. This result is not trivial, since small conformation changes, which are dominated
by the experimental error, show much smaller correlations.

Based on this null model, we can then measure excess correlations between c2α and ω−2
α through

the parameter ρ = Corr ((cαωα)
2, ω−2

α ). If ρ is significantly positive, low-frequency normal modes
contribute to the conformation change more than expected based on the null model. In turn, this has
the effect of reducing the harmonic energy barrier with respect to a conformation change that obeys the
null model and has the same RMSD. On the contrary, if ρ is significantly negative, low-frequency normal
modes are underrepresented with respect to the null model, and the harmonic energy barrier is larger than
expected. Therefore, significant ρ > 0 suggests that natural selection acted on the intrinsic dynamics
of the native state in such a way as to favor functional motions. We found that most conformation
changes in the PDB are well described by the null model, but a large number of conformation changes
has significant ρ > 0, in particular those involving the formation of homo-oligomeric protein complexes,
proteins that transport ligands and phosphorylated proteins [87]. Conversely, significantly negative ρ

can be interpreted as the result of natural selection to avoid a particular conformation change from
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happening spontaneously. Notably, we find some examples of ρ < 0 in regulatory proteins, for instance
for conformation changes upon phosphorylation [87].

12. Conclusions

Simple models of protein folding and dynamics allow one to propose a hypothesis on which quantities
may be the target of natural selection acting on protein stability and dynamics. These hypothesis can be
tested by comparing statistical observations made on representative sets of natural proteins with suitably
built null models. As a result, we can ultimately detect the fingerprint of natural selection acting on the
positive and negative design of protein folding stability, protein folding rates and the intrinsic motion
of proteins. Through these studies, a synergy between physics and biology is created: evolutionary
arguments allow one to test and better understand protein folding, and protein folding models allow one
to better understand and model evolution.
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