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Abstract: Genetic instabilities, including mutations and chromosomal rearrangements, lead 

to cancer and other diseases in humans and play an important role in evolution. A frequent 

cause of genetic instabilities is double-strand DNA breaks (DSBs), which may arise from a 

wide range of exogeneous and endogeneous cellular factors. Although the repair of DSBs is 

required, some repair pathways are dangerous because they may destabilize the genome. 

One such pathway, break-induced replication (BIR), is the mechanism for repairing DSBs 

that possesses only one repairable end. This situation commonly arises as a result of eroded 

telomeres or collapsed replication forks. Although BIR plays a positive role in repairing 

DSBs, it can alternatively be a dangerous source of several types of genetic instabilities, 

including loss of heterozygosity, telomere maintenance in the absence of telomerase, and 

non-reciprocal translocations. Also, mutation rates in BIR are about 1000 times higher as 

compared to normal DNA replication. In addition, micro-homology-mediated BIR 

(MMBIR), which is a mechanism related to BIR, can generate copy-number variations 

(CNVs) as well as various complex chromosomal rearrangements. Overall, activation of 

BIR may contribute to genomic destabilization resulting in substantial biological 

consequences including those affecting human health.  
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1. Introduction 

Genomic instability leading to mutations and chromosomal rearrangements can enable pre-cancerous 

cells to acquire many hallmarks of cancer, such as limitless replicative potential, evasion of cell death 

and constant proliferation. Although no clear explanation for the origin of genetic instability exists, the 

activation of oncogenes in pre-cancerous cells have been found to lead to over-initiation of replication 

which results in the collapse of replication forks [1–4], the accumulation of DNA breaks, and a burst of 

genetic instability [1,3–6]; reviewed in [7,8]. In particular, genetic instability has been linked to DSBs 

formed from collapsed replication forks. BIR is a DSB repair mechanism capable of recovering 

collapsed replication forks that is known to produce genomic rearrangements and genetic mutations at 

high frequencies. BIR, which was originally discovered and investigated in bacteria and viruses, has 

recently been thoroughly studied using yeast Saccharomyces cerevisiae, a model eukaryotic organism. 

Studies in yeast have provided details of molecular mechanisms, regulation, and proteins participating 

in BIR, as well as analyses of genetic instabilities resulting from BIR. BIR has yet to be studied in 

mammals, although some evidence has suggested that it operates in humans, and that its activation is a 

probable cause of many human diseases. In this review, we use the data obtained from yeast to discuss 

mechanisms of BIR and to explain the reasons for genetic instabilities resulting from this DNA repair 

pathway. In addition, the history of BIR investigation in prokaryotes, called recombination-dependent 

replication (RDR) in bacteria and viruses, is also briefly described. The reader however is referred to 

other recent reviews [9–14] for more detailed information on RDR in bacteria and viruses. 

Furthermore, we examine recent evidence which connects microhomology-mediated BIR (MMBIR), a 

BIR-related mechanism, to human diseases. 

2. Double-Strand Break Repair Mechanisms 

Double-strand DNA breaks (DSBs) are potentially lethal events that can occur from exposure to 

DNA-damaging agents such as radiation, various chemicals and anti-cancer drugs, but they can also be 

formed spontaneously as a result of problems with DNA metabolism (i.e., problems during replication 

and segregation) (reviewed in [15,16]). Two major pathways, homologous recombination (HR) and 

non-homologous end-joining (NHEJ), have evolved to repair DSBs. NHEJ proceeds by the interaction 

of broken DNA ends that are not homologous to each other or contain micro-homologies (Figure 1A). 

NHEJ frequently leads to deletions and insertions and therefore can be mutagenic [17]. HR involves 

interactions between large homologous DNA regions and can proceed through several pathways 

including single-strand annealing (SSA), gap repair leading to gene conversion (GC), and  

break-induced replication (BIR) (Figure 1B). SSA repairs DNA breaks that are flanked by long direct 

DNA repeats (Figure 1B.1). SSA is initiated by 5’-to-3’ DNA resection, which renders direct repeats 

single stranded allowing them to anneal to each other. This process leads to a loss of DNA between the 

repeats and a reduction of the repeats to a single copy. GC proceeds by the invasion of one broken 3’ 

DNA end into a homologous template, followed by copying of the DNA sequences necessary to repair 

the break; the second 3’ end of the break either anneals with the single-stranded DNA in the D-loop 

(forming a double Holliday junction, dHJ) [18], or anneals with the extended and displaced 3’ end that 

initiated strand invasion (in synthesis dependent strand annealing, SDSA) [19] (Figure 1B.2).  
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Figure 1. Mechanisms of double-strand DNA breaks (DSB) repair. (A). Non-homologous 

end joining (NHEJ) involves re-ligation of broken DNA ends resulting in small deletions 

or insertions (B). Repair by homologous recombination (HR) starts with resection of DSB 

ends in a 5’ to 3’ direction and requires the involvement of long homologous regions. 

Repair by HR can proceed by 3 different pathways, Single Strand Annealing (SSA), Gap 

Repair leading to gene conversion (GC) and Break-Induced Replication (BIR). (1) SSA 

occurs through annealing of DNA direct repeats (orange lines) after they become single-

stranded. Annealing leads to the deletion of all sequences between the repeats and to the 

loss of one repeat [37] (2) Gap repair leading to GC. GC may proceed via the formation of 

a double Holliday Junction (dHJ), leading to the formation of crossover products about half 

of the time [18]. GC may also result from SDSA, which does not involve the formation of 

a dHJ and rarely leads to crossover products [19]. In all cases, GC is associated with a 

short patch of DNA synthesis. (3) BIR is initiated by a one-ended DSB and proceeds via 

copying of large DNA regions [33,38,39]. Dashed lines indicate newly synthesized DNA.  

   

 

GC leads to the repair of the DSB by a limited patch of new DNA. GC has traditionally been 

considered the ‘safest’ pathway of DSB repair because it is rarely associated with genetic 

rearrangements, though mutations have been associated with this type of repair [20,21]. Further details 

on NHEJ, SSA and GC repair pathways are reviewed in [15,16,22]. When homology between the 
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donor and recipient chromosomes is restricted to a single side of a DSB, GC is abolished and the repair 

of such one-ended breaks proceeds by BIR (Figure 1B.3). According to existing models, BIR proceeds 

through the invasion of one broken DNA end into an intact donor chromosome followed by the 

initiation of DNA synthesis that can proceed to the end of the donor chromosome (reviewed in [23,24]). 

BIR plays an important role in the repair of one-ended breaks that can be formed as a result of 

collapsed replication forks and eroded telomeres. Repair by BIR can be dangerous for a cell however, 

because it can result in the copying of hundreds of kilobases of DNA from a donor molecule while a 

large piece of broken unrepaired DNA can be lost. Also, BIR can lead to various types of genomic 

instabilities, including mutations and chromosomal rearrangements [25–36]. 

3. Recombination-Dependent Replication (RDR) in Bacteriophages and Prokaryotes 

BIR was first identified in the late replication phase of bacteriophage T4 where it was described as 

RDR [40]; reviewed in [41]. In addition to its role in late replication, RDR in bacteriophage T4 was 

shown to play important roles in DSB repair and in the repair of broken replication forks [42–44] (see 

also [9,11,41,45] and references therein). RDR was also found to be involved in several different 

processes in Escherichia coli, including stable DNA replication [46,47], (see also [48] and references 

within), repair of double-strand DNA breaks [46,47,49], repair of collapsed replication forks (see in [13,14] 

and references therein), and a process leading to the formation of adaptive mutations [50,51]. It was 

demonstrated that similar groups of proteins are required for BIR in bacteria and phages including 

recombination proteins, replication proteins, and proteins mediating recombination and replication. 

Recombination proteins initiate the BIR process by promoting strand invasion and D-loop  

formation [47,52–54], also see in [9,11]. The role of mediator proteins is to assemble a processive 

replication fork on the D-loop that is formed during the first step of BIR. This function is carried out 

by the PriA complex or by PriC in E. coli (see in [48] and references within) and by the gp59 protein 

in bacteriophage T4 (reviewed in [9,11,55]). The critical step in this process is loading the replicative 

helicase that is capable of recruiting primase, thus promoting the assembly of the replication fork. 

During normal DNA replication in E. coli, the replicative helicase DnaB is loaded by DnaA, which 

interacts with the bacterial origin of replication OriC. During BIR, the origin recognition step is 

replaced by the recognition of the D-loop by a PriA complex (which includes PriA, PriB and DnaT) or 

by PriC, which promotes loading of DnaB (reviewed in [13,48,56]). DnaG primase subsequently 

interacts with DnaB, completing the assembly of a primosome. A similar sequence of events takes 

place in T4 phage, where gp59 plays the role of PriA (reviewed in [9,55]). (Note: We refer the reader 

to reviews for details on the PriA complex and T4 phage gp59 protein, as much literature regarding 

these key recombination factors has been published). The last replication stage of BIR is carried out by 

processive DNA polymerases working in conjunction with clamp and clamp-loader proteins 

(polymerase III complex in E. coli) [57,58] and gp43/gp/44/gp45/gp62 complex in T4 (reviewed in [9]. 

Among all listed proteins, “mediators” are the only ones that are truly unique for RDR because they 

carry out a unique function by providing a link between recombination and replication. It was 

demonstrated that PriA and PriC initiate RDR by binding single-stranded (ss) DNA that was formed in 

the vicinity of collapsed replication forks (see in [13,59] and references within). Interestingly, Pri 

complexes were shown to initiate RDR at R-loops, when they were stabilized in the absence of 
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RNaseH destroying RNA/DNA hybrids [60]. The details of the molecular mechanism of RDR and 

proteins participating in RDR can be found in several reviews that are specifically focused on  

RDR [9,11,13,48,59]. 

4. BIR in Eukaryotes 

BIR is well studied in the yeast Saccharomyces cerevisiae. Several specific experimental systems 

have been developed in this organism to study BIR. One approach uses yeast transformation, where a 

linearized fragment containing a centromere is used to initiate BIR [38]. In particular, a chromosome 

fragmentation vector (CFV) is linearized by a restriction endonuclease prior to transformation into yeast. 

Once in the cell, one end of the vector acquires a de novo telomere, while the other end invades a 

homologous region of chromosomal DNA, thus initiating BIR. The use of this system by Morrow et al. [38], 

and later by Davis and Symington [33] allowed the demonstration that BIR could synthesize hundreds 

of kilobases of DNA. Recently, a modified version of this system allowed yeast cells to be transformed 

with CFVs containing an I-SceI endonuclease recognition site [61]. This vector remains intact within 

the cell as an episome until the addition of galactose, which will linearize the vector and initiate BIR.  

Another approach makes use of HO endonuclease, which initiates a DSB in such a way that only 

one broken DNA end can find homology in the yeast genome, thus resulting in repair by BIR. Using 

HO-induced DSBs, Bosco and Haber [26] documented BIR in a situation where the invading strand 

and the template DNA shared only 70 base pairs of homology. The generation of DSBs by HO in 

diploid and partially diploid cells has been used to investigate allelic BIR. This was accomplished by 

truncating one of two copies of chromosome III in such a way that only one DSB end could invade a 

homologous region, thereby being repaired by BIR [27,39]. Also, ectopic BIR has been studied in a 

yeast haploid system where an HO cut site was positioned on chromosome V. Upon DSB induction, 

one broken DSB end invaded a homologous region on chromosome XI that initiated BIR and led to a 

translocation [34]. A similar experimental system utilized by Ruiz et al. [32] also allowed the 

investigation of ectopic BIR.  

The study of BIR in higher eukaryotes has been limited thus far, though recently one experimental 

system utilizing Xenopus laevis egg extracts has been effective in examining cellular responses to 

nicked DNA during replication [62]. The occurrence of a nicked DNA template during replication fork 

progression generates a one-ended DSB, which is an ideal substrate for BIR.  

BIR has yet to be studied systematically in mammals, primarily due to an absence of a reliable 

experimental system. Nevertheless, different genetic instabilities that lead to cancer in mammals, such 

as loss of heterozygosity (LOH) (reviewed in [63–65]) and the formation of chromosomal 

translocations (reviewed in [66–69]) may result from BIR. In addition, BIR is likely to be responsible 

for alternative telomere lengthening (ALT), a recombination-based mechanism that is often used by 

telomerase-compromised cancer cells to maintain long telomeres. ALT proceeds by the invasion of 

uncapped telomeres into telomere or sub-telomere regions of other chromosomes followed by copying 

which allows the extension of telomeres in the absence of telomerase (reviewed in [24,70–75]). 

Studies in yeast have demonstrated that ALT proceeds using BIR [34].  
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5. Molecular Mechanism of BIR 

5.1. Initiation of BIR 

Studies in yeast revealed the following details about the mechanisms associated with BIR. BIR is 

initiated by a DSB that undergoes an extensive 5’-3’ resection [76], resulting in long 3’ single-stranded 

DNA ends which invade homologous DNA sequence forming a D-loop (Figure 2A, 2B). Strand 

invasion depends on Rad52 (Table 1) [33, 77], and can proceed through either Rad51-dependent [33,39] or 

Rad51-independent pathways [28, 77]. The most efficient pathway, Rad51-dependent, also requires 

Rad55, Rad57 and Rad54 [78]. For high efficiency, Rad51-dependent BIR requires significant (>1kb) 

regions of homology between interacting DNA molecules [34]. The Rad51-independent pathway is not 

very efficient and depends on Rad59, the Rad54 homolog Tid1, and the Mre11-Rad50-Xrs2 complex [78]. 

Rad51-independent BIR has been described in yeast diploids when HO-induced DSBs were introduced 

into the middle of one copy of chromosome III [77]. A striking feature of BIR occurring in the absence 

of Rad51 is that generally it leads to translocations (Figure 2A, 2M, 2J) resulting from strand invasion 

of a broken chromosome at ectopic positions at locations of Ty and delta elements [28]. In contrast, 

strand invasions into allelic positions are very rare. Downing et al. [79] proposed that the absence of 

Rad51 stimulates the initiation of BIR at regions containing relatively small homology to the broken 

DNA end and that BIR might be mediated by annealing of the broken end to regions that became 

single-stranded due to activation of replication, transcription or formation of secondary DNA 

structures in the donor chromosome.  

Table 1. Requirements for recombination and replication proteins in Gap Repair (Gene 

Conversion) and BIR in yeast.  

Proteins Requirement of the protein in the repair pathway 

Gap repair (Gene Conversion) BIR* 

Rad52 Required[15,86,87] Required [33,77] 

Rad51 Required [15,86,87] Required [33,39] 

Rad55, Rad57 Required [15,86,87] Required [78] 

Rad54 Required [15,86,87] Required [78,79] 

Pol32 Not required [34] / required **[31] Required [27,29,34] 

Mcm 2-7 Not required [88] Required [89] 

PCNA Required [88,90] Required [89] 

Pol/Primase Not required [88] Required [34] 

Pol One is required (Pol and Pol can 

substitute each other) [90] 

Required [27,29,34] 

Pol Required***[34] 

Cdc45 Not required [88] Required [89] 

GINS, Cdt1, Cdc7 ? Required [89] 

Cdc6 ? Not required [89] 

ORC Not required [90] Not required [89] 

* Protein requirements for RAD51-dependent BIR are included 

** Pol32 is required for repair of large gaps [31] 

[34].  

Question marks represent cases where the requirement for corresponding proteins in gap repair is unknown.  
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Figure 2. Model for BIR-induced genetic instability. A schematic indicating proposed 

pathways of BIR-induced genetic instability. Abbreviations: HJ, Holliday junction; 

MMBIR, micro-homology mediated BIR. A small red “x” indicates an error during BIR 

which leads to a fixed mutation, as indicated by a large red “X”. A red “stop” symbol 

indicates stalling of BIR replication. Green color indicates non-homologous chromosomes. 

A. 5’ to 3’ resection of a one-ended DSB. B. 3’ overhang invasion into a homologous 

chromosome. C. 3’ strand invasion leading to the formation of a unidirectional replication 

fork. D. Replication via semi-conservative DNA synthesis. E and F. Conservative 

replication associated with branch migration occurring by (E) coordinated synthesis of 

leading and lagging strands or (F) initial leading strand synthesis, later serving as the 

template for lagging strand synthesis. G. A pause during BIR replication leading to one of 

the following outcomes (H-L): (i) H. a switch to MMBIR; (ii) I. dissociation of a newly 

synthesized strand; (iii) J. a translocation resulting from strand invasion into a non-

homologous chromosome; (iv) K. the processing of BIR intermediates; (v) L. a half-

crossover resulting from (K).  M. 3’ end invasion at an ectopic position which leads to a 

translocation (J). Letters connected by dotted lines denote the following hypothetical 

events: (i) a switch from BIR to MMBIR (H), initiated by pausing of BIR (G); (ii) MMBIR 

(H) leads to half-crossovers (K) and (L); and (iii) MMBIR (H) leads to strand 

dissociations (I) which then results in translocations (J).  
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The requirements of Rad51-dependent and Rad51-independent ALT in yeast correlate with the 

requirements for BIR [80,81]. For example, Rad51-dependent ALT requires Rad52, analogous to the 

Rad51-dependent BIR pathway, and leads to the proliferation of long, sub-telomeric Y' and other sub-

telomeric sequences at nearly all chromosome ends [81,82]. Rad51-independent ALT also requires 

Rad52, however, similar to Rad51-independent BIR it also requires Rad59 and the MRX complex [81]. 

Rad51-independent ALT results in the elongation of the (TG)n telomere sequences [83–85]. The 

different outcomes in the Rad51-dependent and Rad51-independent ALT probably reflect different 

requirements for homology between the DSB end and its template. 

5.2. DNA Synthesis Associated with BIR 

DNA synthesis during BIR has primarily been studied for Rad51-dependent BIR, and therefore we 

will focus on this pathway. It has been demonstrated that while the strand invasion step for BIR and GC 

occurred rapidly [31], these two pathways differ at the beginning of DNA synthesis. In particular, the 

initiation of DNA synthesis during BIR (Figure 2C) takes 3-5 hours longer as compared to GC [31,39]. 

This delay might result from a prolonged assembly of a BIR-specific replication fork. Alternatively, 

the delay in initiation of BIR DNA synthesis might result from a recombination checkpoint [31] which 

would specifically suppress the onset of BIR in order to create a preference for repair by GC. 

Additionally, frequent strand dissociation-reinvasion cycles at the beginning of BIR might be 

responsible for the delay and for frequent template switching observed at the beginning of BIR 

synthesis [30]. Importantly, after approximately 10kb of copying, BIR is stabilized and progresses at a 

normal pace [30,39].  

There are several possibilities as to how DNA synthesis commences. The first possibility is that a 

Holliday junction (HJ) that results from strand invasion is resolved and the D-loop is transformed into 

a complete unidirectional bona fide replication fork that migrates down the template chromosome 

(Figure 2D). This would result in two semi-conservatively replicated molecules. Several properties of 

BIR observed in yeast are consistent with this idea. Thus, the observation made by Lydeard et al. [89], 

that initiation of BIR involves the majority of proteins that participate in initiation of normal S-phase 

DNA replication points towards a similarity between a replication fork formed during BIR and one 

established during S-phase replication. Also, it was observed that the rate and processivity of 

established BIR is similar to those during normal DNA replication [39]. The bona fide replication fork, 

however, does not explain a number of recent observations, such as an increased propensity of  

BIR-associated replication to generate chromosomal rearrangements, mutations and template  

switches [25,29,30]. Another possibility is that the HJ is not resolved at the beginning of BIR, as was 

also suggested by [23,30]. In this case, the HJ would be acted upon by branch-migration enzymes that 

displace the newly synthesized leading and lagging strands, thereby generating molecules that mimic 

the products of conservative replication (Figure 2E). Finally, another scenario is possible where BIR is 

carried out by two rounds of repair-type DNA synthesis: the first round creates a single-stranded DNA 

molecule that is used as a template in the second round of repair synthesis, resulting in the formation of 

a conservatively replicated molecule (Figure 2F). These models proposing a conservative mode of BIR 

DNA synthesis are more likely to account for various genetic abnormalities resulting from BIR (as 

previously suggested by [23,30]).  
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Characterization of replication proteins participating in BIR demonstrated that initiation of BIR 

involves the majority of proteins that start S-phase DNA replication, including Cdc7, Cdt1, Mcm2-7, 

Cdc45, and GINS [89] (Table 1). These requirements make BIR different from GC, which does not 

require Mcm2-7 or Cdc45 [88]. BIR does not require Cdc6 and ORC, which is most likely related to 

the origin-independent nature of BIR [89]. Additionally, several observations indicate that the 

composition of proteins participating in the BIR replisome differs from that in normal DNA 

replication. For example, BIR requires Pol32p [27,29,34] a subunit of DNA polymerase δ that is 

dispensable for S-phase replication. Since Pol32 is known to mediate interactions between Polδ and 

other replication and repair proteins, it is possible that some other specific proteins are involved in the 

BIR replication fork. Furthermore, the roles of the main replicative polymerases in BIR differ 

significantly from their respective roles during S-phase replication. For example, while Pol and Polδ 

are necessary at all steps of BIR in yeast, Polε is non-essential for the initiation of BIR and is required 

only at later stages. In fact, 25% of BIR events can be completed in the absence of Polε [34]. These 

observations therefore imply that BIR replication differs from S-phase replication.  

Studies of the restart of collapsed replication forks by BIR in Xenopus laevis demonstrated that the 

key step in re-initiation of DNA synthesis occurred by a Rad51-dependent re-loading of Cdc45, GINS, 

and Polε [62]. Interestingly, the authors observed that Mcm2-7 does not dissociate from the replication 

fork following its collapse, which therefore eliminates the need for its re-loading at the beginning of 

BIR, which is different from the situation observed at the beginning of BIR initiated in yeast by HO 

endonuclease. Also, while Pol appeared to play a key role during initiation of BIR in Xenopus, its 

role in yeast BIR has not been detected thus far. 

6. Mutagenesis Associated with BIR.  

It is known that BIR is capable of copying large, replicon-sized chromosomal regions, which has 

made it important to characterize the fidelity of BIR-associated DNA synthesis. The idea that BIR 

could be mutagenic first came from the observation of frequent template switching occurring at the 

beginning of BIR [30]. In addition, Schmidt et al. (2010) [91] studied the formation of spontaneous 

translocations between homeologous genes CAN1, LYP1 and ALP1 and observed base substitutions 

and slippage events at breakpoints of some translocations. The authors explained this finding by error-

prone BIR. However, direct evidence of increased mutagenesis associated with BIR came from the 

study of Deem et al. [25], where yeast strains disomic for chromosome III (Figure 3A) were used. In 

this study, the HO-induced DSBs were introduced into a truncated copy of chromosome III and were 

repaired by BIR using an uncut full size copy of chromosome III as a template (Figure 3B). The 

insertion of frameshift reporters at different positions in a template chromosome along the path of BIR 

allowed the authors to determine the frequency of frameshifts associated with BIR. The authors 

demonstrated that frameshifts during BIR were approximately 1000 times more frequent than during 

S-phase DNA replication (Figure 3D). Importantly, the increased level of frameshift mutagenesis was 

observed over the entire path of BIR. In addition, the authors observed that pol3-5DV mutation, which 

eliminates proofreading activity of Pol, increased BIR-associated frameshifts. This suggested that the 

fidelity of Pol is decreased during the course of BIR, which therefore explains the increase of 

mutagenesis (Figure 3E). The role of mismatch repair (MMR) was also investigated, with results 
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showing a significant increase in BIR mutation rates in MMR-deficient mutants (msh2Δ and mlh1Δ). 

This suggested that MMR is active during BIR (Figure 3E), however MMR was less efficient during 

BIR than during S-phase replication. In addition, the data suggested that BIR was associated with a 

DUN1-dependent increase of dNTP pools, which contributed to an increase in mutations (Figure 3E). 

Together, the data provided an initial description of mutagenesis during BIR, however the underlying 

mechanisms involved still remain unclear. It seems that BIR mutagenesis may actually occur through 

multiple pathways (Figure 3E). For example, the effect of Polζ was position-dependent as it played a 

more prominent role in mutagenesis at the initiation of BIR than in later steps.  

Figure 3. BIR is associated with increased frameshift mutagenesis. A. Experimental 

system to study BIR, half-crossovers and the level of mutagenesis associated with BIR. 

BIR is induced in a yeast strain disomic for chromosome III by an HO-induced DSB at 

MATa of truncated chromosome III. The donor MAT-inc chromosome is full-length and 

resistant to cutting by HO. Frameshift reporters lys2::ins are integrated at three positions in 

the MAT-inc chromosome at different distances from MAT-inc (0, 16, or 36 kb). 

B. BIR-induced Lys
+ 

outcome. C. A half-crossover DSB repair outcome resulting from a 

fusion between the left and right portions of the broken and donor chromosomes, 

respectively. D. BIR-induced Lys
+
 mutation rates in wild-type (WT) strains [25]. BIR 

mutation rates exceed the level of spontaneous events (denoted as no-DSB) by 

approximately 1000-fold at all positions. E. Summary table showing the relative effects of 

various genetic backgrounds (rev3Δ, pol3-5DV, msh2Δ, and dun1Δ) on BIR mutation rates 

based on results from [25]. The “up” and “down” arrows indicate an increase and decrease 

in Lys
+
 mutation rates, respectively, as compared to Lys

+
 mutation rates in corresponding 

wild-type (WT) strains. Adapted from Deem et al. [25].  
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Overall, it was concluded that BIR, which mimics normal DNA replication in its propensity to 

replicate large chromosomal regions, is substantially more mutagenic as compared to S-phase DNA 

replication. Importantly, recent data have suggested that the frequency of base substitutions is also 

highly increased during BIR (S. Ayyar and A. Malkova, unpublished observation). Thus, in respect to 

the fidelity of DNA synthesis, BIR appears more similar to several other pathways of DSB repair 

including GC and SSA that also were shown to be mutagenic [20,21,92]. However, what sets BIR 

apart from other DSB repair pathways is that BIR proceeds via a replication fork-like intermediate. 

7. Chromosomal Rearrangements Associated with BIR  

Besides being mutagenic, BIR frequently leads to gross chromosomal rearrangements (GCRs). Two 

main classes of GCRs have been described in association with BIR: translocations and half-crossovers. 

BIR initiated by the invasion of a broken DNA end at a non-allelic position leads to non-reciprocal 

translocations (Figure 2M, 2J) [26,30–34]. Ectopic invasions occur at positions of DNA repeats, often 

at locations of transposons [28,35,36], which are highly dispersed around the genome. Non-reciprocal 

translocations initiated by site-specific DSBs have been described in a number of BIR studies. In some 

of these cases [26,32,34], DSBs were initiated close to a repeated sequence, which initiated an invasion 

into a homologous sequence that was located at a different position in the genome. For example, Bosco 

and Haber [26] demonstrated that an HO-induced break introduced at HML initiated strand invasion at 

a 70-bp homologous sequence at HMR resulting in translocation. Lydeard et al. [34] showed that an 

HO-induced break initiated next to a CAN1 gene on chromosome V led to a strand invasion of the 

CAN1-containing DNA end into a homologous portion of another CAN1 gene inserted at chromosome XI, 

which resulted in a translocation. Several other studies in yeast described the formation of translocations 

mediated by BIR involving transposons: Ty and delta elements. For example, VanHulle et al. [28] 

observed that HO-induced DSBs introduced into chromosome III, 30 kb away from a pair of inverted 

Ty1 elements, initiated chromatid fusions that were mediated by recombination between non-allelic Ty 

elements. This event resulted in the formation of dicentric molecules. The mitotic breakage of these 

molecules led to breakage-fusion bridge cycles (BFB), and eventually to the formation of GCRs 

resulting from BIR events between Ty or delta elements located on the broken chromosome and at an 

ectopic position. Similarly, translocations introduced by I SceI–DSBs and mediated by Ty or delta 

elements located far away from the break have been described by Hoang et al. [36]. Importantly, these 

studies concluded that ectopic BIR leading to GCRs were capable of competing with allelic BIR. 

Furthermore, it was demonstrated that a number of mutations including sgs1Δ and rad51Δ affect 

competition between ectopic and allelic BIR, making ectopic GCR more favorable and GCRs more 

frequent [28,35,79]. Additionally, the formation of complex translocations was documented by several 

studies where BIR initiated by the invasion into one chromosome was first interrupted, and then 

continued by reinvasion and copying from another donor template [28,30]. 

