Next Article in Journal
Regulation of Cytoskeleton Organization by Sphingosine in a Mouse Cell Model of Progressive Ovarian Cancer
Next Article in Special Issue
Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase
Previous Article in Journal
Sphingosine Phosphate Lyase Regulates Murine Embryonic Stem Cell Proliferation and Pluripotency through an S1P2/STAT3 Signaling Pathway
Previous Article in Special Issue
Angling for Uniqueness in Enzymatic Preparation of Glycosides
Biomolecules 2013, 3(3), 369-385; doi:10.3390/biom3030369
Review

Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

1,2
1 Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan 2 Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
Received: 18 June 2013 / Revised: 27 June 2013 / Accepted: 28 June 2013 / Published: 11 July 2013
(This article belongs to the Special Issue Enzymes and Their Biotechnological Applications)
View Full-Text   |   Download PDF [662 KB, uploaded 11 July 2013]   |   Browse Figures
SciFeed

Abstract

This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization.
Keywords: Amylose supramolecule; hydrophobic interaction; inclusion complex; vine-twining polymerization; selective inclusion Amylose supramolecule; hydrophobic interaction; inclusion complex; vine-twining polymerization; selective inclusion
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Kadokawa, J.-I. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization. Biomolecules 2013, 3, 369-385.

View more citation formats

Related Articles

Article Metrics

Comments

[Return to top]
Biomolecules EISSN 2218-273X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert