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Abstract: Psoriasis is a lifelong, systemic, immune mediated inflammatory skin condition, affecting
1–3% of the world’s population, with an impact on quality of life similar to diseases like cancer
or diabetes. Genetics are the single largest risk factor in psoriasis, with Genome-Wide Association
(GWAS) studies showing that many psoriasis risk genes lie along the IL-23/Th17 axis. Potential
psoriasis risk genes determined through GWAS can be annotated and characterised using functional
genomics, allowing the identification of novel drug targets and the repurposing of existing drugs.
This review is focused on the IL-23/Th17 axis, providing an insight into key cell types, cytokines, and
intracellular signaling pathways involved. This includes examination of currently available biological
treatments, time to relapse post drug withdrawal, and rates of primary/secondary drug failure,
showing the need for greater understanding of the underlying genetic mechanisms of psoriasis and
how they can impact treatment. This could allow for patient stratification towards the treatment most
likely to reduce the burden of disease for the longest period possible.
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1. Introduction

Psoriasis is a systemic, immune mediated, papulosquamous inflammatory skin con-
dition, with a chronic relapsing-remitting course, which may also involve the nails and
joints [1]. It affects 1–3% of the world’s population [2,3], with <0.5% being children [4].
Psoriasis occurs evenly between sexes, though early disease and increased severity are
associated with being female and having an affected first-degree relative [5]. The negative
impact on patients’ Health-Related Quality of Life (HRQL) causes disability comparable to
major diseases such as cancer and diabetes [6].

Genetics are the single largest risk factor for psoriasis. Family history in psoriasis is
positive for 40–50% of patients, and up to 75% in those presenting <30 years [7]. Familial
clustering in psoriasis is well established, with twin studies indicating a heritability range
of 70–90% [8]. HLA-C*06:02 is the main genetic risk factor for psoriasis. Inheritance of one
allele increases the risk of developing psoriasis by 4–5% [9], with the IL-23/IL-17 axis, type 1
interferons, and NF-κB also having been established as key to pathogenesis [10]. This review
covers the genetics of the IL-23 pathway, the movement from Genome-Wide Association
Studies (GWAS) to the functional characterisation of putative risk genes, the pathogenesis
of the IL-23 pathway, and its relevance to biologic and personalised treatments.
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2. The Genetics of Psoriasis

GWAS have identified >80 loci associated with psoriasis susceptibility in both Euro-
pean and east Asian populations [11], explaining up to 28% of heritability in psoriasis [12].

2.1. Genetic Comparison of Psoriasis Subtypes

This review covers plaque psoriasis, as it is the most common psoriasis subtype, ac-
counting for 80–90% of patients with psoriasis. There are also, however, subtypes such as
pustular psoriasis, guttate psoriasis, inverse psoriasis, and erythrodermic psoriasis. Many
subsets are under-researched in comparison to the literature surrounding plaque psoria-
sis. Guttate, erythrodermic, and pustular forms of psoriasis have distinct morphologies,
whereas other subsets are distinct from plaque psoriasis by location rather than genetics [1].
The main genes implicated in pustular psoriasis are IL36RN, CARD14, and AP1S3 [13].
Interestingly, though abnormalities in IL-36 signaling and IL-36g/a genetic polymorphisms
are implicated in plaque psoriasis pathogenesis, IL36RN is not. Several loss of function
mutations in IL36RN have been shown to cause generalized pustular psoriasis alone when
homozygous, or heterozygous and compounded [14]. CARD14 mediates NF-κB signaling
in keratinocytes; gain of function mutations here are strongly implicated in plaque psoriasis
pathogenesis, whereas missense variants only seem to increase the risk of pustular psoriasis
with concurrent plaque psoriasis [15,16]. AP1S3 has not been shown to have any associ-
ation with plaque psoriasis, though findings have shown that loss of function mutations
in AP1S3 increases the risk of pustular psoriasis independent of CARD14 and IL36RN,
with Mahil et al. showing that knock out of the gene causes autophagy in keratinocytes,
mediating NF-κB activation [17]. Guttate psoriasis is an outlier among subtypes, caused by
a preceding streptococcal infection and often clearing within 3–4 months without treatment,
though with the potential to develop into plaque psoriasis [18]. Very little is known about
the pathogenesis or potential genetic basis of erythrodermic psoriasis due to its rarity,
accounting for only 1–2.25% of psoriatic patients [19]. More research needs to be done
to fully understand the overlap between the genetics of plaque psoriasis with the rarer
psoriasis subtypes; currently, it is believed that plaque psoriasis is distinct from pustular,
guttate, and erythrodermic psoriasis, though evidence also exists for some similarities to
be drawn.

2.2. Genes Associated with the IL-23 Pathway

The identification of the IL-23R, IL12B, IL-23A, IRF4, NF-KBIZ, SOCS1, STAT3, and
TRAF3IP2 loci (Table 1) suggests that IL-23/Th17 signaling plays a prominent role in
disease pathogenesis, with IL12B coding for the p40 subunit found in both IL-23 and IL12
and TRAF3IP2 coding for ACT1, an adaptor protein essential in the signal transduction of
IL17A [20]. KLF4 upregulates IL17A expression during Th17 differentiation. Significant
enrichment of disease risk variants in the active chromatic domains of Th1 and Th17
cells were also found [12]. The gain of function mutation in CARD14 alone can drive
IL-23/IL17 mediated psoriasiform inflammation [21]; this may be due to its role as a key
mediator in the pathway through interaction with the ACT1-TRAP6 signaling complex [22],
further evidenced in a study by Li et al. where epigenetic regulation of CARD14 through
H3K9 demethylation controlled IL-23 expression in murine keratinocytes [23]. The loss
of function mutation in IL36G increases IL36 expression, which upregulates IL6, IL-23,
IL8, and NF-κB signaling [24]. TGF-β and IL-23 can increase HIF-1α expression and
promote the interaction between HIF-1α and P300 in CD4+ T cells [25], leading to increased
miR-210 expression in CD4+ T cells, which promotes keratinocyte proliferation, increased
chemokine secretion, and increased production of TGF-β. miR-210 also promotes Th17 and
Th1 cell differentiation while inhibiting Th2 differentiation by acting on STAT6 and LYN
signaling [26].
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Table 1. Non-MHC GWAS loci associated with increased risk of psoriasis. The risk of single-
nucleotide polymorphisms (SNPs) identified through various psoriasis GWAS and the potentially
associated genes, with genes identified as relevant to the IL-23 pathway highlighted. Adaption of
table from Ray-Jones et al. 2018 [27].

Locus Notable Gene(s)
in Literature Study Population Index SNP Index SNP Annotation p-Value Reference

1p36.3 MTHFR CHN rs2274976 Missense: MTHFR 2.33 × 10−10

1p36.23 SLC45A1,
TNFRSF9 EUR rs11121129 Intergenic 1.7 × 10−8

1p36 IL-28RA
EUR rs7552167 4.2 kb 5′ of IL-28RA 8.5 × 10−12

CHN rs4649203 5.5 kb 5′ of IL-28RA 9.74 × 10−11

1p36.11 RUNX3 EUR rs7536201 1.5 kb 5′ of RUNX3 2.3 × 10−12

1p36.11 ZNF683 CHN rs10794532 Missense: ZNF683 4.18 × 10−8

1p31.3 IL-23R
EUR rs9988642 441 bp 3′ of IL-23R 1.1 × 10−26

CHN chr1: 67,421,184
(build hg18) Nonsynonymous: IL-23R 1.94 × 10−11

1p31.3 C1orf141 CHN rs72933970 Missense: C1orf141 1.23 × 10−8

1p31.1 FUBP1 EUR rs34517439 Intronic: DNAJB4 4.43 × 10−9

1q21.3 LCE3B, LCE3D
EUR rs6677595 3.6 kb 3′ of LCE3B 2.1 × 10−33

CHN rs10888501 175 bp 3′ of LCE3E 6.48 × 10−13

1q22 AIM2 CHN rs2276405 Stop-gained: AIM2 3.22 × 10−9

1q24.3 FASLG EUR rs12118303 Intergenic 3.02 × 10−10

1:24964519 RUNX3 JAP rs6672420 Missense: RUNX3 7 × 10−10 [28]

1p36.22 MTHFR S.ASIAN/EUR rs2103876 Intronic: MFN2 1.18 × 10−9 [29]

1q24.2 XCL1 S.ASIAN/EUR rs12046909 3′ of gene: XCL2 1.68 × 10−9 [29]

1q31.1 LRRC7 EUR rs10789285 Intergenic 1.43 × 10−8

1q31.3 DENND1B EUR rs2477077 Intronic: DENND1B 3.05 × 10−8

(meta)

1q32.1 IKBKE EUR rs41298997 Intronic: IKBKE 2.37 × 10−8

2p16.1 FLJ16341, REL EUR rs62149416 Intronic: FLJ16341 1.8 × 10−17

2p15 B3GNT2 EUR rs10865331 Intergenic 4.7 × 10−10

2q12.1 IL1RL1 CHN rs1420101 Intronic: IL1RL1 1.71 × 10−10

2q24.2 KCNH7, IFIH1
EUR rs17716942 Intronic: KCNH7 3.3 × 10−18

CHN rs13431841 Intronic: IFIH1 2.96 × 10−9

2:60847551 REL-DT JAP rs1177203 Intronic: REL-DT 4 × 10−9 [28]

3p24.3 PLCL2 EUR rs4685408 Intronic: PLCL2 8.58 × 10−9

3q11.2 TP63 EUR rs28512356 400 bp 3′ of TP63 4.31 × 10−8

3q12.3 NF-KBIZ EUR rs7637230 Intronic: RP11-221J22.1 2.07 × 10−9

3:101914516 RDUR, NFKBIZ JAP rs2312786 Intronic 1 × 10−9 [28]

3q13 CASR CHN rs1042636 Missense: CASR 1.88 × 10−10

3q26.2-q27 GPR160 CHN rs6444895 Intronic: GPR160 1.44 × 10−12

4q24 NF-KB1 CHN rs1020760 Intronic: NF-KB1 2.19 × 10−8

4:105719474 INTS12,GSTCD CHN rs149442660 Intronic: INTS12,
Missense: GSTCD 6 × 10−12 [30]

4:121833304 BBS7 CHN rs143700362 Missense: BBS7 3 × 10−19 [30]

5p13.1 PTGER4, CARD6 EUR rs114934997 Intergenic 1.27 × 10−8

5q14 ZFYVE16 CHN rs249038 Missense: ZFYVE16 2.14 × 10−8

5q15 ERAP1, LNPEP
EUR rs27432 Intronic: ERAP1 1.9 × 10−20

CHN rs27043 Intronic: ERAP1 6.50 × 10−12

5q31 IL13, IL4 EUR rs1295685 3′-UTR: IL13 3.4 × 10−10
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Table 1. Cont.

Locus Notable Gene(s)
in Literature Study Population Index SNP Index SNP Annotation p-Value Reference

5q33.1
TNIP1

EUR rs2233278 5′-UTR: TNIP1 2.2 × 10−42

CHN rs10036748 Intronic: TNIP1 4.26 × 10−9

5:151087628 JAP rs2233278 5′-UTR: TNIP1 3.7 × 10−10 [31]

5q33.3 IL12B
EUR rs12188300 Intergenic 3.2 × 10−53

CHN rs10076782 Intronic: RNF145 4.11 × 10−11

5:159402519 IL12B, LINC01845 JAP rs12188300 Intronic 3 × 10−23 [28]

5:151090412 TNIP1 JAP rs74817271 Intronic: TNIP1 6 × 10−15 [28]

5q33.3 PTTG1 CHN rs2431697 Intergenic 1.11 × 10−8

6p25.3 EXOC2, IRF4 EUR rs9504361 Intronic: EXOC2 2.1 × 10−11

6p22.3 CDKAL1 EUR rs4712528 Intronic: CDKAL1 8.4 × 10−11

6:31014767 MUC22 JAP rs9394026 Intronic: MUC22 6.6 × 10−15 [28]

6:31271729 HLA-C JAP rs1050414 Synonymous: HLA-C 6 × 10−14 [28]

6:108049381 OSTM1 CHN rs149798287 Missense: OSTM1 1 × 10−8 [30]

6:111608659 TRAF3IP2, FYN JAP rs9481169 5′ of TRAF3IP2 7 × 10−12 [28]

6:137918297 SIMALR,
TNFAIP3 JAP rs6933987 Intergenic 2 × 10−8 [28]

6:159094277 TAGAP-AS1,
FNDX1-AS1 JAP rs2249937 Intronic 1 × 10−11 [28]

6:31333042 HLA-B,
LINC02571 JAP rs12212594 Intergenic 5 × 10−209 [28]

6q23.3
TRAF3IP2 EUR rs33980500 Missense: TRAF3IP2 4.2 × 10−45

TNFAIP3 EUR rs582757 Intronic: TNFAIP3 2.2 × 10−25

6q25.3 TAGAP EUR rs2451258 Intergenic 3.4 × 10−8

7p14.3 CCDC129 CHN rs4141001 Missense: CCDC129 1.84 × 10−11

7:141614171 AGK CHN rs144706178 Missense: AGK 2 × 10−15 [30]

7p14.1 ELMO1 EUR rs2700987 Intronic: ELMO1 4.3 × 10−9

8p23.2 CSMD1 CHN rs10088247 Intronic: CSMD1 4.54 × 10−9

9p21.1 DDX58 EUR rs11795343 Intronic: DDX58 8.4 × 10−11

9q31.2 KLF4 EUR rs10979182 Intergenic 2.3 × 10−8

10q21.2 ZNF365 EUR rs2944542 Intronic: ZNF365 1.76 × 10−8

10q22.2 CAMK2G, FUT11 EUR rs2675662 Intronic: CAMK2G 7.35 × 10−9

10q22.3 ZMIZ1 EUR rs1250544 Intronic: ZMIZ1 3.53 × 10−8

10:88732445 LIPK CHN rs200583975 Missense: LIPK 1 × 10−7 [30]

10q23.31 PTEN, KLLN,
SNORD74 EUR rs76959677 Intergenic 2.75 × 10−8

10q24.31 CHUK EUR rs61871342 Intronic: BLOC1S2 1.56 × 10−9

11p15.4 ZNF143 CHN rs10743108 Missense: ZNF143 1.70 × 10−8

11q13 RPS6KA4, PRDX5 EUR rs694739 256 bp 5′ of AP003774.1 3.71 × 10−9

11q13.1 CFL1, FIBP,
FOSL1 EUR rs118086960 Intronic: CFL1 6.89 × 10−9

11q13.1 AP5B1 CHN rs610037 Synonymous: AP5B1 4.29 × 10−11

11q22.3 ZC3H12C EUR rs4561177 1.7 kb 5′ of ZC3H12C 7.7 × 10−13

11q24.3 ETS1 EUR rs3802826 Intronic: ETS1 9.5 × 10−10

12p13.3 CD27, LAG3 CHN rs758739 Intronic: NCAPD2 4.08 × 10−8

12p13.2 KLRK1, KLRC4 EUR rs11053802 Intronic: KLRC1 4.17 × 10−9

12q13.3 IL-23A, STAT2 EUR rs2066819 Intronic: STAT2 5.4 × 10−17

12q24.12 BRAP,
MAPKAPK5 EUR rs11065979 Intergenic 1.67 × 10−8
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Table 1. Cont.

Locus Notable Gene(s)
in Literature Study Population Index SNP Index SNP Annotation p-Value Reference

12q24.31 IL31 EUR rs11059675 Intronic: LRRC43 1.50 × 10−8

13q12.11 GJB2 CHN rs72474224 Missense: GJB2 7.46 × 10−11

13q14.11 COG6 EUR rs34394770 Intronic: COG6 2.65 × 10−8

13q14.11 LOC144817 EUR rs9533962 Within LOC144817 1.93 × 10−8

13q32.3 UBAC2,
RN7SKP9 EUR rs9513593 Intronic: UBAC2 3.60 × 10−8

14q13.2 NF-KBIA EUR rs8016947 Intronic: RP11-56B11.3 2.5 × 10−17

13q14.11 LOC144817 CHN rs12884468 Intergenic 1.05 × 10−8

14q23.2 SYNE2 CHN rs2781377 Stop-gained: SYNE2 4.21 × 10−11

14q32.2 RP11-61O1.1 EUR rs142903734 Intronic: RP11-61O1.1 7.15 × 10−9

15q13.3 KLF13 EUR rs28624578 Intronic: KLF13 9.22 × 10−10

16p13.13 PRM3, SOCS1 EUR rs367569 1.6 kb 3′ of PRM3 4.9 × 10−8

16p11.2 FBXL19, PRSS53 EUR rs12445568 Intronic: STX1B 1.2 × 10−16

17q11.2 NOS2 EUR rs28998802 Intronic: NOS2 3.3 × 10−16

17q12 IKZF3 CHN rs10852936 Intronic: ZPBP2 1.96 × 10−8

17q21.2 PTRF, STAT3,
STAT5A/B EUR rs963986 Intronic: PTRF 5.3 × 10−9

17q25.1 TRIM47, TRIM65 EUR rs55823223 Intronic: TRIM65 1.06 × 10−8

17q25.3 CARD14 EUR rs11652075 Missense: CARD14 3.4 × 10−8

17q21.2 PTRF, STAT3,
STAT5A/B CHN rs11652075 Missense: CARD14 3.46 × 10−9

17q25.3 TMC6 CHN rs12449858 Missense: TMC6 2.28 × 10−8

18p11.21 PTPN2 EUR rs559406 Intronic: PTPN2 1.19 × 10−10

18q21.2 POL1, STARD6,
MBD2 EUR rs545979 Intronic: POL1 3.5 × 10−10

18q22.1 SERPINB8 CHN rs514315 3′ of SERPINB8 5.92 × 10−9

19p13.2 TYK2 EUR rs34536443 Missense: TYK2 9.1 × 10−31

19p13.2 ILF3, CARM1 EUR rs892085 Intronic: QTRT1 3 × 10−17

19:10366391 TYK2 JAP rs34725611 Intronic: TYK2 4 × 10−13 [28]

19:4862608 SPHK CHN rs11544355 Missense: SPHK 7 × 10−11 [30]

19q13.33 FUT2 EUR rs492602 Synonymous: FUT2 6.57 × 10−13

19q13.41 ZNF816A CHN rs12459008 Missense: ZNF816 2.25 × 10−9

20q13.13 RNF114 EUR rs1056198 Intronic: RNF114 1.5 × 10−14

21q22 RUNX1 EUR rs8128234 Intronic: RUNX1 3.74 × 10−8

21q22.11 IFNGR2 CHN rs9808753 Missense: IFNGR2 2.75 × 10−8

21q22.11 SON CHN rs3174808 Missense: SON 1.15 × 10−8

22q11.21 UBE2L3, YDJC EUR rs4821124 1 kb 3′ of UBE2L3 3.8 × 10−8

The largest psoriasis GWAS metanalysis to date was performed by Dand et al. In
2023 [32], offering many valuable insights, with a larger sample size (36,466 cases, 458,078
controls) than previous psoriasis GWAS metanalyses [12]. With this increase in statistical
power, 45 novel psoriasis susceptibility loci with genome-wide significance were identi-
fied. Of particular relevance to the IL-23 pathway, Dand et al. found a novel variant at
chromosome 22q11.1, in the 5′ untranslated region/intron of IL17RA, which codes for the
most common co-receptor subunit of IL-17A, IL-17C, IL-17E, and IL-17F [33]. This unit is
targeted by brodalumab, a biologic found to be highly affected in the treatment of psoriasis,
providing further evidence for the key nature of the IL-23 pathway [34].
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This metanalysis also included the largest Transcriptome-Wide Association Study
(TWAS) conducted in psoriasis to date. TWAS analysis correlates disease-associated Single-
Nucleotide Polymorphisms (SNPs) to expression levels of genes to determine the regulatory
relationship between genes and traits. TWAS focuses on modelling transcription regulation,
leveraging the information garnered through expression quantitative loci (eQTL) regulation
studies. In this way, it is possible to determine the level to which all disease-associated
variants within a locus contribute to differential gene expression, and is a powerful tool to
relate risk genotype to function. Previous TWAS studies have uncovered novel putative
psoriasis risk genes [35], with Jeong et al. highlighting SSBP4 as significantly downregulated
in psoriatic skin and fibroblasts [36]. SSBP4 increased transcription of interleukin 36 receptor
agonist (IL36RA), IL-36RA reduces IL-36 activity, a cytokine has been found to stimulate IL-
23 production and to have increased levels in psoriasis patients [37]. Dand et al. highlighted
4 genes identified or supported through the most recent TWAS: ELL, CEBPG and IRF1 and
IRF5 [32]. The elongation factor gene (ELL) showed upregulation in blood with psoriasis-
associated alleles, and is thought to sustain the epidermal proliferation genes known to
be upregulated in psoriasis [38]. The study suggests that the CEBPG gene at a newly
reported psoriasis risk locus (19q13.11), is predicted by TWAS to be downregulated in the
presence of psoriasis risk variants, corroborating previous reports of C/EBPγ suppression
of proinflammatory cytokines [39]. Interferon signalling has long been implicated in
psoriasis pathogenesis; Dand et al. found IRF1 and IRF5 to be predicted by TWAS to be
upregulated in the presence of a known psoriasis risk variant associated with IRF1 and a
novel risk variant identified through the accompanying GWAS, associated with IRF5 [32].

Looking into IL-23R more specifically, Tsoi et al. identified a particularly robust
susceptibility signal within this gene. The lead psoriasis associated SNP (rs9988642) is
in high LD with rs11209026, a missense exonic SNP found within IL-23R. The latter SNP
is protective for psoriasis, alongside other autoimmune diseases such as inflammatory
bowel disease, ankylosing spondylitis, and asthma, and is present in around 7% of the
population [40,41].

2.3. Limitations of GWAS

Index SNPs identified through GWAS are not necessarily causal and determining
implicated genes in different cell types requires further analysis. Genotyped SNPs are
chosen to be part of the array as they are in high Linkage Disequilibrium (LD) with many
SNPs and allow identification of large genomic regions containing unmeasured SNPs who
have equal probability of being causal, however they depend on cohort size and ethnicity
and therefore the lead SNP can be different for different cohorts. These regions have a high
probability of containing the causal SNP, however the association between a tag-SNP and a
trait can be indirect, due to the tag-SNP being associated with the causal SNP [42].

A few risk variants are found within coding regions of genes (IL-23R, TRAF3IP2,
CARD14 and IFIH1) [12], however further characterisation is required to determine the
function of intronic and intergenic non-coding variants. While not coding directly for pro-
teins, intronic variants have been found to influence gene expression through enrichment
in enhancer regions [43]. Many associated SNPs are found within promotors for candidate
genes and implicate that gene in disease development, such as the IL-23R, ERAP1 and
IL12B loci [12]. However, the vast majority of disease-associated variants are not within
coding or promoter regions, and even those that may not be implicated in disease, as seen
with IL12B, where variants are intronic within RNF145, though the most likely causal gene
is IL12B [44]. Intergenic variants present the greatest challenge, here the associated gene is
usually postulated based on proximity and biological relevance [27].

2.4. Functional Annotation of SNPs

For intronic and intergenic SNPs, once a set of potential risk SNPS has been compiled
through GWAS, bioinformatics can be used to identify SNPs in LD with the lead SNPs found
through GWAS, as well as identifying alignment with histone modification or transcription
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factor binding sites, regulatory features that increase the likelihood of the SNPs having a
causal effect. Further functional experimentation for validation of the SNPs identified as
most likely to be causal can include techniques such as chromatin immunoprecipitation
(ChIP), multiome single cell, CRISPR, Hi-C and eQTL in disease relevant cell types [45].

A key challenge in both bioinformatic and experimental approaches is the require-
ment of specific cell types, environments and stimulation to bring forth the regulatory
mechanisms identified, evidenced in a variety of transcriptome studies [46–48].

RegulomeDB [49] and HaploReg [50] are databases of all known SNPs annotated with
all known functional elements in a variety of cell lineages, allowing production of a score
indicating the likelihood that a given SNP may be causal.

Using databases such as GTex—the most comprehensive eQTL database to date [51],
eQTLs can be identified through correlation of the genomes of individuals with the expres-
sion levels of genes within specific cell types/tissues, with the lead disease-associated SNP
required to correlate with the lead eQTL for strong evidence of correlation with expres-
sion. However, Fairfax et al. showed that over half of the eQTLs identified on primary
monocytes were present only post-stimulation [52]. Ding J et al. built a dataset mapping
eQTLs in psoriasis patient skin tissues and found significant enrichment of psoriasis GWAS
SNPs—with FUT2, RPS26, and ERAP2 expression affected [53]. Although GWAS SNPs
generally show significant enrichment in eQTLs [52,54,55], only 20–50% of GWAS SNPs
overlap with an eQTL, and it must be noted that eQTLs prove only correlation and not
causation, therefore further characterisation is required.

Laboratory based approaches can work to characterise the effect of potential causal
SNPs on gene expression, alongside the mechanism of action, and relate this back to the
disease phenotype.

Capture Hi-C and HiChIP can map active chromatin interactions genome-wide with
high enough resolution to identify enhancer-promoter interactions, aiding in the identifica-
tion of causal genes at GWAS loci [56], as noncoding regulatory elements have been shown
to interact with genes over long distances through DNA looping [57,58].

Much like eQTL, many studies have shown that chromatin interactions are cell type
specific and altered during differentiation and stimulation [59–61], and due to the systemic
nature of psoriasis, the complex interplay between skin-resident and immune cells may
also play a part. ChIP, ChIP-qPCR and/or ChIP-Seq can complement these DNA-DNA
interaction studies nicely, through characterisation of DNA-protein interactions at GWAS
loci [62]—determining whether a potential causal allele at a risk SNP affects the level of
protein binding to DNA.

The introduction of CRISPR/cas9 has had a great impact on the functional annotation
of putative causal risk SNPs. This method can use fusion proteins to alter the transcriptional
activity of the single SNP of interest, either activating or repressing enhancers [63,64],
followed by methods such as RT-qPCR and RNA-Seq to identify differential gene expression
between modified and control cells, allowing functional validation of putative causal
risk SNPs.

3. Pathogenesis

The genetics show that the IL-23/Th17 pathway is key to psoriasis pathogenesis,
setting it apart, alongside Crohn’s, as the only diseases to be so, with other immune
mediated diseases being mainly Treg/Th1 driven. Figure 1 shows a simplified version of
the psoriasis axis: When a keratinocyte is injured due to illness, infection or environmental
reasons, it released self-DNA/RNA, which forms a complex with the LL37 autoantigen,
these complexes activate both myeloid dendritic cells (mDCs) to produce TNF-α, IL-23,
IL-12 and plasmacytoid dendritic cells (pDCs) to produce IFN-α via stimulation of TLR9,
TLR7 and TLR8, this leads to the activation and migration to the lymph nodes of local
mDCs (also known as conventional dendritic cells), which can activate T cells through
antigen presentation [65]. mDCs are also activated by INF-γ, TNF-α, IL-1-β, and IL-6
secreted by innate immune cells such as keratinocytes, macrophages and natural kill (NK)
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T cells (Table 2), and go on to produce TNF-α, IL-12, IFNα and -β, IL-6 and IL-23, these
cytokines then cause the differentiation and proliferation of naïve T lymphocytes to varying
T cells including T helper (Th) 17 and Th22 lymphocytes, which move into the blood and
skin. Th17 lymphocytes release IL-17 alongside γδ T lymphocytes, NK cells, mastocytes,
and innate lymphoid cells (ILCs), as well as IL-22, IFNγ, IL-2 and IL-29, whereas Th22
lymphocytes release IL-22 alone. IL22, IL17a and IL17f cause development of the psoriasis
phenotype through the proliferation and impaired differentiation of keratinocytes. This
process also includes many mechanisms of positive feedback, causing propagation of the
disease and increasing inflammation [33,66].
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Figure 1. A simplified diagram of the main psoriasis pathogenesis axis. Based on majority consensus
in literature; the insulted keratinocyte releases self-DNA/RNA, forming a complex with the LL37
autoantigen, which then stimulates pDCs. IFNα released by pDCs alongside cytokines released from
a variety of other cells activate mDCs to go on to stimulate the differentiation of naïve T cells and
innate-like T cells into mature T Cells of varying function, which go on to propagate the psoriasis
phenotype. Created with BioRender.com [33,66].

Table 2. A summary of cell types involved in the IL-23 pathway in psoriasis. This table summarises
the cell types immediately involved in an IL-23 driven psoriasis pathway, illustrating the relevant
stimulants responded to, intracellular pathways activated, and proteins produced.

Cell Type Stimulant Intracellular Signalling Production References

Keratinocyte

TNFα NFκB IL-23

[33,66,67]

IL-17 ACT1/TRAF6 NFκB/MAPK IL-23

IL-36 MyD88/IRAK/MAPK/NFκB IL-23

IL-23 JAK/STAT3
CCL20

TGFβ
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Table 2. Cont.

Cell Type Stimulant Intracellular Signalling Production References

Th17

IL-36 MyD88/IRAK/MAPK/NFκB IL-23

[67,68]
IL-23 JAK/STAT3

IL-17

IL-22

IFNγ

IL-2

IL-29

ILC3 IL-23 JAK/STAT3
IL-23

[67,69]
IL-17

Monocytes
Mycobacterium NFκB IL-23

[67]
IL-23 JAK/STAT3 IL-22

Macrophage

IFNγ JAK/STAT1 IL-23

[70,71]

Microbial infection Dependent on microbe IL-23

IL-23 JAK/STAT3
Increased IL-23R expression

TNFα

IL-36γ MyD88/IRAK/MAPK/NFκB IL-23

IL-23 Macrophage
IL-23

JAK/STAT3

IL-17A/F

[72]IL-22

IFNγ

Myeloid dendritic cell

IFNα JAK/STAT1/2 IL-23

[73]IFNγ JAK/STAT1 IL-23

TNFα NFκB IL-23

Langerhans cell IL-36γ MyD88/IRAK/MAPK/NFκB IL-23 [73]

Skin resident memory
T cells

IL-23 JAK/STAT3
Proliferation

[74,75]
IL-17

Naïve T cell IL-23 JAK/STAT3 Inhibition of Treg convergence [76]

Th1 IL-23 JAK/STAT3

IFNγ

[67]

IL-26

IL-17

IL-22

IL-29

Th22 IL-23 JAK/STAT3 IL-22 [77]

Neutrophil IL-23 JAK/STAT3

IL-17

[69,78]LL36

Extracellular trap formation

Treg IL-23 JAK/STAT3

IFNγ

[79]TNFα

IL-17A

γδ T cell IL-23 JAK/STAT3
IL-17

[80–82]
IL-22

αβ T cell IL-23 JAK/STAT3 IL-17 [83]

NK22 IL-23 JAK/STAT3 IL-22

[66,69]
NK17 IL-23 JAK/STAT3

Differentiation

IL-17

IFNγ

NKT1 IL-23 JAK/STAT3 IFNγ [84]

MAIT17 cells IL-23 JAK/STAT3 IL-17 [85]

A key cell type seen in Figure 1, dendritic cells (DCs) provide the link between innate
and adaptive immunity, and in psoriasis this manifests as the link between disease initiation
and propagation. Studies have shown increased pDC infiltration in psoriasis vs healthy
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skin [86], pDCs usually have safeguards against recognition of self-nucleic acids, however
the large amounts of antimicrobial peptides such as LL-37 produced in psoriasis enables
their recognition, leading to the production of vast amounts of IFNα [73]. pDCs are the
main producers of IFNα in the skin. Nestle et al. (2005) and Okada et al. (2014) previously
determined the importance of IFNα in the development of the psoriasis phenotype [87,88].
This stance is supported by genetic analysis revealing DDX58 and RNF114, both type 1 IFN
genes, to confer psoriasis risk. IFNα also stimulates the differentiation of monocytes into
inflammatory dendritic cells (iDCs) and CD4+ T cells into Th1 and Th17 cells [89]. iDC
levels are reported to be increased in psoriasis and have been shown to present antigens to
CD4+ helper and CD8+ cytotoxic cells and produce cytokines such as IL-12, IL-23, TNF-α,
IL-1β, IL-6 and TGF-β [73].

There are two types of conventional dendritic cells, also known as myeloid dendritic
cells (mDCs). Type 1 mDCs are known as resident dendritic cells, and are antigen pre-
senting cells (APCs) that present to T lymphocytes, they are BDCA-1-positive (CD1c+),
and numbers are normal in psoriasis [90]. Type 2 mDCs are BDCA-1-negative (CD1c−),
with numbers greatly increased in psoriasis lesions, and normalising after treatment with
biologics. Also known as inflammatory DCs or TiP-DCs, type 2 mDCs produce TNF-α,
inducible nitric oxide synthase (iNOS), IL-6, IL-12, IL-20, and IL-23 [73], and again link the
innate and adaptive immune systems through stimulation of naïve T cell to differentiate
and presentation of foreign antigens to CD8+ T cells through cross presentation [91]. mDCs
can also be directly stimulated by TNFα and LL37-self nuclease complexes [73].

Main Intracellular Pathways

The IL-23 protein itself is key to the IL-23/Th17 axis, stimulating differentiation of
Th22 and Th17 cells, release of inflammatory cytokines and feeding the positive feedback
loop propagating inflammation within psoriatic plaques.

IL-23 is a heterodimeric complex of p19 and p40 subunits, p19 is shared with IL-39,
whereas the p40 subunit is found in IL-12. The receptor for IL-23 consists of IL-12Rβ1,
shared with IL-12, and an IL-23Rα chain. This structural similarity with IL-12 along with
IL-12s possible protective role in psoriasis greatly influenced the development of biologics
aimed to target the p19 subunit specifically (Table 3) [69,92]. A study by Lee et al. also
found that the expression of both p19 and p40 subunits was upregulated in psoriasis, as
opposed to the IL-12 specific p35 [93].

Table 3. Summary of biologic drugs used in psoriasis treatment. This table summarises the biologic
drugs used in psoriasis treatment, alongside their targets and mechanisms of action.

Drug Target Mechanism References

Ustekinumab P40 subunit shared by
IL12 and IL-23

Disrupts Th1 and Th17 differentiation and IL12 and
IL-23 signaling [94,95]

Guselkumab
Tildrakizumab
Risankizumab

P19 subunit of IL-23 Disrupt Th17 and IL-23 signaling [69,96–99]

Secukinumab
Ixekinumab IL17A Prevents both IL17A homodimers and IL17a-IL17F

heterodimers binding to their receptors.

[34,69,94,100,101]
Brodalumab IL17RA

Due to the commonality of the IL17RA chain in
receptor complexes, interrupts signaling of IL-17A,

IL-17C and IL-17F homodimers and the
IL-17A/F heterodimer

Bimekizumab IL17A/F Prevents IL17A and F homodimers and the
IL17A-IL17F homodimer binding to their receptors. [102]

Etanercept
Adalimumab

Infliximab
Certolizumab

TNF-α Indirect impact on IL17, by regulation of IL-23
production from myeloid or CD11c+ dendritic cells. [69,94,103]
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In disease status, the JAK/STAT3 pathway is activated by INF-γ, IL-12, IL-22, and
IL-23 (Table 2) [66,68]. The binding of IL-23 to IL-23R attracts a heterodimer of JAK2 and
TYK2, which binds to its intracellular domain. The heterodimer then auto-phosphorylates,
which activates the receptor and attracts STAT proteins, which bind and are phosphorylated
before moving to the nucleus to regulate gene transcription [104]. TYK2 specifically is
mainly activated by IL12 and IL-23—the lead receptor dimerises IL-12Rβ1/IL-23R, IL-
12Rβ1 associates with Tyk2 and its heterotypic subunits, while IL-23R binds to Jak2. TYK2
deficiency leads to reduced ability to recruit Th17 and Th22 cells [105]. STAT3 is hyper-
activated in immune cells and keratinocytes, inhibits cell differentiation, and promotes
proliferation and production of antimicrobial proteins (AMPs) in response to IL-23, IL-6,
IL-17, IL-21, IL-19 and IL-22 [33]. STAT3 is activated by phosphorylation of a conserved
tyrosine residue by JAK kinases [68]. Phosphorylated STAT3 enhances RORγt expression,
an intracellular regulator for the proliferation and function of Th17 cells [106], and both
bind to promoters of genes such as IL17A, IL17F, IL22, IL26, and IL-23R [94]. STAT3 me-
diates the effects of IL-23, so is essential for the amplification and maintenance of Th17
differentiation, it upregulates IL17A and F expression, alongside other genes required
for the Th17 pathway, such as RORγT, RORα, BATF, IRF4, AHR, IL-6Rα, and C-MAF,
as well as being essential for the function of γδ T cells (Calautti et al., 2018). STAT3 also
inhibits the convergence of Tregs downstream of IL6 and IL-23 signaling, leading to a loss
in suppressive power, as well as mediating IL6 stimulated IL21 secretion by naïve T cells,
leading to the induction of IL-23R and IL27 expression [68].

RORγt is a nuclear receptor required for Th17 cell differentiation from both murine and
human CD4+ T cells. Stimulated by IL-23 and IL6, it acts on Th17 gene promoters IL17A,
IL17F, IL22, IL26, IL-23R, Csf-2, CCR6, and CCL20. Success of IL-23 targeted biologics,
and studies showing that lack of RORγt leads to failure of Th17 cells to differentiate
demonstrates its potential as an effective drug target [106,107].

NF-κB is formed of a group of proteins, including RelA (p65), RelB and c-Rel, together
with subunits of NF-κB1 (p105) and NF-κB2 (p100), processed into p50 and p52 (Perkins
et al., 1992), it forms dimers, though these are retained in the cytoplasm by IκB proteins.
NF-κB signalling is induced by many inflammatory cytokines (Table 2) leading to the
phosphorylation of IκBα by IKKβ, degradation of IκB through proteins such as TRAFs and
ACT1, and phosphorylation of IKKs for translocation to the nucleus to regulate transcrip-
tion [108]. Many psoriasis risk genes are involved in this pathway; TNFAIP3, NF-KBIZ and
TNIP1 are involved in pathway regulation, with NF-KBIA inhibiting the pathway, RELA
coding for an NF-κB subunit and TRAF3IP2 coding for ACT1 (Table 1). Inhibition of NF-κB
signaling has been shown to decrease levels of IL-23 mRNA [109].

Looking specifically at intracellular signaling, genes associated with the signaling pre
and post IL-23 production are implicated in psoriasis GWAS. Interestingly, Lysell et al.
found that 5 SNPs within the IL-23R, IL-23A and IL12B genes were only associated with
severe psoriasis, alongside a significant difference in NF-KB1 when stratifying the cohort
based on disease severity. TYK2 also showed higher expression in the severe cohort, with
the association disappearing in the milder group. Out of the determined risk genes, only
STAT3, TNFAIP3 and TRAF3IP2 associations remained significant in all groups, with no
significant difference between disease severities. Most interestingly, interaction between
genes associated with the NF-κB pathway and IL-23 signaling was increased in the severe
phenotype group, with interaction between risk alleles in IL-23R, NF-KB1, TNIP1, IL12B,
and IL-23A only seen in the severe cohort [110]. This study is interesting and provides
some support for the link between NF-κB signaling and IL-23 production and downstream
signaling shown in Table 2; however, it is the only study on this topic and so requires
further validation.

4. Biologic Treatments

Patient response in psoriasis is commonly measured using the Psoriasis Area and
Severity Index (PASI). PASI is calculated through clinician assessment of the percentage
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body area affected with psoriasis and the severity of each area impacted. The score can
range from 0–72, generally a score of 5–10 is considered moderate disease and >10 as severe.
A 75% or 90% reduction in PASI is the benchmark in most clinical trials, noted as PASI75
and PASI90, respectively [111].

Comparing currently available psoriasis biologics (Table 3); in TNFα inhibitors, etan-
ercept is barely superior against systemic treatment options [112], though infliximab and
adalimumab performed better [113,114]. Although superior to etanercept, ustekinumab
was inferior to all IL-17 therapeutics, due to lower specificity and the possible protective
effect of IL-12 [115]. Risankizumab and guselkumab have proved superior to ustekinumab
and TNF inhibitors, with tildrakizumab being the least successful IL-23p19 antagonist,
possibly due to lower affinity [96,116,117]. There is similarity in efficacy between IL-17
and IL-23p19 antagonists, with ixekizumab having a faster response, possibly due to IL-
23p19 inhibitors acting further upstream, but guselkumab having the better long-term
result [97,118]. The recently approved bimekizumab works at a faster rate and, based on
network meta-analysis, seems to be one of the highest performing biologics to date [102],
possibly due to its inhibition of both IL-17A and F, whereas IL-23 inhibitors allow for the
production of IL-17 through other mechanisms. However, it has yet to be compared to
risankizumab or guselkumab.

4.1. Biologic Efficacy in Psoriasis

As observed commonly with biologics, patients’ initial response tapers off over time
(secondary failure) though some do not respond at all (primary failure). The time between
first response and withdrawal of the drug due to loss of efficacy differs between biologics,
though the risk of treatment failure is positively correlated with the number of biologics
the patient has previously tried [119]. A 2022 study by Elberdín et al. [120] found that over
10 years, the median number of biologics patients had been on was 2 (range 1–8), with lack
of efficacy being the main reason for switching. It found that ustekinumab had the best
drug survival, with efalizumab being withdrawn from the market in 2009 (Table 3). As
IL-23p19 inhibitors show an increased remission period post drug withdrawal compared
to ustekinumab, it will be interesting to see whether it would have increased survival in
10 years. The mechanisms leading to treatment failure remain unclear.

One possible reason could be the development of antidrug antibodies (ADAs). Specific
to biologic treatments, an immune response can be generated to target the monoclonal
antibodies, leading to reduced circulating drug levels, drug efficacy, drug survival and/or
adverse effects such as infusion reactions [121]. A possible solution is the administration
of immunosuppressants alongside biologic treatment, such as methotrexate/azathioprine
co-prescription with TNF inhibitor treatments, though this does come with the risk of
immunosuppression in patients [121]. Interestingly, the development of ADAs can be
influenced by genetic factors, with the HLA-DRβ-11, HLA-DQ-03, and HLA-DQ-05 alleles
conferring a higher risk of ADA development post anti-TNF treatment [122]. The most
consistent genetic association with ADA development is HLA-DQA1*05 alleles, however
the relatively small sample sizes and number of associations, and lack of consistent result
replication found in these studies make drawing reliable conclusions difficult [123–125].

Another possible mechanism is genetic polymorphisms. With response to biologic
drugs typically being heterogenous, one hypothesis is that this response reflects genetic
variance between patients or genetically distinct disease subsets with distinct pathogeneses.
The effect of genetics on anti-TNF response is well characterized, with TNF-α, TNFRSF1A,
TNFRSF1B, TNFAIP3, FCGR2A, FCGR3A, IL-17F, IL-17R, and IL-23R suggested to mod-
ulate response [126], however, few studies explore the interaction of IL-17 and IL-23
inhibitors with genetics. Ustekinumab shows a higher efficacy and faster response time
in HLA-Cw*06 positive patients than in negative patients [126], and Van den Reek et al.
found that the IL12B rs3213094-T allele increased efficacy and TNFAIP3 rs610604-G allele
predicting a worse outcome [127], however other studies were unable to replicate this.
The SUPREME study found that HLA-Cw*06 status did not influence response to secuk-
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inumab [128], however the two Italian studies predicted a higher PASI90 in HLA-Cw*06
positive patients [129,130]. An investigation into the effects of IL-17A polymorphisms on
secukinumab and ixekinumab response identified five non-coding SNPs, however none
influenced PASI75/90 achievement at 12 or 24 weeks [131]. In conclusion, a link between
genetic and treatment response has been found, however, especially in regard to the newer
and more effective IL-17 and IL-23 inhibitors, more studies are needed to reliably determine
the effects of the polymorphisms identified as modulating treatment response. Discovery of
genetic biomarkers for drug response could allow stratification of patients into subgroups
to increase response rates, allowing patients an earlier increase in quality of life.

4.2. Biologic Withdrawal in Psoriasis

Patients withdraw from therapeutics for a variety of reasons; withdrawal is associated
with risk of relapse, though time to relapse varies between person and drug. The median
time to relapse was 16–20 weeks for tildrakizumab, an IL-23p19 inhibitor (defined as below
PASI 90), or 20–25 weeks for PASI < 75 [132], whereas guselkumab had a median relapse
time of 15 weeks post withdrawal (PASI < 90) [97] and risankizumab a median of 30 weeks
(PASI 90) [133]. Ustekinumab’s median time was 15 weeks to PASI < 75 post withdrawal,
22–24 weeks for PASI < 50 [134,135]. While IL17 inhibitors seem to have a shorter time to
relapse and occasional rebound of disease, studies conflict over median time, from 46 days
(brodalumab) [136] to 20 weeks (ixekizumab, PASI < 50) [137], this difference is likely due
to differing relapse criteria. The median time to relapse when withdrawing TNFα inhibitors
has been found as 12.1 weeks (etanercept) [138] to 19.5 weeks (infliximab) [139], the shortest
post-withdrawal period [140]. The increased time period for IL-23 inhibitors may because
IL-23 is an upstream cytokine of many psoriasis pathways, impacting cytokines such as
IL17, and potentially the proliferation and survival of epidermal T cells [132].

A recent study published by Zhang et al. focused on secukinumab, which targets
genes thought to confer psoriasis risk both upstream (IL-23R, TYK2, JAK2, STAT3) and
downstream (TRAF3IP2/ACT1, TNFAIP3/A20) of IL-17 production. They found that
although genetic variation in the IL-17 pathway impacts psoriasis susceptibility, this same
variation does not significantly impact treatment response to secukinumab [141]. However,
due to possible conflict of interest, further studies in this subject would be useful.

Together with the highlighted importance of genetics in understanding and deter-
mining psoriasis pathogenesis, this review emphasises the need for the use of genetics to
stratify patients towards treatment options that are most likely reduce disease burden for
the longest period possible, as currently there is no tool or technique in the choice of first
biologic, or those that follow, past clinician experience and preference.

5. Summary

There have been enormous advances in the genetic understanding of the risk to
developing psoriasis. Similar to Crohn’s disease, there is large and growing evidence
as to the importance of the IL-23/IL17 pathway in disease. Risk variants are now more
reliably linked to causal genes through functional genomic technologies and bioinformatics,
providing a better understanding of the key genes, pathways, and cells types in disease.

Biologic therapies have transformed psoriasis treatment, targeting specific immune
pathways. However, individual responses vary, prompting a focus on genetic factors
influencing treatment outcomes. Recent studies highlight genetic polymorphisms’ role in
treatment response, particularly in inflammatory pathway genes like TNF-α, IL-17, and
IL-23R. Further studies into the effects of risk alleles on treatment response are required, as
current knowledge suggests potential for personalized treatment selection.

Here, we have brought together a variety of disciplines necessary to translate iden-
tification of possible risk SNPS through computational means, to the characterization of
putative causal genes in the lab, and ending with the clinical benefit to the psoriasis patient.
Integrating genetic data into treatment decisions offers promise for personalized psoriasis
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management. Continued research will refine our understanding and optimize treatment
approaches for better patient outcomes.
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