Other studies have described spontaneous non-reciprocal translocations that occurred by BIR. 

Petes’ group demonstrated that reducing the levels of Polα or Polδ led to chromosomal breakage close 

to a pair of inverted Ty1 elements which resulted in GCRs through interactions between Ty or delta 

elements on the broken chromosome and those located ectopically [93,94]. Similarly, Lobachev’s 

group observed frequent chromosome breaks at positions of inverted DNA repeats leading to 
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translocations that were explained by BIR mediated via Ty or delta elements [95]. An extensive study 

that was undertaken by Kolodner’s group, led to the discovery of many mutations stimulating the 

formation of GCRs through several different pathways including BIR [96,97]. For example, Schmidt 

and Kolodner demonstrated that sgs1Δ stimulated the formation of complex translocations resulting 

from BIR involving several diverged genes [96]. The structural analysis of these translocations 

indicated the involvement of breakage-fusion-bridge cycles and template switching [91]. 

Another type of GCRs associated with BIR is a half-crossover, (HC) which represents a fusion between 

portions of donor and recipient chromosomes, while other portions of the participating chromosomes 

are lost (Figure 3C). HCs result from aberrant processing of BIR intermediates (Figure 2G, 2K, 2L). 

HCs are very frequent in Polδ mutants (pol32Δ and pol3-ct) that can successfully undergo the strand 

invasion step of BIR, but fail to initiate DNA synthesis [27,29]. This problem was suggested to 

promote the resolution of a HJ followed by a fusion between portions of the donor and recipient 

chromosomes. Symington’s group observed that Mus81 is responsible for approximately one half of 

HCs observed in pol3-ct background [29]. However, it is likely that other resolvase proteins also 

promote HCs, since the other half of the HCs occurred independently of MUS81. Although HCs are 

more frequent in mutants, they are also observed in wild-type cells [27,29], where HCs may have 

resulted from pausing of BIR-associated DNA synthesis (Figure 2G).  

An important feature of HCs is that they create a broken DNA end in a previously intact donor 

chromosome. This can lead to a cycle of instability where broken molecules will initiate rounds of 

HCs, resulting in the transfer of genetic instability from one molecule to another. This phenomenon is 

similar to cascades of non-reciprocal translocations (NRTs) described in mammalian tumors [98]. It is 

therefore possible that an interruption of BIR could lead to an outcome similar to the phenomenon of 

NRT in mammals. An increased level of HCs has also been observed in rad51Δ and rad54Δ mutants 

with a defect at the step of strand invasion [29,79]. This suggests that early state deficiencies of BIR 

can lead to HCs. Moreover, HCs were also observed in rad52Δ cells, however at very low rates [77,99]. To 

explain these observations, it has been suggested that when strand invasion is inefficient, HCs can 

form by SSA between long single-stranded DNA regions that were created by long resection of broken 

DNA ends. 

8. Microhomology-Mediated BIR (MMBIR) 

In recent years a new BIR-related pathway called micro-homology mediated BIR (MMBIR) has 

been proposed to explain copy number variations and complex chromosomal rearrangements including 

those associated with cancer and various other diseases in humans [100]. This idea was initiated by 

Lee et al. [101] who studied patients that had a duplication of the dosage-sensitive Proteolipid Protein 1 

(PLP1) gene associated with Pelizaeus-Merzbacher disease (PMD) and discovered that many of these 

patients had complex DNA duplications and triplications. The authors analyzed the break-points of 

these rearrangements and found the presence of micro-homologies. They proposed the replication-

based mechanism FoSTeS, adapted from Slack et al. [102], as a plausible mechanism capable of 

generating complex rearrangements via micro-homologies. They suggested that continual stalling of 

the replication fork could prompt disengagement of the nascent DNA strand which would allow this 
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strand to switch to another active replication fork whereby micro-homology would be used to  

re-initiate synthesis (Figure 2H).  

The idea that CNVs result from a replication-based mechanism was further supported in budding 

yeast [103]. In this study the authors observed spontaneous segmental duplications (SDs) of the 

RPL20B gene. The authors demonstrated that SD formation was enhanced when replication was 

perturbed by clb5 mutations or by the addition of camptothecin, a topoisomerase I inhibitor known to 

incite collapses of replication forks. The authors also observed that SD formation required Pol32, 

indicative of a BIR-based mechanism. Importantly, SDs were formed through Rad51-dependent and 

Rad51-independent pathways. The latter pathway proceeded via micro-homologies.  

As an attempt to provide an explanation for how CNVs and complex chromosomal rearrangements 

arise, Hastings et al. [100] proposed the model of MMBIR. According to this model, MMBIR is 

activated when Rad51 is absent or becomes limited during times of cellular stress (Figure 2A, 2H). 

They reasoned that the absence of Rad51 limits homologous invasion and allows DNA interactions 

using micro-homologies. In the MMBIR model, successive template-switching events result from 

DNA breakage that leads to repeated dissociation of single-stranded DNA in a replication fork, 

followed by re- annealing and re-initiation of the fork on different templates.  

Within the last few years, MMBIR has gained much attention in relation to the discovery of 

chromothripsis [104–107]. Chromothripsis is a phenomenon in which massive chromosomal 

rearrangements are typically restricted to one chromosome. The chromosome is first thought to 

‘shatter’ resulting in extensive double-strand breaks, followed by random ‘stitching’ of the 

chromosomal fragments. Similar chromosome catastrophes have been observed in other high 

resolution genome analyses, for example by Liu et al. [108]. In this particular study, analyses from 17 

individuals showed copy number variations including deletions, duplications, triplications, 

translocations and inversions that were all localized to one particular chromosome. Many of the 

chromosome alterations involved high copy number changes, with one individual having a total of 18 

changes. The authors proceeded to sequence some of the break-point junctions in this individual and 

others, revealing frequent occurrences of templated insertions, and inversions with micro-homologies 

at break-points. They reasoned MMBIR as the most likely underlying mechanism responsible for 

generating these profound changes. Recently, MMBIR mechanisms have also been used to explain 

GCRs found in a number of genomic disorders in humans [101,109–112] and cancer [113]. 

Specifically, in-frame gene fusions of the RAF family protein kinases found in low-grade astrocytomas 

were strongly argued to be a consequence of MMBIR [113]. One significant aspect of this finding is 

that the in-frame gene fusions found in this study are also thought to be recurrent in various cancer 

types such as leukemias, lymphomas, and sarcomas [68], suggesting the possibility that these 

chromosomal rearrangements may develop via an MMBIR pathway. Interestingly, MMBIR is now 

being used to explain certain chromosomal rearrangements in plant organelle genomes. Recent studies 

in Arabidopsis have identified plastid-localized single-stranded DNA binding proteins called Whirly as 

important factors associated with suppressing micro-homology dependent recombination, which could 

be MMBIR [114]. 

Important questions regarding MMBIR include, which proteins are involved in promoting MMBIR 

and what cellular properties are required for this pathway to ensue. By a first approximation, it seems 

that replication stalling and/or replication collapse is necessary to prompt template switching. In terms 
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of DNA architecture, it has been suggested that problems with the progression of a DNA replication 

fork could result from palindromic sequences, secondary structures (i.e., cruciform, hairpin loops) 

repeats etc [101,103]. 

9. Conclusions (Remaining Questions and Future Prospects) 

Despite the significant progress that has recently been made in studies of BIR, many aspects of BIR 

in eukaryotes still remain unknown and will need to be uncovered in the future. Future studies will be 

required to characterize the replication fork driving BIR and the mode of BIR-associated DNA 

synthesis. In particular, it will be important to identify and understand the role of DNA helicases and 

DNA polymerases participating in BIR. Also, other key replication-associated factors such as PCNA 

and the MMR complex need to be characterized in the context of BIR. In addition, future studies will 

also need to be developed to determine whether BIR is driven by a bona fide replication fork and 

whether the inheritance of newly-synthesized DNA is semi-conservative or conservative. In addition, a 

full spectrum of BIR-associated mutagenesis will need to be identified. Together, this information will 

provide insight into why BIR is highly mutagenic and why it is frequently associated with 

chromosomal rearrangements. It will also be very important to determine the mechanisms that 

suppress BIR at the stage of its initiation. Knowledge of these mechanisms will allow us to understand 

why normal eukaryotic cells repair DSBs by GC, a safer repair pathway, and how some cells shift 

towards the more destabilizing pathway of BIR. 

With the recent interest in MMBIR, we imagine that in the next few years, MMBIR will also be better 

understood. Currently, no experimental evidence exists for the predictions made by Hastings et al. [100], 

that Rad51 deficiency promotes MMBIR, and therefore further studies will need to be conducted to 

better understand this connection. In addition, it will be important for future studies to determine 

whether normal BIR can switch to MMBIR and which specific factors regulate such a switch. 

Furthermore, the identity of specific proteins involved in MMBIR will further clarify the link between 

MMBIR and disease.  

To date, BIR is predominantly studied by introducing targeted DNA breaks that utilize non-sister 

chromatids as a template for repair. This situation differs from a chromosome break resulting from a 

replication collapse, a scenario where BIR can use a sister chromatid for repair. The use of enzymes 

producing site-specific DNA nicks [115–117] will enable studies of BIR that occur during S-phase 

replication. Also, it is critical that BIR is further investigated in higher eukaryotes, especially in 

mammals, where our knowledge of BIR mechanisms and the participating proteins remains obscure. 

Most importantly, future studies will need to shed light on the role of BIR in promoting mutations and 

chromosomal rearrangements that lead to various human diseases, including cancer. 
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